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ABSTRACT
The floating platforms on which floating offshore wind tur-

bines are mounted introduce considerable complexity in terms of
dynamic motion. Understanding the extreme response of these
marine structures is important. One such extreme response is
the nacelle accelerations, which can cause damage to nacelle
components, such as the generator, and should therefore be kept
to a minimum. Tank testing is a tool which can be used to under-
stand the behaviour of these structures, and to determine extreme
response. Here, a method of estimating the most likely extreme
nacelle accelerations from a tank testing programme is shown,
using a 1:100 scaled model of the IEA 15 MW turbine with the
Volturn-US semi-submersible platform. The results showed that
the most likely extreme nacelle accelerations within the chosen
50-year return sea state are 0.195 g in the fore-aft direction, with
a typical safety limit of 0.2-0.4 g. Extreme statistical analysis was
carried out on the data obtained by a 3-DOF accelerometer, us-
ing the peaks-over-threshold (POT) method fitted to a generalised
Pareto distribution (GPD). Threshold selection and declustering
of data are also discussed. The results may be applied to further
test programmes, aiding in the development and design of current
or novel floating platforms in any programmable sea state.
Keywords: floating wind turbines, tank testing, peaks-over-
threshold, generalised Pareto distribution, extreme statis-
tics, extreme waves

1. INTRODUCTION
Floating offshore wind turbines (FOWTs) are increasingly

being installed globally. Scaled experiments in wave tanks are
a strategy for testing these devices, allowing for programmable
and repeatable sea states and numerical model validation with-
out incurring the costs of full-scale testing. Introducing a float-
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ing platform and mooring system to offshore wind turbines has
introduced complex dynamic motion from the combined wind,
wave, and current loads. FOWTs are typically mounted on semi-
submersible, spar-buoy, tension leg platform (TLP), or barge-type
floaters, where many of the platform designs have been used in oil
and gas [1, 2]. The concept of adding wind turbines to the floating
platform would not have been in the initial design considerations
of the platform. However, tank testing can be further used to
indicate the suitability of using these platforms for wind turbines,
and/or the development of novel floater concepts specifically for
the purpose of floating wind.

A key use of tank testing results is for the development
and validation of numerical models for FOWTs, such as Open-
FAST [3, 4]. One instance where numerical models can diverge
from physical testing results is during extreme events, where
the integration schemes and model stability can begin to fail for
the more complex environments associated with extremes [5, 6].
Testing extreme conditions is vital in demonstrating that com-
ponents of the turbine can survive the conditions that they are
exposed to, as well as for certification and insurance.

Many parameters can be obtained using tank testing, includ-
ing the accelerations that are experienced by the nacelle. The
nacelle houses key components of the wind turbine, such as the
generator and control systems. When nacelle acceleration limits
are exceeded, this could result in degradation of turbine per-
formance and damage to drive train equipment [7]. Therefore,
keeping nacelle accelerations to a minimum should be an im-
portant design consideration. Failure modes of existing floating
offshore farms are often not publically available, but is it likely
that nacelle accelerations are at least of interest. The design limits
of nacelle accelerations for the turbine are generally considered
to be 0.2-0.4 g [8, 9]. This value changes depending on param-
eters such as the turbine manufacturer, and the turbine rating.
By using statistical methods, understanding whether it is likely
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that the nacelle accelerations may be exceeded could be useful
in determining the survival of the turbine in extreme conditions,
and may be able to feed into design to adapt them to further limit
these accelerations, or inform developers about the likelihood of
an operation and maintenance task being required after certain
conditions have been reached.

For extreme conditions, such as significant wave height, and
wind speeds, statistical methods such as the peaks-over-threshold
(POT) method can be used to identify the frequency that threshold
value is exceeded. The generalised Pareto distribution (GPD) is
then used to fit the exceedance data. Threshold selection and
declustering of data is an important consideration in this work.
FOWTs are being located in more and more sites across the
world, with very different conditions, and as such, it is important
to understand the site-specific nacelle accelerations to ensure
that the platform choice is suitable. The method of obtaining
the acceleration from a tank testing programme using a 3-DOF
accelerometer placed on the nacelle, as well as how the statistical
methods mentioned will be applied to the data presents the return
value nacelle acceleration, and determines if the floating wind
turbine would be likely to exceed typical nacelle acceleration
safety limits. Exceeding these values may result in turbine failure,
which would result in increased operation and maintenance costs,
and potential downtime, resulting in lost revenue. If nacelle
acceleration limits are likely to be exceeded in extreme sea states,
further design optimisation should be considered. The paper is
structured in two parts, the physical model testing, followed by
the statistical analysis and discussion.

