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The Three-Body Problem has fascinated scientists for
centuries and it has been crucial in the design of mod-
ern space missions. Recent developments in Generative
Artificial Intelligence hold transformative promise for ad-
dressing this longstanding problem. This work investi-
gates the use of Variational Autoencoder (VAE) and its
internal representation to generate periodic orbits. We
utilize a comprehensive dataset of periodic orbits in the
Circular Restricted Three-Body Problem (CR3BP) to train
deep-learning architectures that capture key orbital char-
acteristics, and we set up physical evaluation metrics for
the generated trajectories. Through this investigation, we
seek to enhance the understanding of how Generative AI
can improve space mission planning and astrodynamics
research, leading to novel, data-driven approaches in the
field.

1 Introduction

Recent advancements in Artificial Intelligence (AI)
have significantly impacted the space sector [1, 2]. AI
techniques have been applied in tasks such as space
traffic management [3, 4], space object characteriza-
tion [5, 6], satellite pose estimation [7], natural lan-
guage processing for space mission design [8], and
spacecraft operations using large language models
[9]. Research on large pre-trained models has also
emerged in astronomy, with applications in both gen-
erative and discriminative tasks. Notable models in-
clude AstroCLIP [10], which uses cross-modal con-
trastive learning for astronomical images and spec-
tra, and ASTROMER [11], a transformer-based model
for creating representations of light curves in a self-
supervised manner.

In astrodynamics, machine learning, especially
deep learning, has seen significant growth. Models
are used to learn guidance or control laws [12], and
deep learning has been applied to design complex tra-
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jectories in multi-body dynamics [13], the solution
of two-point boundary value problems [14] and the
classification of regular and chaotic motion [15]. Self-
supervised learning techniques have shown effective-
ness in tasks such as conjunction screening and ma-
neuver detection, revealing potential for data-driven
approaches in orbit analysis [16].

In the context of the Three-Body Problem (3BP), AI
has been used to tackle complex challenges. Support
vector machines classified trajectories in the circular
restricted three-body problem [17], deep neural net-
works solved the chaotic three-body problem [18], and
artificial neural networks predicted periodic orbits in
three-body systems with arbitrary masses [19]. How-
ever, generative AI techniques have only recently been
applied to astrodynamics [20, 21]. This paper presents
some early results from the OrbitGPT project [22].

1.1 The Restricted Three-Body Problem

The Three-Body Problem (3BP), introduced by New-
ton in 1687 [23], involves predicting the motion of
three celestial bodies interacting gravitationally. Eu-
ler and Lagrange made significant contributions in
the 18th century, describing equilibrium points where
a small, massless particle influenced by two larger
bodies (primaries) can remain stationary. Euler identi-
fied three collinear points, while Lagrange added two
more points, assuming the primaries move in circular
motion about their center of mass [24]. These mod-
els are known as the Restricted Three-Body Problem
(R3BP) and the Circular-Restricted Three-Body Prob-
lem (CR3BP).

The equations of motion (EOM) for the CR3BP are:

ẍ = 2ẏ +Ux (1a)

ÿ = −2ẋ+Uy (1b)

z̈ = Uz (1c)
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Figure 1: Geometry of the Circular-Restricted Three-Body
Problem in a rotating reference frame.

The state vector X = [x,y,z, ẋ, ẏ, ż]T ∈ R6 represents
the position and velocity of the particle P relative to
the center of mass in the non-inertial reference frame,
as shown in Figure 1 [25].

The state vector and its EOM are dimensionless,
with the primaries at a fixed relative distance of 1 and
rotating at an angular speed of 1. The potential func-
tion U is given by:

U (x,y,z) =
1
2

(x2 + y2) +
1−µ
r1

+
µ

r2
(2)

where r1 and r2 are the distances between P and the
two bodies. The components of its gradient,Ux,Uy ,Uz,
are the forcing terms in Eqs. 1. The gravitational pa-
rameter µ = m2/(m1 +m2) defines the system’s behav-
ior, with 0 ≤ µ ≤ 0.5. For the Earth-Moon system,
µ = 0.01215.

1.2 Periodic Orbits

Let Φ(t,X0) : R ×R6 → R6 be the evolution function
for the dynamical system described by the equations
of motion (EOM) in Eqs. 1. This function determines
the state vector X(t) at any time t based on the initial
state X0: X(t) = Φ(t,X0). A periodic orbit with period
T is a trajectory where the state vector returns to its
initial state after time T : Φ(T ,X0) = X0.

