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Abstract—The Meek-Raether criterion underpins much of the
current physical understanding of gas breakdown. The classi-
cal kinetic approach estimates the moment of transition from
Townsend’s avalanche to a streamer discharge, and has very
often been used as a means of explaining experimental breakdown
results. The Meek-Raether criterion holds great predictive power
for the design of gas insulated systems, owing to its reasonable
accuracy that has withstood the test of time. However, with the
advent of pulsed power technology which often involves fast-
rising and non-standard waveshapes applied to complex (nonuni-
form) electrode topologies, the limitations of the method have
been made increasingly apparent. In this work, the avalanche-
to-streamer transition criterion has been theoretically revisited
for fast-rising pulsed breakdown, particularly for overstressed
breakdown occurring on a rising voltage slope. Based on the
simplified transport of a Gaussian-distributed electron density,
mathematical analyses unveils the time-dependent nature of the
electron growth rates and their dependence on the voltage slope.
Explicit expressions for the breakdown voltage and formative
breakdown time, under the assumption of no statistical time lag,
as a function of the rate-of-rise have further been derived for the
limiting case of a non-attaching and non-diffusive gas. From this,
it was found that electron diffusion may be an important con-
sideration for pulsed breakdown, and an approximate condition
separating the diffusion-dominated regime and where diffusion
can be neglected is suggested. The novel analytical approach
is also shown to be capable of recreating the upward shift of
Paschen’s curve with increasing rate of voltage rise, validated
against both simulation and experimental data. Furthermore,
the predicted field-time breakdown scaling relationship is also
shown to describe observed experimental trends well; as do
its predictions for the streamer initiation time compared to
hydrodynamic simulations. The results may be significant for
the future development of gas insulated power and pulsed power
equipment, and advances the fundamental understanding of fast
transient breakdown processes.

Index Terms—electron avalanche, streamer discharge, electri-
cal breakdown, gas discharge, pulsed power technology, ioniza-
tion, mathematical modeling

I. INTRODUCTION

THE pioneering work of Townsend [1], Paschen [2], Meek
[3], Loeb [4]–[6], and Raether [7] revolutionised the col-

lective understanding of gaseous breakdown. The fundamental
processes driving gas breakdown underpins the design of all
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gas insulated high voltage (HV) systems. Examples include
power transmission, distribution, and protection apparatus;
pulsed power machines; novel plasma-based technologies;
or equipment for high energy physics research. The rapid
advancement of HV technology shows no indication of slow-
ing, pushing insulating systems to their limit. For example,
novel pulsed power systems operating using nanosecond rising
impulses (and often under non-standard electrode geometries,
involving non-standard materials) imposes substantial transient
electrical stress on insulating components—far above what
would have been possible mere decades before. However,
many classical breakdown models are still widely in use today,
with some indication that they are beginning to be outpaced
by technological advances.

The subject of the present work is the ubiquitous Meek-
Raether avalanche-to-streamer transition criterion (often just
Meek criterion), which for completeness, originates from
following Townsend’s [1] analysis based on the first-order
differential equation

∂Ne

∂ℓ
= ᾱNe, (1)

where Ne is the number of electrons in an avalanche, ᾱ is the
effective ionisation coefficient, and dℓ is a differential distance
in the direction of electron transport. It is hereby noted that
standard SI units are assumed throughout this work, unless
otherwise stated. The solution to (1) predicts exponential
growth or decay of the electron number depending on the
nature of ᾱ,

Ne = N0 exp

(∫
ℓ

ᾱ [E(ℓ′)] dℓ′
)
, (2)

where N0 is the initial condition. The exponent of (2) deter-
mines the growth rate of the avalanche, commonly assigned the
letter K and may be referred to as the ionisation integral. Since
the effective ionisation frequency, ν̄, may also be expressed
as ν̄ = ᾱvd with vd being the drift velocity, the integral may
equivalently be expressed as a function of time, t, according
to

K = ln
Ne

N0
=

∫
ℓ

ᾱ [E(ℓ′)] dℓ′ =

∫
t

ν̄ [E(t′)] dt′, (3)

which reflects the spatial and temporal nature of the avalanche
growth. For an avalanche to transition into a streamer, it is
well known that Meek estimated the value of K to be 18–20
for atmospheric air under a uniform electric field [3], which
agreed with empirical estimates by Raether [7]. This baseline

1

This is a peer-reviewed, accepted author manuscript of the following research article: Wong, T, Timoshkin, I, 
MacGregor, S, Wilson, M & Given, M 2024, 'An avalanche-to-streamer transition criterion for overstressed 
breakdown on a rising slope', IEEE Transactions on Plasma Science. https://doi.org/10.1109/TPS.2024.3446243



value has since been extensively scrutinised and found to be
a very reasonable approximation in many cases [8], [9].

However, the increasing interest in nonuniform field ge-
ometries, novel gases/gas mixtures, and complex time-varying
voltage waveforms has highlighted the limitations of the
Meek criterion. Many authors have used this theory to fit the
parameter K to experimental breakdown data, finding that K
depends highly on the specific experimental conditions, see
for instance, [10]–[15].

The phenomenological nature of the value of K renders it
difficult to make conclusive comparisons between breakdown
data or to be certain about the dependencies of K. On the
other hand, while Meek’s original theoretical analysis [3] was
sound, it was limited by the assumption of a constant and
uniform electric field, among others. An improved analysis
was conducted by Montijn and Ebert [9], who mathematically
modelled the avalanche growth using an evolving Gaussian
distribution of electrons, showing that electron diffusion can
have significant influence on the avalanche development under
certain conditions.

