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ABSTRACT

Deep learning has found extensive applications in classifying
seismic signals in recent years. However, as a black box al-
gorithm, deep learning is still rarely exploited in real-world
applications, such as landslide monitoring. This is particu-
larly a concern for geoscientists who prefer to classify seismic
signals based on their physical properties, through feature en-
gineering. To build trust in deep learning model outputs, we
propose a CNN multi-classifier architecture to classify seis-
mic signals into four classes (earthquake, micro-quake, rock-
fall and noise), and explain its outputs based on Layer-wise
Relevance Propagation. We demonstrate that the provided ex-
planations can lead to a more interpretable model by relating
network outputs to geophysical phenomena and showing that
distinguishing features extracted by the network are aligned
with those identified by geoscientists as pertinent to classes
of interest.

Index Terms— Microseismic event classification, Trust-
worthy AI, Explainable AI

1. INTRODUCTION
Detecting endogenous seismicity due to deformation of slow-
moving clay-rich landslides has become an important re-
search topic to mitigate threats to humans, especially around
roads, dams and train tracks. Seismometers provide accu-
rate recordings of seismic signals; however, due to their high
sensitivity, distinguishing between seismic signals originat-
ing from seismic activities and any other signals contained
in the recordings is not an easy task. Deep learning-based
approaches dominate recent literature on detection and clas-
sification of seismic activities, and a detailed review can be
found in [1]. The deep learning models achieve state-of-the-
art performance in detecting and classifying seismic signals
avoiding cumbersome manual feature generation, selection
and extraction process, with their ability to automatically

This work was supported by EPSRC Prosperity Partnership research and
innovation programme EP/S005560/1 and in part by EPSRC New Horizons
research programme EP/X01777X/1. The contextual data interpretation and
labelling work by experts on the SZ dataset was supported by RSE Saltire
International Collaboration Awards. For the purpose of open access, the au-
thors have applied a Creative Commons Attribution (CCBY) license to any
Author Accepted Manuscript version arising.

learn most discriminative features from raw recordings. How-
ever, this also means that these models are limited by the used
training set, and may learn specifically spurious correlations
with the prediction target [2], [3]. Furthermore, the fact that
the feature engineering task is taken away from the designer,
makes deep learning models opaque, and hence often referred
to as “black box”, which limits their adoption.

Explainable artificial intelligence (XAI) [4], [5] is a re-
search direction that provides human-interpretable explana-
tions. XAI tools have been used in computer vision (e.g., [6])
and time-series signal analysis problems (e.g., [7]); however,
XAI work on micro-seismic signal analysis is in its infancy.
In [8], a heatmap-based visualisation tool was presented to
explain model outputs via the outputs of activation functions
of each filter in the convolutional layers and then overlap-
ping the result with the raw input signal. However, it is not
clear how explanations are formed by fusing outputs of the
activation functions from different layers, only earthquake
and other high SNR events are considered, the approach does
not exploit advanced XAI methods, and it is not used to ex-
plain any false predictions. In [9], the authors proposed a
Dual-Channel CNN together with an explanation module,
EUG-CAM (elaborate upsampling-based gradient-weighted
class activation mapping) that builds upon the principles of
GradCAM (gradient weighted class activation mapping), har-
nessing the influence of feature map values and gradients
to elucidate the importance of diverse features in the last
convolutional layer. Recognising the discrepancy between
feature map sizes and input data dimensions, EUG-CAM
uses a strategic amalgamation of transposed convolution,
unpooling, and interpolation, to generate feature mappings
from a coarse localisation map. This results in an explana-
tion feature map that effectively encapsulates class activation,
learning insights, and network architecture considerations.
However, the model’s limitation is in classifying only two
classes (rock fracturing vs. noises) and its confinement to
binary classification. Furthermore, the reliance on a 1-D
CNN model facilitates explanations primarily within the
time domain, possibly neglecting the benefits of frequency-
domain insights. Additionally, the visualisation maps cannot
show the adverse input signal influence (negative contribu-
tion) on classification results hampering a comprehensive and
well-rounded comprehension of the model’s decision-making
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process. In [1], visualization of feature maps is used to un-
derstand the CNN network’s internal workings. The authors
examine feature maps at various convolutional layers and
the second fully connected (FC) layer, gaining insights into
feature extraction. The main observation is that early layers
locate event positions and extract basic features, while deeper
layers refine these features into abstract representations for
classification. The second FC layer’s feature distributions
vary across seismic events, indicating the network’s capabil-
ity to distinguish event types from noise based on learned
features.

