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1. Introduction

In smart manufacturing, process fingerprints (FP) represent
the core contributing process parameters towards the end 
functionality. By extracting the fundamental correlation 
between the process parameters and response, the FP approach 
plays a vital role in enhancing performance and meeting 
quality compliance [1]. It is aimed toward minimizing the time 
and cost invested towards the optimization and metrology of 
manufacturing systems. Also, though not yet widely explored, 
the FP-driven approach can help real-time systems like digital 
twins operate much more efficiently due to lesser data-handling 
requirements. However, the existing methodologies towards FP 
identification are limited to very few manufacturing processes 
and are predominantly a manual, tedious and error-prone 
approach. Consequently, the identified FP often have poor 
correlations with the desired responses. Lately, machine 
learning approaches have been introduced to automate the FP 

extraction from complex datasets with better results than 
the conventional approaches [2].  

The machine learning (ML) approach, however, has a 
critical shortcoming of being uninterpretable due to its black-
box style predictions [3]. The sophisticated computational 
structure of advanced ML models like ensembles and deep 
learning has made it impossible to explain the decision-making 
rationale to the stakeholders, thus raising serious concerns 
about the trust and transparency of its predictions, especially 
when used for high-stakes decisions [4]. Though there have 
been some recent attempts towards developing explainable AI 
(XAI) models for smart manufacturing, its application domain 
is largely limited to defect detection. Even in those cases, the 
interpretability is imparted through post-hoc tools, and the 
intrinsic (by design) explainability is yet to be addressed [5]. 
The existing intrinsically explainable models like regression 
and decision tree models have less accuracy and are not deemed 
reliable to model complex manufacturing processes.  
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Symbolic regression utilizes the computational capability of 
ML to extract explainable mathematical expressions from a 
search space of all potential analytical functions [6]. The 
approach is capable of producing perfectly explainable 
expressions and when combined with its in-built capacity for 
dimensionality reduction, it can be a transformational method
for process FP generation. Out of the several strategies for 
symbolic regression, an evolutionary ML approach called 
Qlattice has reported the best performance in terms of 
predictive accuracy [7], and dimensionality reduction and is 
hence used in this study for FP identification.

Collaborative robots (cobots) are being extensively used for 
various smart manufacturing applications including assembly, 
material handling, precision machining, inspection and quality 
control. Precise motion control of cobot end effectors is critical 
for their performance [8]. However, unanticipated positioning 
inaccuracies can happen due to the dynamic behaviour of the 
cobot during its operation. The dynamic error arises due to 
various factors such as vibration, resonance, noise, deflections, 
thermal expansion, and other disturbances that affect the
flexible elements during the cobot motion [9]. Since most of it
happens outside the servo loop, they are difficult to be identified
and compensated through in-built encoders. For such complex 
real-time process control applications, digital twins are widely 
employed in smart manufacturing. However, to the best of our 
knowledge, there are not many digital twin systems developed 
for real-time positioning control, apart from a recent study 
which uses attitude sensors for cobot error compensation [10].

Based on the literature study, it was understood that 
positioning inaccuracies due to dynamic error during cobot 
motion is yet to be investigated and addressed 
comprehensively. The existing computational models are 
largely slow, inefficient and uninterpretable, limiting their 
applications in real-time systems like digital twins. A faster, 
more explainable and direct method for dynamic error 
prediction is a critical bottleneck towards developing a capable 
online error compensation system. The FP approach is limited 
to a few machining applications till now and is a promising 
approach towards cobot dynamic error prediction. 

The study, therefore, proposes a novel approach to finding 
the FP expression of dynamic error through a completely 
explainable data-driven model called Qlattice. The approach is 
aimed at enabling latency-free dynamic error predictions 
through significant dimensionality reduction (>75%). Also, 
here the dynamic error is represented by just the process
signatures captured from raw accelerometer data, saving 
significant computational efforts otherwise required for 
displacement signal extraction through double integration. 
Finally, the model is applied to a digital twin for online dynamic 
error compensation towards improving the positioning 
accuracy of the cobot end effector.

2. Methodology

2.1. Experimental details

The experimental setup consists of the collaborative robot 
(COBOT, UR10e), a ball bar test system (Renishaw QC20-W, 

positioning performance, two triaxial accelerometers (PCB 
356B18), a data logger (National Instruments cDAQ-9174), a 
data card (NI-9234), and a workstation. The overall 
experimental setup is shown in Fig. 1. One of each 
accelerometer is positioned at the wrist (closest to the tool 
centre position (TCP)) and base to accurately record the 
dynamic deformations with minimal noise. The readings are 
acquired to the data card through the data logger. Relevant 
features are extracted from the time and frequency domain 
using MATLAB 2022a. True positioning data is recorded by 
RoboDk software during the ball bar test. Ball bar tests are 
globally accepted standard tests to evaluate the positioning 
performance and thus have been regarded as ground truth data 
in this study. The cobot-default positing data from encoders 
and the Qlattice model predictions are thus compared against 
the ball-bar results for performance evaluation.  