In this work, focus was placed on modelling the avalanche
development and transition under a time-varying applied field.
Of particular interest are fast-rising impulsive waveforms and
overstressed breakdown occurring on the rising slope, relevant
to pulsed power science and technology. In the field of pulsed
breakdown, there exists numerous (and growing) sets of well-
established experimental data, but comparatively few studies
investigating novel theoretical descriptions of the breakdown
process. To do so, the present work begins with the approach
taken by Montijn and Ebert [9], then extending it to explicitly
incorporate time-dependency. The new mathematical model
is then subjected to theoretical analysis, and the predictions
of the new model have been compared to practical pulsed
breakdown experimental data.

II. MATHEMATICAL MODEL

This section describes the formulation of the mathematical
model. Sections II-A and II-B firstly presents the full set of
equations for the simplified transport of a Gaussian distributed
electron cloud and the criterion for streamer transition. Section
II-C follows to present an approximation to the full model
for linearly increasing voltages. Subsequent analysis and dis-
cussion, including that of further approximations allowing
the derivation of closed solutions under a limiting case, are
presented in Section III.

A. Gaussian Electron Cloud

The approach follows a similar approach to [9] by consider-
ing an initial Gaussian distribution of electrons, modelled here
in spherically-symmetric coordinates as

ne(r, t0) = n0(t0) exp

(
− r2

2σ2
0

)
, (4)

where ne(r, t) is the electron density, n0(t) is the time-
dependent peak value of the Gaussian, σ0 is the initial spread
of the Gaussian, and r is the radial coordinate. It was firstly
assumed that this initial electron “cloud” at t0 undergoes

constant and field-independent diffusion, characterised by the
diffusion constant De. It is remarked that this assumption may
not always be valid as De is, in general, field dependent, but
it is nonetheless applied for simplicity. Section V-A encloses
further discussion on this assumption and on its limitations.
In this case, Fick’s law of diffusion dictates that the initial
electron cloud of (4) will evolve like (see Appendix A)

ne(r, t) = n0(t)

(
2πσ2

0

)3/2
λ3
2

exp

(
− r2

λ2
1

)
, (5)

where λ1 and λ2 are time-dependent and related to the
diffusion length:

λ1 =
√
2σ2

0 + 4Det,

λ2 =
√

2πσ2
0 + 4πDet, (6)

and with the overall expression of (5) describing the broaden-
ing of the Gaussian as the electron density diffuses outward,
resulting also in the reduction of the peak magnitude with
time. Counteracting this diffusive reduction is collisional ion-
isation which was considered to affect the peak magnitude of
the Gaussian cloud. Following the growth equation (1), the
Gaussian peak grows according to the ordinary differential
equation:

∂n0(t)

∂t
= ᾱ [E(t)] vd [E(t)]n0(t), (7)

where the drift velocity vd [E(t)] = µe [E(t)]E(t) with µe

being the electron mobility, and where E is the externally
applied (and assumed uniform) field. Emphasis is placed on
the functional dependence on t for the electric field and
transport parameters.

The spatial development of the avalanche was modelled
assuming that the Gaussian cloud translates along a single
direction at drift velocity, such that the distance travelled, δ(t),
of the cloud evolves like

∂δ(t)

∂t
= µe [E(t)]E(t). (8)

Then with motion in, for example, the Cartesian x-axis would
result in the following definition for coordinate r when apply-
ing a Cartesian to spherical transform:

r =

√
[x− δ(t)]

2
+ y2 + z2. (9)

It is remarked, however, that if the model were to be used
assuming electrodeless breakdown, or where the interelectrode
gap distance is greater than the critical streamer transition
distance, tracking the location of the Gaussian is not strictly
necessary. This is because the derivation of the avalanche-to-
streamer transition criterion is based only on the magnitude of
the electron density and on its induced field.

B. Streamer Transition Criterion

Maintaining the Gaussian form over the course of its
transport was an important assumption applied to the present
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Fig. 1. Volumetric rendering of the estimated (left) electron density (right) positive ion density of an electron avalanche developed across a 4 mm air gap
with 0.5 kV/ns applied ramp voltage, at t = 17, 19, and 21 ns. This figure is from the numerical solution of the full model (4)–(12).

model, as a closed-form analytical solution for the electron-
induced electric field exists for this distribution, given by:

Ee(r, t) = ēn0(t)

(
2πσ2

0

)3/2
4πε

×[
1

r2
erf

(
r

λ1

)
− 2

rλ1
√
π
exp

(
− r2

λ2
1

)]
, (10)

where ē is the elementary charge, ε is the permittivity, and
erf is the error function. While Meek originally considered
the moment of transition to be when the charge-induced field
became equal to the applied field, a more general approach
was taken as in [9]. Since an exact value of field necessary
for transition is not known (and may vary depending on exact
conditions), the more general condition of

max
r,t

Ee(r, tb) = f · E(tb) (11)

was instead used, where f · E(tb) is an arbitrary fraction of
the applied field, and where tb is the time of breakdown. In
[9], a value of f = 1.03 (3% enhancement at the avalanche
front) was found to be reasonable based on simulated data.
It follows that the set of equations (4)–(10) can be solved
numerically to obtain the moment that the condition (11) is
satisfied, providing the breakdown time tb, the corresponding
breakdown field, Eb, and if applicable, the breakdown voltage
Vb.

At this point it is important to note that the positive ions
resulting from collisional ionisation have not been considered.
This is primarily because the ions left in the wake of an

avalanche cannot be assumed to maintain a Gaussian form,
and thus would render an analytical description of the ion-
induced field highly nontrivial. It is remarked that the positive
ion density, n+(r, t), can be computed numerically by solving

∂n+(r, t)

∂t
= max

(
∂ne(r, t)

∂t
, 0

)
, (12)

but only when under the assumption that positive ion pro-
duction is solely due to collisional ionisation, and that no
other process (e.g., recombination, photoionisation) is present
that would otherwise affect the positive ion density. While the
electric field arising from the ion density (12) has no simple
solution, (12) is nevertheless useful for visualisation purposes.
To illustrate, Figure 1 shows an electron avalanche according
to (4)–(12), including electron and positive ion densities that
develop under a ramp voltage rising at 0.5 kV/ns in a 4
mm air gap, rendered in 3D. The volumetric rendering of
the avalanche is in qualitative agreement with the classical
“teardrop” shape as often used to represent avalanches [16],
[17]. It also agrees with those originally imaged in cloud
chambers [7], and more recently, simulated using kinetic
methods [18].