2. METHODS
2.1 Experimental Methods

Nacelle accelerations were obtained by tests using a 1:100
Froude scaled model of the IEA 15 MW reference turbine with the
Volturn-US Semisubmersible platform [10]. The scaled model
has been designed by FloWave Ocean Energy Research Facility
(known as FloWave herein) and tests were carried out in the
Curved Wave Tank facility at the University of Edinburgh (Figure
1).

FIGURE 1: THE CURVED WAVE TANK FACILITY AT THE UNIVER-
SITY OF EDINBURGH, SCOTLAND

The tank is shaped in an arc, and comprises 48 force feedback
absorbing wavemakers in a 9 m arc. The tank depth is 1.15 m,
and is capable of uni- and multi-directional sea states.

2.1.1 Model Properties. The model properties, material
properties, and mooring properties are defined in Tables 1 and 2
respectively.

TABLE 1: MODEL PROPERTIES

Parameter Value
Total mass 21.1 kg
Draft 0.20 m
Nacelle mass 0.86 kg
Moments of inertia [𝑘𝑔𝑚2] [4.62, 4.62, 2.36]

The optimal spring type and arrangement were selected using
an in-house FloWave design method that aims to accurately scale
the mooring stiffness matrix. Six springs were arranged in series
on each line to achieve the scaled line stiffness. The mooring
properties are described in Table 2.

TABLE 2: MOORING PROPERTIES

Parameter Value
Number of mooring lines 3
Declination angle 65°
Pretension 1.16 N
Min force 0.22 N
Max force 3.08 N
Max travel 0.38 m
Line axial stiffness 5 N/m

2.1.2 Tank Set-Up. A rope-spring system has been utilised,
with the springs being used to introduce line compliance. These
were mounted at the tank edge side, to avoid their weight impact-
ing the hydrodynamics of the line at the model side. The load
cell was mounted at the fairlead attachment point on the model.
This setup is shown in Figures 2 and 3.

FIGURE 2: DIAGRAM OF THE TANK SET UP FROM THE XY VIEW,
ADAPTED FROM [11]
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FIGURE 3: DIAGRAM OF THE TANK SET UP FROM THE XZ VIEW

All required instrumentation was calibrated within three days
of the test programme, with refinement or full calibrations car-
ried out each day of testing where appropriate. The 3-DOF
accelerometer used does not require calibration, and scaling was
added to the results by the manufacturer’s recommendation. The
accelerometer was checked by ensuring that each degree of free-
dom read 1𝑔 when positioned on the respective axis. The nacelle
has been designed to account for the weight of the accelerometer
and has been placed such that the accelerometer is in line with
𝑥, 𝑦[0, 0]. A nacelle was 3D printed with carbon fibre, with a
slot for the accelerometer to be in line with the centre line of the
turbine tower. The weight of the nacelle was then made up to the
target weight with aluminium plates, distributed evenly.

The accelerometer data was obtained by using a DAQ system
connected to LabVIEW Software. The accelerometer can give
measurements in 3-DOF. The data set was centred around zero by
subtracting the mean of the data set. Subsequently, the absolute
values of the data was computed for amplitude-focused analysis.

2.1.3 Sea States. The sea state that was chosen was adapted
from the IEC Design Load Case Matrix in [12] and is presented
in Table 3.

TABLE 3: TARGET AND OBSERVED EXTREME SEA STATES

Significant
Wave
Height (m)

Peak Period
(s)

Gamma
Shape Fac-
tor (-)

Full scale 10.7 14.2 2.75
1:100 scale 0.107 1.42 2.75
Tank output 0.104 1.42 2.75

In offshore wind engineering, the 50-year significant wave height
is a critical design parameter and is referred to in standards and
guidance such as the IEC 61400-3 and American Bureau of Ship-
ping (ABS) as an extreme condition [12, 13]. The 50-year return
period represents the most probable extreme condition expected
to occur within a 50-year timeframe, often determined using sta-
tistical techniques such as the inverse first order reliability method
(IFORM) [12]. The 50-year return period was taken and was
scaled down to a 1:100 scale using Froude scaling.