Fig. 1. Experimental setup for cobot motion in a circular path of radii 
(a) 100 mm (2) 150 mm (3) 300 mm 

2.2. QLattice A novel data-driven algorithm 

Symbolic regression is an explainable ML approach which 
searches the space of all mathematical expressions to identify 
the optimal equation correlating the input space X and output 
space Y. Symbolic regression techniques have demonstrated 
strong performance and generalizability, distinguishing them 
from alternative graph-based models like decision trees and 
random forests. As the number of features / independent 
variables (
exponentially and the exhaustive search becomes infeasible. 

A newly developed and extremely capable symbolic 
regression algorithm called Qlattice is used in this study to 
extract the fundamental 
motion signatures and its dynamic errors. Qlattice incorporates 
graphs that can be interpreted as mathematical formulas, 
enabling the evaluation of the implications of hypotheses [7].
Unlike conventional approaches that use graph networks and 
genetic programming to search the expression space, Qlattice 
models all possible X to Y expressions as spatial path sets [11]. 
From these infinite paths, the model searches for and selects 
the expression that best represents the required response, using 
the loss functions like RMSE. 
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Fig. 2. Overall methodology of Qlattice symbolic regression 

To mitigate the computational efforts, Qlattice simulates 
various paths connecting the inputs with the output Y in a 
multi-dimensional lattice space inspired by ath 
integral formulation. During simulation, the paths which are 
more likely to map input variables with outputs are formed. 
New functions are applied on these spatial paths and are further 
fine-tuned by multiple reinforcements of optimal solutions to 
improve their accuracy. As the lattice search progresses, 
several islands of potential solutions evolve independently 
thereby shrinking the search space. The execution is optimized 
by representing only a partial subset of Qgraphs at an instance, 
which is then continuously updated and pruned by eliminating 
the worst performers based on the loss function [12]. The 
overall approach and logic are given in Fig. 2. In this study, 
Qlattice is run based on the Feyn module in Python within a 
custom-built framework for FP extraction having constrained 
variables, complexity and computational units.       

2.3. Overall approach

The overall methodology of this study is given in Fig. 3 and 
is described as follows:

Cobot motion: The real-time positioning data of the cobot 
is collected by moving it along circular paths of radii 100 
mm, 150 mm and 300 mm (clockwise and 
counterclockwise) at varying feed rates of 2000, 4000 and 
6000 mm/min in the X-Y plane. During the cobot motion, 
data is acquired from the accelerometer, encoder and ball 
bar for the x, y, and z axes. 
Feature extraction: Eight features each are extracted from 
x and y raw accelerometer signals from time and frequency 
domains. Time domain features are mean absolute value 
(MAV), variance, peak amplitude, root mean square (RMS), 

kurtosis and skewness. Mean frequency and total power are 
extracted from the frequency domain. The training dataset 
consists of these extracted features, encoder positioning 
data, command data, and feed rate. Overall there are 19 
features in the input dataset.  
Symbolic regression: The response of interest is the 
positioning inaccuracy due to dynamic error. For a circular 
profile, it is calculated by the average radial deviation of the 
actual positioning data (extracted from ball-bar positioning 
data) from its command path. The QLattice approach is 
executed to find the optimal mathematical FP expression 
(maximum accuracy and a minimal number of features) that 
connects the input and output space. The loss function is 
custom defined as mean squared error, and the number of 
epochs and maximum complexity is restricted to 10.
Performance evaluation: The dynamic error prediction 
results from the identified mathematical expression are put 

results from the encoder. In addition, the prediction 
accuracy is compared against the state-of-the-art 
explainable and black-box ML models.
Error compensation: For real-time error compensation, 
dynamic errors are computed as soon as the cobot motion 
commences, based on the extracted features from the sensor 
data. The resultant dynamic errors are automatically 
compensated by adjusting the command signal for the 
remaining path using RoboDk software. The compensated 
path is compared against the default to evaluate the 
improvement in positioning accuracy. 

Fig. 3. Qlattice-based error prediction and compensation in a digital twin

3. Results and Discussions

Raw accelerometer signals are processed using MATLAB
software after accessing through an NI datalogger during the 
cobot motion. The input dataset to the Qlattice model includes 
the features extracted from raw accelerometer signals (X and 
Y) along with the feed rate, encoder and command path
information. Table 1 shows the stages of the mathematical 
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expression search towards its final convergence to the best-
performing analytical equation. The final selected model 
(represented by Epoch No. 10) demonstrates a substantial
reduction in the number of features from 19 to 4. 