C. An Approximation for Ramp Electric Fields

The full model comprises equations (4)–(11), the numerical
solution of which can be sought for arbitrary E(t) and given
functions for the ionisation coefficient and mobility. In this
section, however, it is shown that with the help of empirical
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fitting expressions, a closed form solution to (10) can be found
for linearly increasing electric fields. This is of particular
relevance to many pulsed power systems that operate in the
overstressed regime, such that breakdown always occurs on
the rising slope of an impulse.

The maxima of (10) cannot be found in closed form,
however, as explained in [9], the position where r = λ1

approximates the location of the field maximum, resulting in
the expression

Ee,max(t) ≈
ēn0(t)

4πε

(
2πσ2

0

)3/2
λ2
1

[
erf(1)− 2

e
√
π

]
. (13)

It remained that analytical solutions must be sought for the
peak electron density (7), which necessitated expressions for
the transport parameters ᾱ(t) and µe(t) such that the product
of ᾱ(t)µe(t)E(t) is time-integrable. Note that the functional
dependence on E(t) has been changed simply to t here for
brevity, considering that the field is dependent only on time,
imparting a time dependence to the transport parameters. In
general, no exact expressions exist for such parameters and
empirical formulae are more often used when using transport
parameters in, for example, numerical simulations. However,
approximate solutions can be obtained by assuming ᾱ(t) and
µe(t) can be fit using the commonly-used functions:

ᾱ(t) ≈ Aα exp

[
− Bα

E(t)

]
− Cα, (14)

µe(t) ≈ AµE(t)−Bµ , (15)

where Aα, Bα, Cα, Aµ, and Bµ are constant coefficients
unique to the gas type, see for example [8]. This of course
means that this approximation is only valid within the range
where the above coefficients are also valid. As the approx-
imation here is for linearly increasing electric fields, E(t)
therefore has the form

E(t) = Dt, (16)

where the symbol D is the rate-of-rise of the electric field.
Combining (14), (15), (16) and absorbing the constants, one
finds that (7) can be expressed as the separable equation

∂n0(t)ramp

∂t
= tk1−1

[
k2 exp

(
−k3

t

)
− k4

]
n0(t)ramp,

(17)
where constants k1−4 have the definitions

k1 = 2−Bµ, k2 = AαAµDk1−1,

k3 = Bα/D, k4 = AµCαDk1−1, (18)

and which can be shown to have the solution

n0(t)ramp = n0(t0) exp

[
k2k

k1
3 Γ

(
−k1,

k3
t

)
− k4

k1
tk1

]
,

(19)
where Γ (a, t) is the upper incomplete gamma function with
the definition

Γ(a, t) =

∫ ∞

t

ξa−1e−ξ dξ. (20)

Application of the condition (11) with equations (13) and
(19) comprise the approximate analytical solution for ramp

voltage breakdown, which can be obtained without the use
of numerical methods like before. In the section that follows,
analysis conducted on the obtained expressions is presented.

III. THEORETICAL ANALYSIS AND RESULTS

A. The Ionisation Integral, K

Equation (19) provides new perspectives on the avalanche
development processes during a rising voltage slope, as it
relates the growth of the electron density to the gas transport
parameters and to the time-increasing field. It is useful to
compare (19) to the standard exponential solution in the case
where the applied field is constant, for which the reader is
reminded takes the form

n̄0(t) = n0(t0) exp (νt− νat) , (21)

where ν and νa are the ionisation and attachment frequencies,
respectively. The net rate of electron growth or decay is
therefore determined by the balance between ionisation and
attachment. The solution under ramp energisation takes the
same form, and comparison between (21) and (19) shows
that the constant ionisation and attachment rates in (21) that
originally produced exponential growth at constant rate, are
now considerably more complex, with

νt → k2k
k1
3 Γ

(
−k1,

k3
t

)
= I(t),

νat →
k4
k1

tk1 = A(t), (22)

such that the exponent is no longer linear with time, reflect-
ing the time-varying nature of the ionisation and attachment
frequencies with increasing field. The symbols I and A have
been adopted to indicate the rates of growth (due to ionisation)
and decay (due to attachment) of the electron density, respec-
tively. The upper incomplete gamma function in (19) dictates
that the electron growth rate due to ionisation increases slowly
at first, slower than that of the linear νt (i.e., constant ν under
a static field), but increases rapidly to grow faster than νt (with
power-law like behaviour). This is counteracted by attachment,
which according to (22) now follows a power law. The exact
nature of the net growth rate is of course dependent on the
constants k1−4, which correspondingly means that the rate-of-
rise D also has influence. This behaviour is believed to reflect
the slow avalanche development at the beginning of the rising
slope, which then rapidly increases due to the increase in both
voltage and the corresponding electric field.

It follows from (19) that an effective value for the ionisation
integral, K, in this case is also a function of diffusion, De,
and may be written

Kramp(t) = ln

[
ne(0, t)

n0(t0)

]
+

3

2
ln

(
1 +

2Det

σ2
0

)
, (23)

such that in the zero-diffusion limit, Kramp reduces to the
standard definition of K. The second term of (23) shows the
increase of the K value with increasing diffusion, an indicator
that diffusion delays the development of sufficient electrons to
distort the applied field (see also the discussion within Section
V-A). This therefore increases K at the time of breakdown,
as similarly concluded in [9].
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B. Explicit Solutions for Zero-diffusion and Non-attaching
Limit