Periodic and quasi-periodic orbits in the Circu-
lar Restricted Three-Body Problem (CR3BP) have
fascinated scientists since the 19th century, espe-
cially with the advent of numerical computation. In
1892, Poincaré proved that infinite periodic solutions
exist for the Three-Body Problem and highlighted
the potential for chaotic motion [26]. The discovery
of unique families of periodic orbits in both two-
dimensional and three-dimensional CR3BP began in
the 1920s [27]. Within any family of periodic trajecto-
ries, characteristics such as period, energy, and stabil-
ity indicators vary continuously.

Interest in these orbits surged with the dawn of
space missions, offering cost-effective and scientif-
ically valuable opportunities. For instance, the In-
ternational Sun/Earth Explorer 3 (ISEE-3) mission,
launched in 1978, was the first to utilize a Halo orbit
around the Lagrange point L1 in the Sun-Earth system
[28]. More recently, the James Webb Space Telescope,
launched in December 2021, operates in a Halo orbit
around the L2 point in the same system [29]. NASA’s
CAPSTONE mission, launched in June 2022, uses a
more stable Near Rectilinear Halo Orbit (NRHO) in
the cislunar environment [30].

The analysis of periodic orbits in the CR3BP is a vi-
brant research area in aerospace science, contributing
to our fundamental understanding of this dynamical
system and enabling complex and efficient space mis-
sions.

1.3 Generative AI

Generative AI has become a transformative force
across scientific and industrial domains, advancing
data generation and pattern synthesis. Models like
Generative Adversarial Networks (GANs) [31], Varia-
tional Autoencoders (VAEs) [32], and diffusion models
[33] have shown remarkable capabilities in producing
realistic data, including images, speech, text, and time
series. These models learn underlying data distribu-
tions to generate new, realistic instances.

Large pre-trained models, such as GPT-4 [34] and
Llama2 [35], have revolutionized natural language
processing (NLP) with their ability to understand and
generate human-like text, enabling applications like
conversational agents and automated content creation.
In computer vision, models like DALL-E [36] and
Stable Diffusion [37] have demonstrated the power
of generative AI in creating photorealistic images
from textual descriptions, transforming our interac-
tion with visual data.

1.4 Variational Autoencoder

A Variational Autoencoder (VAE) is a generative
model that combines variational inference and neu-
ral networks to generate new data points. VAEs are
useful for tasks like image synthesis, anomaly detec-
tion, and data compression, as introduced by Kingma
and Welling [32].

The VAE consists of an encoder and a decoder, form-
ing an autoencoder architecture with stochastic ele-
ments and probabilistic principles. The encoder trans-
forms input data x into a latent representation z, pro-
ducing parameters (mean µ(x) and standard deviation
σ (x)) for the probability distribution qφ(z|x):

qφ(z|x) =N (z;µ(x),σ (x))



Here, φ represents the encoder’s parameters.
VAEs sample z from the distribution parameterized

by µ(x) and σ (x):

z = µ(x) + σ (x) · ϵ

where ϵ is a random variable from a standard normal
distributionN (0,1).

The decoder reconstructs the input data x from z,
maximizing the likelihood of the data given the latent
variable:

pθ(x|z)

Here, θ represents the decoder’s parameters.
The VAE is trained to maximize the Evidence Lower

Bound (ELBO), which consists of the reconstruction
loss and the KL-divergence:

L(φ,θ;x) = Eqφ(z|x)[logpθ(x|z)]−KL(qφ(z|x)∥p(z))

where KL(qφ(z|x)∥p(z)) is the Kullback-Leibler diver-
gence between the encoder’s output distribution and
the prior distribution p(z).

1.5 Research Motivation

This paper is part of the OrbitGPT project [22], which
aims to apply generative AI to astrodynamics. The pri-
mary goal is to develop a large orbit model (LOM) that
generates orbital trajectories with desired features, re-
ducing the need for conventional design or orbit de-
termination algorithms. This approach could revolu-
tionize space mission design by generating new types
of orbits, minimizing mission analysis costs, captur-
ing past orbital knowledge, and training specialized
models through synthetic data generation.

2 Methodology

2.1 Dataset

For this study, we use an extensive dataset precom-
puted by NASA, comprising 44,112 periodic initial
conditions in the Earth-Moon CR3BP, classified into
40 families of orbits [38]. The dataset includes vari-
ous types of orbits, such as those located at the libra-
tion points (e.g., planar Lyapunov, Axial, Halo, and
Vertical Orbits) and those developing around the en-
tire system (e.g., Butterfly, Dragonfly, planar Distant
Retrograde and Prograde Orbits, and Long Period Or-
bits).