As shown in Table 3, the sea states generated by the Curved

Wave Tank have not been corrected to match the sea states of
the design load case matrix at 1:100 scale. Corrected values are
not required for this specific research, as the present research
concentrates on the methods of obtaining the statistical analysis
from tank testing results, and the tank testing programme can be
altered as required. The 50-year return period case load estimates
the most extreme sea state that will occur in a 50-year period using
statistical methods. In extreme testing, the standards are to test
these sea states for three hours or equivalent, which equates to
approximately 1000 waves. At 1:100 scale, following Froude
scaling, this equates to 18 minutes at the tank scale. The sea state
was run for 20 and a half minutes to allow for tank ramp-up time,
with data from the first thirty seconds being removed in post-
processing. The extra minutes were a precautionary measure to
ensure the attainment of approximately 1000 waves. Herein, the
mean of the data will refer to the mean of the absolute value of
the data post-processing and data cleaning.

3. ANALYTICAL METHODS
The method is summarised below:

1. Data cleaning,

2. Select an appropriate threshold,

3. Apply the threshold to data,

4. Apply a zero-up crossing approach to determine peaks above
threshold,

5. Use the MATLAB ’Distribution Fitter’ to fit a GPD to the
identified peaks in the data.

These points will be expanded on in the proceeding subsec-
tions.

3.1 Selection of probability model
Statistical methods have been used to obtain information

about extremes in datasets for decades (e.g. see Davenport [14]).
Notable examples of areas where extreme values are of impor-
tance are in hydrology and finance as well as in engineering,
with examples found in [15–17]. Many examples of research
use extreme statistics to determine the most likely extreme sig-
nificant wave height, associated period, and wind speed [18–20].
Historically, the extremes of wind speeds have been estimated
by and fitted using Gumbel, or Weibull distributions, which are
two probability distributions associated with extreme values [21].
The generalised extreme value (GEV) distribution may also be
used which involves combining the Gumbel, Frechet, and Weibull
distributions (also known as Types I, II, and III respectively) [22].
Typically, values from an annual block maximum are used in data
sets fitted to this kind of distribution. However, limitations of this
include the possibility of leaving too few data points to have an
appropriate fit unless there are many years of good data. Addi-
tionally, it can eliminate extreme values that may otherwise bear
importance to the analysis that occurred throughout the year but
was not the absolute maximum [22]. For example, it is estimated
that approximately 160 independent extreme events happen an-
nually for waves [23]. A more recent method of estimating the
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extreme values is the peaks-over-threshold (POT) method, also
known as the partial-duration-series (PDS), which involves apply-
ing an appropriate threshold to the data, and fitting a distribution
to the data points that exceeds this threshold. The chosen distri-
bution was the GPD, which is associated to the POT method in
works such as [18, 24–26]. Viselli et al. [18], analysed identical
data sets using the GEV, and the POT method, and found that the
GEV methods using block maxima consistently predicted larger
values. Mackay et al. [19], show that neglecting serial correla-
tion in models can lead to a positive bias. This is evidence of a
trade-off, as the method requires the points to be independent, and
therefore not correlated to each other, however, by using blocks
of a large size, lots of information is lost and can therefore lead to
overestimation. The GPD was used in this work, which is a family
of continuous probability distributions. It is often used in mod-
elling the tails of distributions, and therefore frequently used for
extreme analysis. The distribution is generally defined by a shape
(𝜉), scale (𝜎) and in some instances a location parameter for data
that exceeds a specified threshold (𝜇). The cumulative distribu-
tion function (CDF) of the GPD can be defined mathematically
as follows in Equations 1 and 2.

𝐻 (𝑦) = 1 −
(︃
1 + 𝜉

(︃
𝜉𝑦

𝜎̃

)︃)︃− 1
𝜉

(1)

Where:
𝜎̃ = 𝜎 + 𝜉 (𝑢 − 𝜇) (2)

Where 𝜎 and 𝜉 are the scale and shape parameters respec-
tively that have been estimated for the GPD, u is the threshold and
𝜇 is the location parameter[22]. The parameter 𝑦 is the indepen-
dent variable of the distribution and could represent any nacelle
acceleration. In this work, 𝑦 represents the accelerations at the
nacelle in the fore-aft direction.