It is well known that the impulsive breakdown strength
of gas is higher than that of the static breakdown strength,
and that it increases with faster-rising voltages. However, the
physical mechanism behind this increase is not yet clear and
would benefit from further analysis. To further understand the
effect of D on the avalanche development process, this section
deals with the limiting case where electron diffusion and
attachment are assumed negligible. Both of these mechanisms
tend to reduce the electric field magnitude induced by the
avalanche—the former reduces the charge density gradients
near the front, while the latter results in an overall reduction
of the electron density, effectively delaying the moment of field
distortion. It is shown in the following derivations that explicit
solutions for tb, Eb, and Vb can be obtained under these
assumptions, providing closed-form expressions that allow the
dependence of Eb on rate-of-rise to be explained. It should
be noted that in general, diffusion may not be negligible
and is dependent on the exact conditions of breakdown. In
Section V-A, an approximate condition to the applicability
of the zero-diffusion condition to discharges under fast-rising
voltages is derived, and it is further hypothesised that the
effective K value for overstressed breakdown exhibits a local
minimum as a function of D due to diffusion. Despite this,
the introduction of a physically-based fitting factor allows the
expressions obtained within this section to be directly applied
as a predictive model in the overstressed breakdown regime,
which is supported by comparison to experimental data in
Section IV.

To show the explicit dependence on D, it is useful to
introduce

γ1 = AαAµB
k1
α ,

γ2 =
AµCα

k1
, (24)

which allows the redefinition of the ionisation and attachment
rates, I(t) and A(t) of (22), to a more convenient form
involving D:

I(t) → γ1
D

Γ

(
−k1,

Bα

Dt

)
,

A(t) → γ2
D1−k1

tk1 . (25)

By then introducing the non-diffusive and non-attaching as-
sumption (De = Cα = 0), the approximate maximum
electron-induced field according to (13) may be written in the
form

ED,Cα=0
e,max = C0 exp I(t), (26)

where C0 is a constant given by

C0 =
ēn0(t0)

4πε

(
2πσ2

0

)3/2
2σ2

0

[
erf(1)− 2

e
√
π

]
. (27)

Fig. 2. Example of electric field strength over time for the applied ramp, max.
electron-induced electric field, and net electric field. Indicated are: tb – time
for the electron-induced electric field and applied field to equal in magnitude,
and tp – time for the net field to reach a maximum. The difference, δ, is
assumed negligible for the derivation of the closed-form approximation.

While the breakdown criterion is stated as (11), one may arrive
at a good approximation of the solution by instead solving

∂

∂t

[
f · Dtp − C0 exp I(tp)

]
= fD − C0

∂I(tp)
∂t

exp I(tp) = 0, (28)

where it should be emphasised that tp here is the time at which
the maximum electron-induced electric field rate of change
equals the rate of change of the applied field. This differs from
tb as defined in (11) which referred to the time that the fields
became equal in magnitude. Equation (28) solves instead for
the peak of the net electric field, and defines the breakdown
time tp. The time at which their rates match is equivalent to the
time at which the net field begins to collapse, which happens
so rapidly that tp ≈ tb is a reasonable approximation, as shown
in Figure 2. Furthermore, if the initial electron-induced electric
field is small (which would be the case assuming the avalanche
was initiated from typical background ionisation levels), such
that at time t+0 the applied field rises far more rapidly than the
electron-induced electric field, Ee,max(tp) must necessarily be
smaller than E(tp). Without loss of generality, the former may
then be expressed as some fraction g of the applied field at
this moment, g · E(tp), allowing (28) to be rewritten as

tp
∂I(t)
∂t

=
f

g
. (29)

The fraction g essentially becomes a fitting factor, however, the
significance and selection of g is discussed further in Section
III-C. Equation (29) can be shown to have the following closed
form solutions

tb =
Bα

Dk1ω (D)
,

Eb =
Bα

k1ω (D)
, Vb =

Bαd

k1ω (D)
, (30)
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for the breakdown time, breakdown field, a nd i f applicable
(developed between planar electrodes with separation d), the
breakdown voltage. The function ω (D) has the definition

ω (D) = W

 1

k1

(
gγ1
fD

)1/k1

 , (31)

where W is the principal branch of the Lambert W (or
product-log) function. Using fitting coefficients for Nitrogen
from [8], Figure 3 plots tb and Eb as a function of D, the
range of which was selected to be from 1010 to 1016 V/m·s,
representing pulses peaking at tens to hundreds of kV within
the nanosecond to hundreds of microsecond range, and in
gaps of tens of millimeters separation. The time to breakdown
expectedly decreases with increasing D owing to the quicker
onset of ionisation and avalanche development. The break-
down field, Eb, was predicted to increase with increasing D
following known experimental tendencies. The present model
offers the following explanation of this behaviour. Under
the zero diffusion and non-attaching assumption, both the
applied field and electron-induced field are monotonically
increasing functions with time. In the absence of significant
pre-ionisation, the rate at which the electron-induced field can
increase initially (at t+0 ) is always lower than D. As such,
the moment that the net field is maximised (moment of field
collapse) is equal to the moment that the rate of change of the
electron-induced field equals the rate of the rising applied field,
D. The mathematical equivalent to this statement is equation
(28). With an increase to D, the increase in the rate-of-rise of
the applied field is greater than the increase to the rate-of-rise
of the electron-induced field. This may further be confirmed
based on the limit:

lim
D→∞

Dt

C0 exp I(t)
= ∞. (32)

Thus, despite higher values of D reducing tb, the correspond-
ing field at the moment that the rates are matched, Eb, becomes
larger, as shown in Figure 3.

Based on (25), it may further be said that the above effect
is due to the differing rates at which the ionisation coefficient,
α(t), and electron mobility, µe(t), change with increasing
electric field (and hence increasing D considering the present
ramp field). From (14) and (15), ionisation activity increases
with increased E, while mobility decreases. Their rates of
change, however, are not equal, with the former increasing
like exp (−1/E) and the latter decreasing with E−Bµ . It is
evident that the rate mobility decreases is faster than the rate
that ionisation increases with increasing field. This limits the
rate of change of Ee,max with increasing D such that (32)
becomes imposed.