Table 1. Stages of mathematical expression search

Epoch 
No.

No. of 
models 

searched

Time 
(sec)

No. of 
variables

Variables of the best solution 
after each epoch

MSE
(10^-5)

1 1018 1 3 Encoder radii, MAV(y), RMS(y) 15.5

2 2120 4 4 Command radii, MAV (x),
Variance (y), RMS (x) 1.97

3 3159 8 4 Kurtosis (x), MAV (x),
peak amplitude (x), RMS (x) 2

4 4172 12 4 Kurtosis (x), MAV (x),
peak amplitude (x), RMS (x) 1.9

5 5182 17 5 Command radii, MAV (x), 
RMS(y), kurtosis(y),variance (y) 1.39

6 6203 21 5 Skewness (x), kurtosis (y),
RMS (y), feed, encoder radii 0.888

7 7227 26 5 Skewness (x), kurtosis (y),
RMS (y), feed, encoder radii 0.875

8 8250 33 5 Skewness (x), kurtosis (y),
RMS (y), feed, encoder radii 0.868

9 9244 39 4 Skewness (x), MAV (y),
power (x), peak amp (x) 0.893

10 10236 45 4 RMS (x), power (y), kurtosis (x), 
peak amplitude (x) 0.876

Qlattice was run with both mean absolute error (MAE) and 
mean square errors (MSE) as loss function and the difference in 
predictive accuracy was observed to be < 1%, with MSE 
marginally outperforming the former. Also, the complexity of 
the search space can be customized to a certain maximum. In 
theory, the more the allowed complexity, the wider is the lattice 
space and the solutions are likely to be better due to 
unconstrained search. A maximum permitted complexity of 10 
is selected here to guarantee at least a 50 % dimensionality 
reduction. The best-fitted Qlattice model after 10,236 searches 
is given in Fig. 4.

Fig. 4. The best-fitted Qlattice model of Dynamic Error (DE)

The corresponding equation is given below as equation (1).

Here is the peak amplitude (x), is the total power (y), 
is the RMS (x) and is kurtosis (x). It is interesting to note 

that the expression contains just the raw accelerometer signals 
and features from other sources including the encoder data are 
considered less significant. This implies that the dynamic error 
could be entirely represented by just the raw accelerometer
signal features, thereby eliminating the need for displacement 
extraction and filter cut-off identification- as performed 
conventionally. This will contribute towards latency-free real-
time positioning error prediction and compensation during the 
cobot motion. The significance of the selected features towards 

revealing insights into the process physics behind the 
occurrence of dynamic errors is discussed later in a separate 
subsection. The performance of the model in terms of R2 value 
is 0.994, RMSE is 0.00291 and MAE is 0.0024. The actual 
(ball-bar) vs. predicted dynamic error is plotted in Fig. 5.

Fig. 5. Qlattice predictions vs. actual dynamic errors during cobot motion

The performance comparison of the Qlattice error 
predictions with that of cobot positioning data (recorded by an 
in-built encoder) is presented in Fig. 6. Qlattice predictions are 
closely matching the true dynamic errors for all the 
experiments. On average, the Qlattice model predictions 
deviate from the actual errors by 7.5 %, whereas the positioning 
errors from encoder data deviate by 65 %. This reinforces the 
presence of a significant amount of errors due to random 
vibrations of the flexible elements outside the servo loop which 
encoders cannot detect. In other terms, the Qlattice model 
which works on external accelerometer data shows a significant 
improvement over the cobot defect error tracking by > 50%.

Fig. 6. Performance comparison of Qlattice error predictions with that of the 
encoder data

(1)
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Fig. 7. Variation of dynamic errors with the cobot feed rate

The dynamic errors were observed to be more for higher 
feed rates, as seen in Fig. 7, which could be attributed to larger 
vibrations and deflections of flexible elements at higher feeds 
as compared to low feed rates. A comparison of the predictive 
performance of QLattice with some of the common 
explainable (k-nearest neighbours (KNN) and decision tree
(DT)) and black-box (artificial neural network (ANN), 
random forest regression (RFR) and extreme gradient boost 
(XGB)) ML models are given in Fig. 8. The specifics of each 
of these models are given in Table 2. Qlattice clearly can 
match the established black-box ML models in terms of 
predictive performance, though at a cost of marginally higher 
training time. Qlattice search took 45 seconds as compared to 
13 seconds for the ANN model training. Qlattice is, however, 
clearly more explainable, accurate and is expected to be 
computationally faster during real-time predictions. Within 
explainable models, Qlattice is 15 % more accurate than the 
DT, a widely used tree-structured ML model. 