In this paper we identify the learnt features from a deep
neural multi-classifier and demonstrate that these features are
in agreement with the physical properties of seismic signals
and hand-crafted features used in literature [10]. We lever-
age on state-of-the-art XAI tools to explain deep learning
models for detection and classification of micro-seismic sig-
nals and show how these explanations can explain correct
and wrong predictions. Specifically, we adopt Layer-wise
Relevance Propagation (LRP) [11] to explain the decision
making process, and analyse the basis of the model for event
classification and discuss the reasons for misclassification.
The outputs, both true and false positives, are therefore ex-
plainable in terms of geophysical features, thus building
transparency into the operation of deep learning approaches.

2. METHODOLOGY
2.1. Data preparation and pre-processing
The dataset used in all our experiments is obtained from
the open access Résif Seismological Data Portal, acquired
by the French Landslide Observatory OMIV (Observatoire
Multi-disciplinaire des Instabilités de Versants). The wave-
form data is acquired by Super-Sauze C (SZC) stations in
MT network which are installed at the east and west sides
of the Super-Sauze landslide in Southeast France (Latitude:
44.34787, Longitude: 6.67805). The seismometers consist
of one 3-component sensor and 3 vertical one-component
sensors (organised as equilateral triangle) at 250Hz sampling
rate. The seismometers recorded three periods: from 11 Oct.
to 19 Nov. 2013; from 10 to 30 Nov. 2014; and from 9 June
to 15 Aug. 2015. We use a catalogue of manually labelled
events that occurred during these periods for classification
into four classes [1], [12]–earthquake, quake, rockfall and
natural/ anthropogenic (N/A) noise. Rockfalls mainly occur
at the main scarp of the landslide, where the rigid block falls
from the steep slope (height > 100m). The quake is likely
to be triggered by material damage, surface cracks and open-
ings. The earthquakes represent regional seismic events in
this area and the teleseisms. N/A noise events include all
anthropogenic and environmental noise, due to, e.g., trans-
portation, pedestrian walking, heavy rain, animals, etc. We
manually selected relatively higher-SNR (Signal-to-Noise
Ratio) events from the catalogue for model training. Labelled
events from 26th to 28th Nov. 2014, which are not included in

the training set, are used for testing. We use a band-pass filter
with 5-60Hz bandwidth to remove low frequency noise and
retain events of interest, as identified from the cataloguing
process [12]. We have 15-second sliding windows of contin-
uous filtered recordings as input window. In particular, we
normalize time series input by subtracting mean and dividing
by the maximum of the absolute value of each input window.
We use Short-time Fourier Transform (STFT) maps as model
inputs that was shown in [1] to provide in average better
results compared to feeding directly time-series signals. For
the STFT map input, in order to get good time and frequency
resolution, ‘Boxcar’ window with length of 128 samples with
70% overlap is used. The input shape for STFT-based model
is 65× 95× 3 samples.

2.2. Seismic signal classification
An STFT-based CNN model inspired by VGGNet [13] and
adapted from [1] is used. The architecture of the the model is
shown in Figure 1. Convolutional layers perform feature rep-
resentation and extraction, followed by max-pooling layers
that downsample the extracted feature into a feature map with
smaller size. Compared to [1], to effectively process longer-
duration seismic events within continuous data streams, we
increase the input window of the CNN model to 15 seconds
(from 10 seconds), simultaneously optimising associated pa-
rameters. Moreover, recognising the prevalence of seismic
waveforms captured by 3-component sensors in the field, the
input to the network is 3-channel input data, in contrast to 6-
channel used in [1], which significantly expands the model’s
applicability to field studies.

Fig. 1: STFT-based CNN for seismic classification.