C. The Nature of Parameter g

As defined in Section III-B, the fraction g represents the
ratio between the magnitudes of the electron-induced field
and applied field at the moment that the net field reaches a
maximum. In general, g will be a function of D, transport
parameters, and of the initial field condition given by C0.
Figure 3 compares the closed form breakdown field solution

Fig. 3. The estimated breakdown time, tb, and breakdown field magnitude,
Eb, in the zero-diffusion, non-attaching limit (equations (30)), as a function
of the rate of field rise, D, and for g = 1, 5, 7.5, and 10 %. Transport data
used represents Nitrogen.

of (30) for differing values of g across several magnitudes of
the value D in Nitrogen. When C0 is small, it was found that
g values generally do not need to exceed ∼ 10% to provide
very good agreement between the closed form approximation
and the full numerical solution, across a wide range of D.
This also suggests that the sensitivity of g to D may not be
significant. This range of values indicate that the moment when
the electron-induced field rate of change matches that of the
applied field, its magnitude is generally < 10% of the applied
field magnitude. Yet, the subsequent ionisation processes occur
with such intensity that the field magnitudes become equal
within a sufficiently short time for the assumption of tp ≈ tb
to be appropriate. The value of g increases with higher
initial fields, C0, but the exact nature of this increase is not
entirely clear given the strong coupling between tb, C0, and g.
Clarification of this relationship is identified as an important
future step for this model. It is remarked that in the absence of
such an explanation, the value of g can be identified for a given
model by choosing g such that the expressions (30) provide
the best fit with the solutions to (7)–(10). The experimental
comparisons within Section IV and subsequent discussion in
Section V-A also suggest that g may have a strong dependency
on diffusion, De.

IV. MODEL VALIDATION AND COMPARISON TO
EXPERIMENTAL RESULTS

This section aims to compare the predicted results from
the developed model to available experimental data found in
literature. Section IV-A firstly focuses on the observed upward
shift of Paschen’s curve with higher rate of voltage rise,
comparing the present mathematical solutions to simulated and
experimental data. Then, Section IV-B follows to compare the
predicted field-time scaling characteristics to a collation of
experimental pulsed breakdown data, conducted under various
common gases. Section IV-C compares the scaling of the
estimated breakdown time as predicted by (30) with initiation
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Fig. 4. Comparison of Paschen scaling curves for Nitrogen subject to ramp voltage as estimated by the present model to (left) fluid and kinetic simulation
data from [21], (right) experimental data from [20] for atmospheric air (rod-plane gap, 1 cm), for different voltage ramps. Solid black diamond markers are the
static breakdown case, and the red dashed line indicates the position of the estimated Paschen minimum and approximate limit where the model predictions
begin to diverge.

times computed from hydrodynamic streamer simulations in
[19]. For the model, the selection of initial electron density
n0(t0) and initial spread σ0 was informed by approximate
values for background ionisation densities, details of which
can be found in Appendix B. It should also be noted that the
experimental comparisons conducted here were to datasets that
both used and did not use UV irradiation to provide starting
electrons. Good agreement was found for a mixture of both
types of data, but in general, it is difficult to decouple statistical
effects from those arisen from the many other influencing
factors that may be present, e.g., exact electrode configuration
and gas conditions. Similarly, the initial conditions which
define the initial cluster of electrons was chosen based on
limited data; σ0, n0(t0) are both parameters with a high
degree of uncertainty, particularly when considering the degree
to which they may vary based on many scenario-dependent
factors.

A. Pulsed Paschen Curves

The classical Paschen’s Law established a relation between
the breakdown voltage in gas to the pressure-distance (pd)
product for breakdown under steady-state electric fields. The
Paschen scaling for pulsed breakdown is known to deviate
from the law in its original form, where the Paschen curve
has been found to exhibit an upward shift with higher values
of dV/dt both experimentally [20] and computationally [21].
This section verifies that the present model also exhibits pd
scaling, while also showing that the upward shift with dV/dt
can also be reasonably predicted using this method.

Fig. 5. Colour map of the full pd space from p up to 7500 Torr (1 to 10
bar), and d up to 5 cm. Colour indicates the breakdown voltage magnitude,
which have equipotentials that align with curves of constant pd, satisfying pd
scaling. No colour bar is shown as the exact value is unimportant here.

Consider Figure 4(a) and 4(b). The former shows the predic-
tions of the present model compared to numerical modelling
results in [21] using hydrodynamic and kinetic approaches.
The latter compares these same predictions to experimental
data from [20]. The conditions used here incorporate a ramp
voltage rising up to 180 kV with various rise times resulting in
the rates-of-rise indicated in the figure, applied to a gas gap of
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Fig. 6. Field-time scaling curves for (a) Air, (b) Nitrogen, (c) Carbon Dioxide, comparing experimental datapoints with the solution to the full numerical
model and approximations at different values of parameter g. References enclosed in the shared figure legend. Note that selected data is formed of both those
that were gathered with methods to render the statistical time lag negligible, and those that did not. Note also that the data of Kumar et al. was calculated
from breakdown voltage values in [8] based on the average field strength across a non-uniform electrode gap.