The initial dataset from NASA consists only of the
initial conditions of the orbits, along with their pe-
riods, stabilities, and Jacobi constants. To obtain the
full vector of positions for each orbit, the initial con-
ditions are integrated over time for one period us-
ing 100 nodes (N=100) with Matlab’s ODE113 solver

[39], with both absolute and relative tolerances set to
1× 10−13.

The dataset is structured in a three-dimensional
numpy array with a shape of data.shape =
(num_orbits, 7, num_time_points), where num_orbits
is 44,112, indexing each distinct orbit. The second
dimension (7) contains seven scalar values for each
orbit at every time point: position components (posX,
posY, posZ), velocity components (velX, velY, velZ),
and time. The third dimension, num_time_points,
represents the number of time points at which data
for each orbit is recorded, initially set to 100 nodes.
The dataset is standardized using the min-max
method for each scalar to facilitate efficient data
handling and analysis.

2.2 Model

The model trained on the orbit data is a Variational
Autoencoder (VAE), as depicted in Figure 2. This VAE
utilizes a convolutional neural network (CNN) archi-
tecture specifically designed for time series data, im-
plemented using the TSGM library [40].

Figure 2: Schematic representation of an orbit Variational
Autoencoder architecture (VAE).

The encoder consists of five Conv1D layers, each
followed by dropout layers to enhance the robust-
ness of the model and prevent overfitting. After pass-
ing through the convolutional layers, the data is flat-
tened and fed into two fully connected (dense) layers.
The first dense layer has 512 neurons with ReLU ac-
tivation, reducing the dimensionality of the feature
space while retaining essential information. The sec-
ond dense layer further reduces the feature space
to 64 dimensions. This step ensures that the high-
dimensional input data is compressed into a more
manageable form before reaching the latent space.
The output from these dense layers is then used to
compute the mean (µ) and log-variance (log(σ2)) of
the latent variable distribution. These parameters de-
fine the latent space where the encoder maps the in-
put orbit data.



The decoder follows an inverse architecture to the
encoder. It first passes through dense layers with
64 and 512 neurons using ReLU activation, then
a final dense layer reshapes the data for the five
Conv1DTranspose layers. These layers, interspersed
with dropout layers for robustness, reconstruct the in-
put sequences, ending with a Conv1DTranspose layer
with a sigmoid activation to produce the final output
sequences matching the input dimensionality.

2.3 Convergence

The generative model described above may not pro-
duce fully physical solutions, but the generated trajec-
tories can serve as initial guesses for trajectory opti-
mization algorithms to generate actual physical peri-
odic orbits.

A Multiple-Shooting (MS) algorithm iteratively ad-
justs a discretised trajectory {X0

i }
N
i=1 to satisfy a set of

constraints:

F(X̄) = 0 (3)

Here, X̄ ∈ RN×6+(N−1) includes N states {X0
i }

N
i=1 and

N − 1 time intervals dti = ti+1 − ti , i = 1, . . . ,N − 1.
The constraint vector F ∈ RN×6 enforces the respect
of both the dynamical equations as in Eq. 4, and the
periodicity condition reported in Eq. 5.

Fi = Xf
i −X0

i+1, i = 1, . . . ,N − 1 (4)

FN = X0
1 −X0

N (5)

The notation Xf
i stands for the state vector obtained

through the numerical integration of Eq. 1 from the
initial condition X0

i over the time interval dti .
The algorithm then uses a Newton-Raphson method
for iterative correction:

X̄j = X̄j−1 −DF−1F(X̄j−1), j = 1, . . . ,Nmax (6)

where X̄j is the solution at iteration j, and DF is the
Jacobian of the constraint vector, at iteration j − 1.

Convergence is achieved when the constraint vector
meets an assigned tolerance. A good initial guess X̄0 is
crucial for convergence. To ensure significant guesses,
we set a maximum of 20 iterations (Nmax = 20) and
used 10% of the states equally spaced in the orbit as
prompts. To visualize the effect of the refinement al-
gorithm, we plotted an example of a generated orbit
and its refinement in Figure 3.

Figure 3: Example of a refined orbit. The blue trajectory is
the initial output of the model, whereas the orange one is
the trajectory refined.