2.3. Sliding window-based detection and post-processing
A sliding window method is used to segment the continuous
stream into smaller windows [14], [15]. The window size and
overlap are selected based on the temporal resolution required
for the signal processing task. In particular, a window size of
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3750 samples, which is the length of the input signal for the
CNN model, is used. The overlap between consecutive win-
dows is set to 93% of the window size, i.e., 3500 samples,
which allows the CNN model to capture the temporal dynam-
ics of the signal. For each window, the CNN model is used to
predict the class of the signal using the trained weights. While
the sliding window technique enables continuous detection, it
can introduce certain challenges. One of the main issues is
that it may break the continuity of the event waveform, lead-
ing to potential inconsistencies or artifacts in the classification
results. This occurs because the sliding window segments are
treated independently, without considering the temporal con-
text or smooth transitions between adjacent windows. To ad-
dress this problem, the proposed post-processing system is
based on threshold filtering, median filtering, and Gaussian
kernel filtering of the softmax output of the CNN. In addition,
a peak selection method is applied to resolve cases where two
classes of events have very similar detection results. (1) The
softmax output of the CNN is filtered with a threshold value
(0.5), and all values below this threshold are set to zero. (2)
After the threshold filtering step, the probability distribution
may contain isolated spikes. To remove these isolated spikes,
we apply a median filter to each class separately. In addition
to removing isolated spikes, the median filter can also merge
spikes that are very close together, resulting in smoother and
more continuous probability distributions. We set the size of
the median filter to 5. (3) Gaussian kernel filtering, defined
with a sum of 1 and a length of 15, is applied to the median
filtered output to smooth the probability distribution. (4) We
select the highest peak as the final output. This peak selec-
tion method allows us to choose the class of the event with
the longest duration, as it indicates a higher confidence level
in the classification result.

2.4. Explainability tools
LRP [11] is a state-of-the-art XAI method, that shows the con-
tribution of each sample in the input data to the classification
results and can be implemented in the pre-trained model. The
LRP method starts from the output of the model, sets the out-
put value before activation function as relevance, and gradu-
ally back propagates the relevance, iteratively, layer by layer,
to the input nodes. In the backpropagation, the relevance fol-
lows the conservation law, that is, a neuron’s relevance equals
to the sum of the relevance it flows out toward all other neu-
rons. Various propagation rules have been proposed, such as
LRP-γ, LRP-ϵ, LRP-0 rule [16] [16]. In this paper, we used
LRP-ϵ rule which is suitable for convolutional layers and max
pooling layers [17], and is define as:

Rj =
∑
k

ajwjk

ϵ+
∑

0,j ajwjk
Rk, (1)

where Rj represents the relevance score assigned to neuron j,
aj denotes an input activation, wjk is the weight connecting
neuron j to neuron k in the layer above,

∑
0,j denotes that we

sum over all neurons j in the lower layer plus a bias term w0k

with a0 = 1. ϵ is a regularisation term, i.e., a small value that
prevents the denominator from being 0.

3. RESULTS
Our models are implemented in Keras framework. Since the
activation function of the output layer is softmax, we use cat-
egorical cross entropy as loss function. The used optimiser
is AdaDelta. The classification results are shown in Table 1.
It can be seen that generally the model leads to a high recall
(sensitivity) for the earthquake (88.2%) and rockfall (97.3%)
classes. The worse results are obtained for N/A noise (79.2%)
and quake (68.4%) signals, due to heterogeneity of the N/A
noise signal and very low signal amplitude of quake signals.
The results are aligned with those from [1] and [12].
Table 1: The confusion matrix for STFT-based CNN model.