1 cm filled with pure Nitrogen. Reasonable agreement between
the present analytical approach, experimental data, and the far
more complex numerical approaches has been observed—at
least to the right of the Paschen minimum. Deviations begin
to occur near the estimated location of the Paschen minimum
indicated by the red dashed line. It is remarked that neither the
present model nor fluid approaches from [21] could accurately
recreate the left branch, suggesting significant changes in the
breakdown mechanism within this region to do with kinetic or
non-local effects. This is, however, left as a topic for future
work. To confirm that the predicted breakdown voltages indeed
exhibits scaling with pd, the pd space from p = 0 to 7500
Torr (1 to 10 bar) and d = 0 to 5 cm has been plotted in
Figure 5, where the colour map is the predicted breakdown
voltage (numerical values of which are unimportant to verify
the pd scaling, thus have been omitted), for a constant value
of D. The dashed white line of Figure 5 indicates the lines of
equipotential, which can be seen to align with lines described

by pd = c where c is a constant, confirming that the present
model indeed exhibits scaling with the product pd. It should
also be noted that the Lambert-W function, W (x), as featured
in (31) is asymptotic to lnx − ln (lnx) [22]. In which case,
the closed form breakdown voltage from (30) can be further
approximated to have the following proportionality:

Vb ∝
pd

ln [f(p, d))− ln [ln f(p, d)]
, (33)

where k is a constant for a given gas and D. Emphasis is
placed on the form of (33), which bears a striking resemblance
to that of the classical Paschen’s law.

B. Breakdown Field-Time Scaling Characteristics

A method often employed to compare pulsed breakdown
data is to plot the field-time scaling relationship of experi-
mental breakdown results. This involves plotting the scaled
breakdown time Ntb against the reduced breakdown field
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Eb/N , where N is the neutral gas density. In [23], numerous
pulsed breakdown datasets were collated by the authors and
compared in this way, which were also compared to a well-
known empirical relation introduced by T. H. Martin [24].
The authors of [23] further compared datasets to the classical
kinetic approach (Meek criterion), where the characteristic
curve can be derived to be of the form

Ntb =
K

ᾱµe
· 1

Eb/N
, (34)

where K is assumed to be 18. From (30), the scaling char-
acteristic estimated by the present model can be written in a
similar form:

Ntb =
B2

α

k21Dω2(D)
· 1

Eb/N
, (35)

but which now explicitly shows dependence on rate-of-rise,
D. In [23], equation (34) was shown to be in reasonable
agreement with experimental data when evaluating (34) using
field-dependent forms of ᾱ and µe. However, as the classical
approach did not explicitly consider D, it offered little insight
into the relationship it had with tb and Eb, which the novel
approach developed here was able to provide through (35)
and through the previous analysis in Section III. Figures 6(a)
to 6(c) presents a comparison between the experimental data
collated in [23] to the scaling relationship (35) from the present
model in air, Nitrogen, and CO2. Data includes experiments
conducted by Carboni et al. [25], Mankowski, Dickens, and
Kristiansen [26], Tao et al. [27], Felsenthal and Proud [28],
Kumar et al. [29], and fluid modelling data from Liu et al.
[23]. Furthermore, both the solution to the full model (4)–(11)
and its approximations in the zero-diffusion and non-attaching
limit (30) have been plotted. To also show the sensitivity of the
approximate scaling relation (35) to the parameter g, separate
lines have been plotted for g of 1%, 5% and 10% of the applied
field.

Overall, good agreement was found between the experi-
mental data and the present model across a wide range of
conditions. The approximations (30) also align with the full
numerical solution very well, where a g value of 5–10%
generally provided the best fit between the data and the full
numerical approach.

C. Streamer Initiation Time

In Wong et al. [19], simulations of primary ionization waves
initiated within air- and CO2-filled needle-plane electrode gaps
of 250 µm were conducted. The authors reported linear scaling
of the observed wavefront initiation time with the inverse of
rate of voltage rise (under ramp voltages), their results of
which are reprinted here as Figure 7. Based on the closed-
form approximations (30) developed in this work, it can be
shown that the linear scaling of Figure 7 can be explained by,
and is consistent with, the predictions of the present model.

Consider that the approximation for tb according to (30) can
be written as the proportionality

tb ∝
1

Dω(D)
, (36)

Fig. 7. Linear scaling of the streamer initiation time with (dU/dt)−1 from
[19], for positive and negative ramp voltages, in air and in CO2. Image
reproduced with permission from [19] under CC BY 4.0.

since Bα and k1 are constant for a given gas. The function
ω(D) from (31) is plotted over the range 1010 ≤ D ≤ 1017

in the semi-log plot of Figure 8, from which there are two
notable features. Firstly, the almost linear relation suggests
that ω(D) can be well approximated by a relation of the form
ω(D) ≈ k log (D/c), where c is independent of D but has units
V/m·s to render the argument of the logarithm dimensionless.
It is remarked that from (24) and (31), one may deduce that
the parameter γ1 satisfies this and has dimensions V/m·s,
though this is not strictly necessary for the following analysis.
Considering this, the proportionality ω(D) ∝ (logD − log c)
therefore applies. Secondly, comparison between the magni-
tudes of ω(D) values to the corresponding values of D shows
clearly that ω(D) does not exhibit strong sensitivity to D. This
may further be confirmed by the derivative

∂

∂D
(logD − log c) ∝ 1

D
. (37)

It follows, therefore, that for the high D values within the
ranges of interest (and as used in Wong et al. [19], which are
in the approximate range of 1016 − 1017 V/m.s), the induced
change to ω(D) over this range can effectively be assumed to
be negligible. The proportionality (36) may hence be reduced
to

tb ∝
1

D
(38)

for sufficiently small variations in D since ω(D) can be treated
as constant, in agreement with the scaling observed in [19] and
in Figure 7.

V. OTHER CONSIDERATIONS

While the present model makes theoretical progress on
the analysis of overstressed pulsed breakdown, the authors
acknowledge that it is not yet a complete picture. This section
briefly discusses a number of limitations of the presented
approach and includes discussion of electron diffusion and
positive ion inclusion.
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Fig. 8. The function ω(D) for air and CO2 over several magnitudes of D. The
nearly linear character suggests ω(D) ∝ logD/c is a good approximation.