3.2 Determination of Appropriate Threshold
Selecting an appropriate threshold for the POT analysis is an

important aspect of using the GPD, and is a trade-off between
variance and bias [22]. The choice in threshold can have a sig-
nificant impact on statistics and shape distribution of the data
set [27]. If the threshold is too high, too few data points will be
generated for the model to be accurately fit, and high variance is
seen as a result [22]. If the threshold is too low, then the statistics
will no longer provide an accurate representation of the extreme
population. It is important to ensure that the most statistically
relevant data remains in the distribution as far as possible.

Moriarty et al. [27] used probabilistic methods to determine
an optimum threshold in their work looking at fatigue loading
in wind turbines. This was determined to be the mean of the
data set plus 1.4 times the standard deviation [27]. Authors have
adopted this practice in their studies such as [28], however, even
Moriarty et al. [27] declared that more sophisticated methods for
determining the threshold could be developed in future studies.

The method adopted by Coles et al. [22] is to plot the mean
residual life plot and determine if this is linear, which would
indicate that the threshold is an appropriate level in which to
fit the GPD. In order to obtain the mean residual life plot, the
excess of means is first calculated using Equation 3 [22]. In order

to calculate the mean excesses, 100 iterations of the calculation
evenly ranging from 0.2 to 5 times the standard deviation of
the data plus the mean was taken as the threshold parameter.
These parameters are obtained from the result of the tank testing
programme. For each iteration of the loop, the scale and shape
parameters of the GPD were estimated using the ‘gpfit’ function
in MATLAB, based on the peaks of the data as calculated by
up-crossing code that will be further discussed in Section 3.3.

𝐸 (𝑋 − 𝑢 |𝑋 > 𝑢) = 𝜎𝑢0 + 𝜉𝑢

1 − 𝜉
(3)

Where 𝜎𝑢0 is the scale parameter at the minimum threshold
by which you can fit a GPD, 𝜉 is the shape parameter, and 𝑢 is
the threshold that is being investigated [22].

Further on to this, a mean residual life plot can be derived
using Equation 4. This looks at the mean values of the excee-
dences by looping through a series of threshold values. This can
then be again plotted against the threshold values themselves.{︄(︄

𝑢,
1
𝑛𝑢

𝑛𝑢∑︂
𝑖=1

(𝑥 (𝑖) − 𝑢}
)︄

: 𝑢 < 𝑥𝑚𝑎𝑥

}︄
(4)

3.3 Declustering of Peaks
The POT/GPD method assumes that the data points in the

data set are independent from each other and identically dis-
tributed [22]. Extreme values can have a tendency to cluster,
meaning they occur concurrently, and as such it can be necessary
to perform some analysis in order to decluster them [25]. This
clustering effect can lead to serial correlation, where the data
points are no longer truly independent of each other which would
violate the conditions of the statistical model used. To do this,
here the event is defined as the maximum measurement between
two concurrent points where the signal crosses the threshold in
an upward trajectory, or a ’zero up-crossing method’. This is
often applied to wave theory in order to determine the mean wave
period of irregular and random waves. This was a more suitable
method than using MATLAB’s built-in “findpeaks” function for
where the data points exceed the threshold. The function locates
local maxima, defined as a ‘data sample that is larger than its two
neighbouring samples or is equal to Inf’ [29]. This means that
many unintended peaks can be found within a signal, as high-
lighted in Figure 4, even when the data has been "smoothed".

Other methods used has been to use time windows e.g. 4
or 8 day time windows as presented by Viselli et al [18]. This
approach differs with the block maxima approach through the
‘characterisation of an observation as extreme if it exceeds a high
threshold’ [22].

Analysis was performed on the peaks identified by the code.
To fit the GPD to the obtained data above the selected threshold,
the MATLAB ’Distribution Fitter’ application was used, which
uses the "gpfit" MATLAB function to estimate the scale and shape
parameters.

3.4 Calculation of Return Value
The key aim of this study is to determine whether the most

likely extreme nacelle acceleration will exceed 0.2 g, as most
safety limits of nacelle acceleration is between 0.2 - 0.4 g.
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FIGURE 4: AN EXAMPLE OF AN EXTREME EVENT USING THE
’FINDPEAKS’ FUNCTION

In order to obtain a value that can be compared with the
safety values of the nacelle, the return value must be calculated.