Quake Earthquake Rockfall Noise
Quake 26 2 8 2

Earthquake 0 15 1 1
Rockfall 2 0 73 0

Noise 95 11 37 546

The used package for embedding LRP into our models is
iNNvestigate [18]. Figure 2 shows an example of 3 correctly
classified events. Positive and negative values of the LRP rel-
evance indicate that the corresponding STFT values have pos-
itive and negative contributions to the classification results,
respectively. The distribution of relevance for earthquake is
focused on the high frequencies (about 40 to 50Hz) when the
P-wave is picked as well as the low frequencies (around 15 to
20Hz) of the P-wave and (around 5sec) the low frequencies of
the S-wave with intermediate noise shown in light blue cor-
rectly identified as not contributing (negative contribution).
This example shows that the model learnt, and uses as ba-
sis for its predictions, that the P-waves of earthquake tend to
have both high and low frequencies and that high energy con-
tent of S-Waves follows in time. Quake events are of shorter
duration than earthquakes, have lower amplitudes, with en-
ergy focused in low frequencies. The relevance is concen-
trated in the single peak (positive and negative) of the event
waveform, suggesting that the normalised maximum ampli-
tude is the key distinguishing feature. In the frequency do-
main, the LRP map clearly shows the importance of the peak
that has energy mainly focused below 30Hz while there is also
a small positive contribution between 30 to 40Hz. While the
relevance of quake events is concentrated on a single peak, the
relevance of rockfall events is concentrated on multiple peaks,
which also shows an important property of rockfall events −−
multiple significant peaks. Looking at the LRP map, the rel-
evance has multiple focused points corresponding to multiple
short waves a characteristic of rockfalls. In addition, although
both the rockfall and the quake events have a frequency band
between 10 to 30Hz, the relevance are mostly concentrated at
frequencies greater than 20Hz for rockfalls and below 20Hz
for quakes.
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(a) Correctly classified earthquake

(b) Correctly classified quake

(c) Correctly classified rockfall

Fig. 2: Correctly classified examples: The first column shows
the time-series signal, middle column the STFT, and the right
LRP relevance heatmap.

3.1. Explaining origin of mis-classification
The confusion matrix presented in Table 1 shows that the
quake signals are sometimes misclassified as rockfalls. In-
terestingly, however, rockfall signals are rarely misclassified
as quakes (only 2 mis-classified events). To investigate this
further, Figure 3(c) shows an example of a quake event mis-
classified as rockfall, where the relevance distribution on the
LRP map is very scattered. That is, the LRP relevance is not
focused on the quake event’s peak, but instead picked up sev-
eral consecutive peaks, where the positive relevance is cor-
rectly concentrated at 5 sec. This indicates that the model
correctly recognised the quake event’s peak appearing around
5 sec, but there was a high energy signal in nearby frequency
bands, influencing the final prediction. On the other hand,
there are many positive relevances at different times that cor-
respond to frequencies between 20Hz to 30Hz, which is akin
to the learnt rockfall ‘behavior’. Thus, the main reason of
misclassification between quake and rockfall is that the SNR
of the quake was very low, with a noise signal appearing im-
mediately after mimicking multiple peaks of rockfall events,
as shown in LRP map of Figure 2 (b).

In Fig. 3(a), the misclassification of noise as an earth-
quake is shown. The noise exhibits prominent peaks around
4 sec and 5.5 sec. Examination of the LRP map reveals the
model’s recognition of low-frequency and high-frequency
components around the 4-second mark, along with low-
frequency signals at 5.5 sec. This aligns with the characteris-
tic features of P-waves and S-waves in earthquake signals, as
shown in the LRP map of Figure 2(a), resulting in the model’s
mis-classification of this event as an earthquake.

In Fig. 3(b), we show an instance in which a rockfall
is mis-classified as a quake. The rockfall displays multiple

(a) noise mis-classified as earthquake

(b) rockfall mis-classified as quake

(c) quake mis-classified as rockfall

Fig. 3: Three mis-classified examples.

peaks, but aside from the principal one, all are of negligible
magnitude. Analysis of the LRP illustrates a concentration of
positive effects (red) at the primary peak of the event. Con-
versely, numerous negative contributions (blue) are observed
at the secondary peaks, suggesting that the presence of these
peaks is not taken into account due to their small magnitudes.

4. CONCLUSION
The paper proposed an STFT-based CNN model that achieves
good performance on earthquake and rockfall events. Further
using LRP to explain outputs of the proposed CNN, we iden-
tified properties of the signals extracted by the network when
making decisions. Based on this, we concluded, for exam-
ple, that the main reason why quake events are often mis-
classified as rockfall is due to appearance of a noise signal at
multiple higher frequencies that mimics rockfalls. By observ-
ing the insights gained through XAI, we can discern specific
features of input events that are prone to mis-classification.
This knowledge can be instrumental in enhancing the robust-
ness and generalisability of our model. This can be achieved
by adding more events in the training set that closely resem-
ble the challenging input patterns identified through XAI. The
availability of LRP maps as visual aids can also offer a valu-
able tool to support cataloguing by geoscientists. This collab-
orative synergy between automated classification and manual
classification can further enhance the accuracy of microseis-
mic catalogues, contributing to a better understanding of ge-
ological phenomena.
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