A. Diffusion may be Important for Pulsed Breakdown

The equations (30) allowed the functional dependence of
breakdown on D to be studied, a task which would have been
highly nontrivial if De could not be assumed to be zero.
There has been little exploration of the effects of electron
diffusion for pulsed breakdown, which is generally assumed to
be negligible based on the timescales involved. For example,
the authors of [21] concluded from fluid simulations that the
effects of diffusion may not be significant for breakdown on a
rising slope. For constant applied fields, authors of [9] argued
that diffusion should be included particularly for avalanches
formed in low electric fields, where diffusive reduction could
lead to substantial delays to the streamer transition moment.
As diffusion is a time-dependent process, it follows that under
a continuously rising background field, one should expect the
parameter D to influence the extent that diffusive processes
dominate.

Using (23), the value of the effective ionisation integral at
breakdown, Kramp(tb), as a function of D and at various
values of diffusion coefficient, De, has been plotted in Figure
9. Also indicated is the zero-diffusion case. It is evident that K
is not just dependent on De, but also exhibits a local minimum
at some value of D for all cases with non-zero diffusion.
The minimum can be explained by the time necessary for
diffusion to become significant, where the region D < Dcrit is
largely diffusion-dominant, since the voltage rises sufficiently
slowly for diffusive effects to have tangible impacts on the
peak magnitude of electrons forming the Gaussian. Where
D > Dcrit, breakdown is sufficiently quick such that diffu-
sion has negligible effects. This is further evidenced by the
convergence of all lines on Figure 9 as the effects of diffusion
(irrespective of De) become unimportant.

While no closed solution for Dcrit could be found, it can be
shown from (23) that for electron diffusion to have a negligible

Fig. 9. Plot of the effective ionisation integral, Kramp, at the time of
breakdown estimated from the present model under ramp fields. Plotted as
a function of D, and for different values of diffusion constant De. Note that
the dependence on De vanishes for higher D above some value Dcrit which
lies approximately beyond the minimum marked by the red dashed line.

impact on the breakdown evolution, the condition of

tb ≪
σ2
0

2De
(39)

should be met. Equation (39) simply has the physical inter-
pretation that the breakdown time must be far less than the
diffusion time. This provides a condition separating where
diffusion is likely to have strong influence on the break-
down, and where diffusion can be neglected. It is once again
noted that De has been assumed constant in this work as
a simplification, as such, (39) can only be considered an
approximation. However, the conceptual discussion of the
effects here should be equally applicable when De is field-
dependent (and therefore also time-dependent). Based on (5),
a more general condition should the effects of De → De(t)
be considered would be∫ tb

t0

De(t) dt ≪
σ2
0

2
, (40)

which can be shown to equal (39) in the constant diffusion
limit.

On the note of field-dependent diffusion, based on Figure 9
one should expect that equations (30) should incur significant
inaccuracies for lower D due to the assumption that De = 0.
In these cases, it is remarked that the choice of g should,
to some degree, encapsulate the effects of diffusion, since it
is a measure of the electron-induced field at the moment of
field screening which itself is affected by diffusion. However,
g was also assumed constant in this work (which according
to Figure 6 appears to be somewhat suitable for a wide
range of conditions), though it likely varies with the electron
transport parameters, including diffusion. In a case where
diffusion is also field- and time-dependent, a non-constant
g may partially explain the larger discrepancies between the
model and experiments observed in the low field regions
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of Figure 6 (particularly for CO2 which possesses a De(E)
relation that is much different from air and N2). However, it
is also remarked that this region is nearing the lower limit
of validity for the parameter fitting expressions in this case,
which may also introduce inaccuracies. In future, detailed
investigation into the value of g and of its dependencies is
of high priority.

B. Positive Ions

In this model, the effect of positive ions have not been
incorporated. Even with (12) which can be numerically solved
for the ion density as in Figure 1, the positive ion electric field
was neglected since the ion density cannot be approximated
by any simple geometry with accessible analytical solutions.
Based on analysis of the ion trail in [9], consideration of
the ion field would tend to increase the predicted breakdown
strength since the ion field would act in opposition to the
electron-induced field, thereby necessitating a longer time for
either condition (11) or (28) to be satisfied. Also in [9],
theoretical estimations indicated that the correction to the
moment of transition when considering the ion field may be
negligible for breakdown occurring over short timescales, or
when diffusion can be ignored. It is therefore expected that
inclusion of the ion field may not significantly change the
presented estimations. On the basis of the analysis relating to
diffusion of Section V-A, the positive ion field may become
important under configurations where the ratio between the
ionisation length and diffusion length becomes non-negligible
[9]. Its inclusion, however, would likely prohibit the closed-
form approximations of this work to be developed. Given the
potential scope of this inclusion, to consider other charged
species is left as an aspect for future work. This model
also does not consider effects of nearby boundaries such as
electrodes or other dielectrics, therefore also forgoing the
effects of secondary electron sources.

VI. CONCLUSION

In this work, the diffusion-corrected Meek criterion de-
veloped in [9] has been further advanced for the specific
purpose of analysing overstressed breakdown on a rising
slope. The approach is based on the simplified transport of
a Gaussian distributed electron cloud combined with semi-
empirical fitting functions for electron transport parameters. A
set of equations have been formulated to identify the moment
of avalanche-to-streamer transition under an arbitrary time-
dependent field. Further progress was made by analysing the
specific case of a linearly increasing applied field with defined
rate-of-rise. It has been shown that the ionisation growth rate
under these conditions follow that of the upper incomplete
gamma function, describing the slow initial rise but rapid
screening of the applied field as the avalanche grows in size.
Furthermore, in the non-attaching and non-diffusive limit, it
was shown that approximations for the time-to-breakdown, tb,
and breakdown field strength, Eb, can be found as explicit
functions of the rate-of-field-rise, D, using the Lambert-W
(product-log) function. Mathematical analysis explains the
trend of increasing breakdown strength with increasing dV/dt

as a result of the differing rates of electron-induced field
rise compared to the rate-of-rise of the applied field. This is
further linked to the mismatched rates at which the ionisation
coefficient and electron mobility can change with increased
rate-of-rise.