Table 2. Details of the ML models used for performance comparison 

S. No. Model Details 
1 KNN Number of neighbors = 2
2 DT Maximum depth = 2

3 ANN Network architecture = 19-10-1
Train-test-validation ratio = 70-15-15

4 RFR Number of estimators = 100

5 XGB

Learning rate = 0.01
Number of estimators  = 550
Maximum depth = 3
Evaluation metric = RMSLE

6 QLATTICE Loss function = MSE
Complexity = 10

Fig. 8. Comparison of various ML model performances

3.1. Dynamic error compensation 

Real-time positioning error prediction and compensation 
during the cobot motion is of extreme importance from the 
aspects of accuracy, efficiency, adaptability and safety. 
Conventional approaches for accurate position tracking of the 
cobot end effector are computationally intensive and slow, and 
hence have been deemed unsuitable for real-time error 
compensation. We propose a novel approach based on the 
Qlattice dynamic error predictions as given in Fig. 9. Here the 
command path is split into n-number of adjustable targets, ti 

(i=1, 2, 3, , n). Once the cobot starts its motion, it acquires 
raw accelerometer signals between targets ti to ti+1, from which 
relevant features are extracted. Using this data, the dynamic 
error is predicted using equation (1) which is then used to reset 
the subsequent targets by adjusting the motion command 
through the RoboDk software.  

Fig. 9. Digital twin for real-time dynamic error compensation during cobot 
motion

The approach is validated by considering a 150 mm circular 
path. Improvement in positioning accuracy is evaluated by 
comparing the true position data of the cobot end effector 
before and after online error compensation is seen in Fig. 10 (a) 
for 2000 mm/min feed rate. It can be observed that the error-
compensated ball-bar positioning data is closer to the intended 
path as compared to default (non-compensated) ball-bar data.
The average improvement in positioning accuracy due to error 
compensation for various feed rates is given in Fig. 10 (b).

Fig. 10. (a) Ball-bar data showing the effect of real-time error 
compensation (b) Effect of error compensation at various feed rates
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3.2. Insights into the process physics behind dynamic errors 

The Qlattice model reveals the most significant 
accelerometer signal features that influence the dynamic error 
as kurtosis, signal RMS value, signal power and peak 
amplitude. Also, since the identified model is a symbolic 
equation, the type of relationship between the features and 
dynamic error is easy to comprehend, unlike the opaque deep 
learning models. Power and peak amplitude has a direct 
proportionality with dynamic error, while RMS and kurtosis 
are having a Gaussian relationship.  

Useful insights into the process physics behind dynamic 
errors can be drawn based on these contributing features. High 
kurtosis values suggest more high-frequency content and 
transient events, which may cause dynamic errors due to 
unexpected movements like shocks. RMS reflects the level of 
vibration or motion, while power measures the distribution of 
energy across different frequency bands, indicating errors due 
to resonance effects or external disturbances with specific 
frequency content.  

That being said, it is interestingly observed that, among the 
features selected, the peak amplitude, RMS and kurtosis are 
from the x-accelerometer signals, whereas power is from the y-
signal. The reasons behind separate feature selection from the 
x and y signal call for further investigation.  

4. Conclusions 

Given the growing need for completely interpretable 
systems in smart manufacturing towards enhancing the trust 
and transparency of ML model predictions, the study proposes 
a XAI approach towards cobot dynamic error prediction and 
compensation. The study combines interpretable ML 
algorithms, dimensionality reduction and signal processing to 
detect and compensate for cobot dynamic errors caused by 
various factors including vibrations and resonance of flexible 
members. Here, the mathematical expression for process FP, 
which contains the core contributing features towards dynamic 
errors is extracted through a data-driven explainable model-
Qlattice, inspired by path integral formula. In 
addition, the study successfully applied the discovered 
symbolic model to a digital twin for online prediction and 
compensation of dynamic errors autonomously. Finally, being 
completely interpretable, the approach makes it possible to 
throw useful insights to unravel the process physics 
contributing towards the dynamic errors. 

The proposed approach is completely transparent, providing 
users with a clear understanding of the cobot positioning errors, 
which can enhance trust and safety in human-robot 
collaborations. It is easy to implement and can be integrated 
into existing cobot systems without significant modifications. 
Since the dynamic errors are represented using just the raw 
accelerometer signal features, it is significantly more efficient 
than the traditional position-tracking approach of signal 
filtering followed by displacement extraction. The reduced 
computational steps and dimensionality reduction account for 
much faster error computation and could thus be 
transformational in driving the real-time error compensation 

models like digital twins. Furthermore, the proposed approach 
is scalable, allowing for multiple cobots to be monitored and 
controlled simultaneously. 

The initial results are very promising and with further 
refinement, the approach has enough potential to significantly 
enhance the reliability and performance of cobots in various 
industrial applications within manufacturing, logistics, and 
healthcare. Future research can be done to further improve the 
robustness of the approach by validating its effectiveness for 
more complicated paths.  
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