Return values are typically reported in terms of years. How-
ever, in this work, the sea state of a 50-year return period has been
simulated for approximately 1000 waves. The absolute values of
accelerations scale up 1:1 in Froude scaling to full-scale tests,
and so the reported values correlate with full-scale testing. The
return value can be calculated using Equation 5.

𝑥𝑚 = 𝑢 + 𝜎

𝜉
[(𝑚𝜁𝑢) 𝜉 − 1], (5)

where 𝑥𝑚 is the return level, u is the threshold set for the GPD
analysis, 𝜉 is the shape parameter estimated for the GPD, 𝜎 is the
scale parameter estimated for the GPD, and 𝜁𝑢 is the 𝑃𝑟{𝑋 > 𝑢}
where X is a random variable and is taken as the absolute values
of the full data set. 𝑚 is the number of observations which was
taken to be number of peaks and troughs found when applying
the zero crossing code to the time series in Figure 5. This was
done in order to ensure compliance with the GPD requirements
that observations must be independent.

4. RESULTS AND DISCUSSION
4.1 Experimental Nacelle Accelerations Results

The results from the experimental tests for the 20-minute
extreme sea state in each degree of freedom are as follows in
Table 4.

TABLE 4: NACELLE ACCELERATION RESULTS

Parameter Fore-aft Side-to-side Vertical
Mean 0.031 0.0032 0.023
Standard deviation 0.038 0.0040 0.028
Maximum 0.170 0.0329 0.130

From the data set obtained from the tank tests, the fore-aft
direction was the most significant, and as such, the data was car-
ried out for this direction. It is likely that different components
in the nacelle will have more significant impacts from nacelle

accelerations in different directions, but for the purpose of this
paper, the direction with the highest mean was chosen. The ex-
perimental results from the time series and a histogram of the
normalised nacelle accelerations in the fore-aft direction are pre-
sented in Figure 5. On first inspection, the histogram shows that
the data approximately follows a normal distribution. Further-
more, the chi-squared goodness of fit test confirmed statistical
significance between the data and the normal distribution with a
5% significance level.

Nacelle Accelerations (g)
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FIGURE 5: THE HISTOGRAM OF THE ZERO MEAN CENTRED DATA
RESULTS OF THE ACCELERATIONS (g), WITH THE RED LINE FOL-
LOWING THE NORMAL DISTRIBUTION AND THE PURPLE HIS-
TOGRAM SHOWING THE DATA (A) AND THE TIME SERIES OF NA-
CELLE ACCELERATIONS IN THE FORE-AFT DIRECTION (B)

The following analysis takes the absolute value of these re-
sults and looks at the tails of the distribution.

4.2 Threshold Selection
As shown in Figure 6, there are many points above the thresh-

old. This threshold used in this figure is the mean plus standard
deviation multiplied by 1.4, as shown in Moriarty et al and dis-
cussed in previous sections [27]. Inspection by eye can quickly
indicate that the threshold appears to be too low using this value,
and further analysis must be carried out in order to determine the
appropriate threshold.

As outlined in the methods, the mean excesses and mean
residuals plot are presented in Figures 7 and 8. The mean resid-
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FIGURE 6: THE POT GRAPH USING THE THRESHOLD RECOM-
MENDED BY MORIARTY ET AL [27]

ual plot graph should be approximately linear in relation to the
threshold when the GPD provides a valid approximation.
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FIGURE 7: THE MEAN EXCESSES OF THE THRESHOLD WITH RE-
SPECT TO THRESHOLD SELECTION FOR NACELLE ACCELERA-
TIONS IN THE FORE-AFT DIRECTION

Figures 7 and 8 show good linearity in certain regions of the
graph. This is indicative of the GPD being a good fit for values
of that threshold. In both instances, linearity begins to fall off
at threshold values of around 0.1. Therefore, a threshold of 0.1
was selected as being an appropriate threshold value to give good
results. For both, the analysis does not go below the mean of the
data set. As such, the mean of the data set was taken to be 𝑢0.

Increasing the threshold to 0.1 ensures that the GPD will still
be a good fit, but the results are more indicative of the extreme
values of the distribution (Figure 9).