Model predictions have been validated against simulated
and experimental data drawn from literature. It was demon-
strated that the model exhibits pd scaling and is able to recreate
the upward shift of the Paschen curve for increasing rise
time. It also adequately predicts the field-time scaling char-
acteristic for pulsed breakdown in a comparison to numerous
experimental datasets, presented alongside a new characteristic
scaling relation with explicit inclusion of the rate-of-rise.
Based on fluid simulations of primary ionisation wavefronts,
the developed model also explains an observed linear scaling
of the streamer initiation time with the reciprocal of the rate-
of-rise. The importance of diffusion on breakdown on a rising
slope has also been analysed, finding that the influence of
electron diffusion is dependent on the rate-of-rise. An ap-
proximate condition separating the diffusion-dominant region
and where diffusion can be neglected has been proposed. The
developed model therefore advances the theoretical knowledge
of fundamental electron transport and avalanche development
processes under the fast-rising overstressed breakdown regime.
This is of particular importance to the design of current and
future pulsed power systems and components.

This study has also identified a number of areas which
would benefit from further theoretical and/or experimental
study, listed below:

• Under what conditions does the positive ion field have
sufficient impact on the avalanche development to warrant
inclusion?

• What effects would the inclusion of time-dependent dif-
fusion, De → De(t), have on the predicted breakdown
characteristics and scaling curves? Can it explain the
discrepancies observed at lower values of D?

• The functional dependencies of g—it is believed that
there is unexplored significance to this value. It may be
an important parameter for the further characterisation of
pulsed breakdown.

• What processes to the left of the Paschen minimum result
in the deviations observed from the present model and
fluid simulations?

• Can a similar approach be used to analyse certain non-
uniform field configurations, where the avalanche may
effectively experience a time-varying field due to its trans-
port through a region where the there exist a spatially-
varying electric field?

APPENDIX A
DIFFUSION OF GAUSSIAN FROM FICK’S SECOND LAW

USING GREEN’S FUNCTION

Consider Fick’s second law, canonically written

∂n

∂t
= D∇⃗2n (41)
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where n is the concentration (density) and D is the (as-
sumed isotropic) diffusion coefficient. In the real-space R3,
the Green’s function for (41) reads [33]

u(x⃗, t) =
1

(4πDt)
3/2

∫
R3

g(y⃗) · exp

[
−|x⃗− y⃗|2

4Dt

]
d3y⃗, (42)

where g(y⃗) is the initial condition

g(x⃗) = g0(t0) exp

(
−|x⃗|2

2σ2
0

)
. (43)

It follows that

u(x⃗, t) =
g0(t0)

(4πDt)
3/2

∫
R3

exp

{
−

[
y⃗2

2σ2
0

+
|x⃗− y⃗|2

4Dt

]}
d3y⃗

= exp

(
− |x⃗|2

(2σ2
0 + 4Dt)

)

× exp

[
−
(
2σ2

0 + 4Dt
)

2σ2
0(4Dt)

∣∣∣∣y⃗ − 2σ2
0

(2σ2
0 + 4Dt)

x⃗

∣∣∣∣2
]
,

(44)

where one may use the change of variable

z⃗ =

√
2σ2

0 + 4Dt

2σ2
0(4Dt)

(
y⃗ − 2σ2

0

2σ2
0 + 4Dt

x⃗

)
,

d3z⃗ =

[
2σ2

0(4Dt)

2σ2
0 + 4Dt

]3/2

d3y⃗, (45)

to simplify the integral. The integrand therefore collapses to
one single exponential over d3z⃗, the result of which is π3/2.
It remains that the solution u(x⃗, t) becomes

u(x⃗, t)

=
g0(t0)

(4πDt)
3/2

exp

(
− |x⃗|2

2σ2
0 + 4Dt

)[
2σ2

0(4Dt)

2σ2
0 + 4Dt

]
π

3/2

= g0(t0)
π3/2

(4πDt)3/2

[
2σ2

0(4Dt)
]3/2

(2σ2
0 + 4Dt)3/2

exp

(
− |x⃗|2

2σ2
0 + 4Dt

)

= g0(g0)
(2πσ2

0)
3/2

(2πσ2
0 + 4πDt)3/2

exp

(
− |x⃗|2

2σ2
0 + 4Dt

)
, (46)

which is identical to the result (5) with g0(t0) → n0(t), |x⃗| →
r, and D → De. Note that this solution is applicable also the
the case when D → D(t), where the substitution

Dt →
∫ t

t0

D(t′) dt′ (47)

need only be made, as long as diffusion remains isotropic.

APPENDIX B
SELECTION OF INITIAL CONDITIONS

Throughout the present work, the initial conditions for
the electron cloud, n0(t0) and σ0 have been kept constant;
their values determined by estimates of typical background
ionisation levels. Based on an estimated uniform background
electron density of na = 109 m–3 [30], a peak value of n0(t0)
of 1013 m–3 was chosen, which was also informed by its

use in various numerical modelling studies [31]. Considering
that this is a peak value (representing a localised packet of
electrons) and not uniform, this value could conceivably be
driven by ionisation from background sources, or remaining
from a previous discharge within a laboratory setting [32].

The choice of the initial deviation parameter, σ0 = 10−4 m
was based on approximate dimensions of simulated electron
avalanches in [18] using particle kinetic methods. Since this
work considered an initial density of electrons to facilitate the
incorporation of avalanche initiation from multiple electrons
(or multiple localised avalanches that merge and act effectively
as a single, larger, avalanche), one may calculate the total
number of electrons based on the assumed value of n0(t0)
by

Ne =

∫∫∫
S

ne(r, t0) d
3S, (48)

where the volume integral over the three-dimensional sphere
S is the total electron number in the Gaussian. An assumed
value for σ0 on the order of 10−4 meters corresponds to Ne

on the order of 102, which was sufficiently low and deemed
feasible as a reasonable initial condition. Within the assumed
uniform background density of 109 m−3, a similar number of
electrons would be expected in a volume of (≈ 5mm)3.
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