3 Results

3.1 Generation

For this experiment, the training dataset sequence
length, and consequently the timesteps of the genera-
tion, were set to 100. A VAE with 2 latent dimensions
was trained on the dataset over several epochs. Al-
though we believe that the loss may not be entirely
meaningful for performance due to the refinement
algorithm used at the end of the pipeline, the final
model loss was 8.6, with a reconstruction loss of 2.8
and a KL loss of 5.8. After the training, 100 new or-
bits were generated by sampling from the latent space
(Figure 4).

Figure 4: Generation of 100 synthetic orbits.

By examining the results, it is evident that the
model has learned and represented orbits that closely
resemble actual orbits in essence and shape. However,



the generated orbits exhibit an inherent fuzziness not
present in real data, resulting in the orbits appearing
as fuzzy lines rather than distinct ones. This fuzziness
is further corroborated by the physical error check,
which shows an average error of 34 for each node,
whereas a physical orbit should exhibit an error in the
order of magnitude of 1×10−13 (absolute tolerance of
the ODE solver). Another important aspect is that the
model consistently learned that periodic orbits need
to close, meaning that the final value of the position
needs to be close to the initial value.

3.2 Latent Space

We explored the latent space without the need for di-
mensionality reduction, as the latent dimensions were
already set to two. This exploration is shown in Fig-
ure 5. To properly represent each data point in the
latent space, we plotted the mean of each distribution,
as it is the most representative point. As expected, or-
bits of the same class are observed grouping together
in the latent space, forming filament-like structures.
This clustering occurs despite the absence of labels
during training, indicating that the model has learned
an internal representation of the orbit families and
groups orbits with similar characteristics. To further
corroborate this insight, we applied Gaussian Mixture
Models to cluster the latent space and then applied
certain metrics to quantify the extent of the clustering.
For a clustering of 40 classes, the performance yielded
a Normalized Mutual Information (NMI) score of 0.78
and an accuracy rate of 0.56.

Figure 5: Visualization of the latent space from the exper-
iment colored by orbital family labels, with plots showing
the average distribution of the Jacobi constant, period, and
stability.

Furthermore, we had a list of three features—Jacobi
constant, period, and stability—for every orbit in the
training dataset. We decided to plot the average of
these features for each line in the latent space, both
vertically and horizontally, effectively creating a rep-
resentation of the features’ distribution in the latent
space (Figure 5). We found that the period increases
incrementally from up to down along the vertical axis.
This suggests that the model has encoded the period
in an unsupervised manner along this axis, reminis-
cent of the insight from the seminal VAE paper by
Kingma and Welling [32], where moving along one
dimension of the latent space caused an incremental
change in the generated faces’ orientation.

Regarding the other features, no clear correlation
was found. We observed high stability in the middle of
the distribution, which might indicate another type of
encoding. The Jacobi constant appeared to be equally
distributed throughout the entire latent space, show-
ing no specific pattern.

3.3 Refinement

After the generation process, the 100 synthetic or-
bits were refined using the convergence algorithm de-
scribed in Section 2.3. We found that 46 out of the 100
generated orbits were sufficiently accurate guesses
for the refinement algorithm to successfully converge,
achieving a ratio of convergence of 0.46 and an av-
erage of 10.1 iterations for convergence. The refined
orbits, computed from the ones shown in Figure 4,
are displayed in Figure 6. Interestingly, all of the final
refined orbits were new, meaning none of them were
present in the training data.

Figure 6: Successful refinement of the generated orbits.



4 Discussion

The paper presented what can be considered a first
example of Generative Astrodynamics. The results in
the paper demonstrate how families of periodic orbits
can be encoded into a two-dimensional latent space
of features and decoded back into families of approx-
imated periodic orbits. By sampling the latent space
we demonstrated the generation of approximated pe-
riodic trajectories that converge to physical ones af-
ter a local refinement. The results in this paper are
evidence of the transformative potential of genera-
tive AI in astrodynamics. One particularly promising
area is the use of generative models for orbit discov-
ery. We have demonstrated the feasibility of creating
a pipeline that generates physical trajectories rather
than merely optimizing existing ones. This achieve-
ment represents a significant advancement not docu-
mented in the literature at the inception of this project.
By exploring other AI architectures and expanding
our datasets to include other planetary systems, we
aim to revolutionize space mission design, minimize
mission analysis costs, capture and transfer past or-
bital knowledge, and enable the training of special-
ized models through synthetic data generation.
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