4.3 Generalised Pareto Distribution
MATLAB’s inbuilt ’Distribution Fitter’ was used to fit the

GPD to the data, inputting the threshold determined by Sec-
tion 4.2. The choice of GPD for this work has been outlined in
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FIGURE 8: THE MEAN RESIDUAL LIFE PLOT OF NACELLE ACCEL-
ERATIONS IN THE FORE-AFT DIRECTION
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FIGURE 9: POT GRAPH WITH OPTIMISED THRESHOLD SELEC-
TION

Section 3.1. The ’Distribution Fitter’ uses the MATLAB func-
tion “gpdfit” to determine the scale and shape parameter from
the data [30]. This function assumes that a threshold has already
been fit to the data and the points in the data set have already been
chosen. The function returns the maximum likelihood estimates
of the parameters in the distribution with the first output gener-
ated being the shape parameter and the second output being the
scale parameter.

In Figure 10, the fit is shown with the empirical data rep-
resented in purple, and the distribution of best fit is represented
by the red. In the graphs shown, the empirical dataset represents
the exceedences only. The GPD shows that with the selected
threshold, most of the extreme values, are covered by the distri-
bution. Statistical plots are a graphical technique used to indicate
whether a data set follows a given distribution, and similarly for
quantile-quantile plots. As shown, most of the data points lie
close to or on the line. This indicates that the method works well
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FIGURE 10: THE PROBABILITY DENSITY FUNCTION (PDF) (A),
THE CUMULATIVE DENSITY FUNCTION (CDF) (B) AND THE RESID-
UAL QUANTILE PLOT (C) OF THE DATA SET FIT TO THE GPD

for fitting a data set to a GPD and thus the GPD is appropriate for
use and the method should give meaningful results.

The return value that has been calculated for this threshold is
0.195 g. This is below the standard safety threshold of 0.2 - 0.4 g
that nacelle accelerations should remain under and compares well
with the maximum recorded nacelle acceleration in the data set
of 0.170 g. As acceleration scales 1:1, the full-scale model would
experience the same magnitude of accelerations as at model scale.

This value says that in a seastate that comes once every 50
years, the most likely extreme nacelle acceleration that will be
found is 0.195 g for this particular sea state and floating wind
turbine topology.

5. CONCLUSIONS
In this work, a tank testing programme has been designed to

obtain nacelle accelerations from a 1:100 scale model of the refer-
ence IEA 15 MW turbine with the Volturn-US semi-submersible.
The work was carried out at the Curved Wave Tank facility in the
University of Edinburgh. Using the data obtained, a methodol-
ogy has been outlined to obtain the most likely extreme nacelle
acceleration from a 50 year return period sea state using the POT
method and fitting a GPD to the data. A key parameter is the

determination of the threshold which in this case, was selected
using previous methods outlined by Coles [22] and was taken to
be 0.1 g. The most likely extreme nacelle acceleration for the
50-year return period that has been estimated to be 0.195 g. By
exploring the extreme value statistics of nacelle accelerations, the
reader can understand the likelihood that the nacelle will exceed
limits that could in turn be damaging to the drive train of the off-
shore floating wind turbine, and may cause fatigue and damage
further down the line.

6. FUTURE WORK
The work presented in this paper provides a workable tool to

obtain the most extreme value of nacelle accelerations from tank
testing results, however, is not an optimised solution. Threshold
selection could be further optimised, as well as choice of prob-
ability model further explored by comparing dataset values with
other probability models such as the GEV. This work is a demon-
stration of the methodology and there is opportunity for future
work to expand upon its findings, such as developing appropriate
test plans to ensure there is enough data, and to explore different
sea states. The present work only considers the hydrodynamics
and is designed to be a methodology that can be applied regard-
less of the detail of the study. The work could be repeated with
multiple different seeds of the sea state. Other considerations
for future work would be analysing the effectiveness of using an
accelerometer versus qualisys, and performing these tests with
aerodynamic loading. This analysis could also be compared with
numerical tools such as OpenFAST. Parameters such as tower
stiffness could be investigated to determine the impact on the
nacelle acceleration outputs with varying tower stiffness. When
using scaled models, there are logistical trade-offs, and it would
be interesting to explore the impact of nacelle accelerations from
these initial design trade-offs, including choice of scale. This
would allow a deeper understanding for how accurate nacelle
accelerations can be from scaled model testing.
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