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1 INTRODUCTION 

The MEDiate project aims to develop a decision-support system (DSS) for disaster-risk management that 

provides local authorities, businesses, and citizens with a comprehensive web-based platform to assess the 

risks posed by natural hazards. Within the project, Work Package 2 (WP2) is designed for the Assessment of 

current and future multi-hazard interactions and cascading impacts. It diagnoses the primary forms of 

interacting natural hazards across Europe, drawing examples from four specific testbed locations.  

Within WP2, the focus of this report, designated as deliverable 2.2 (D2.2), lies in analysing interactions 

between hydrological, meteorological, and climatological hazards, including mass movements. Specifically, 

D2.2 seeks to understand the mechanistic dependencies between interacting natural hazards, such as a storm 

inducing flooding leading to subsequent landslides. The report elucidates the interconnections between 

primary and associated hazards across various spatial and temporal scales. Furthermore, it provides projections 

regarding changes in hazard frequency and severity, grounded in the principal natural hazards identified within 

each testbed.  

The findings of this report serve as input data for Work Package 3 (WP3), which is tasked with 

developing a people-centred risk assessment for each testbed. This assessment is then integrated into the DSS 

portal to enhance local and regional disaster risk management as part of Work Package 4 (WP4). 

 

1.1 Objectives of this deliverable 

This report serves as the main deliverable of Task 2.2: Assessment of the primary interacting hazards 

across Europe. It builds upon the work laid in Task 2.1, which focused on reviewing quantitative methods for 

assessing multi-hazard interactions and proposing a framework applicable to assessing present and future 

multi-hazard interactions and impacts, particularly those influenced by climate change (Kennedy et al., 2023).  

 

The objectives of Task 2.2 are as follows: 

• To identify the relevant interacting hazards for each testbed. 

• To determine a set of intensity measures to be utilised as an input for WP3. 

• To assess intensity measures of potential future interactive hazard pairs, considering the 

impact of climate change. 

 

In the context of climate change, accurately assessing hazards and associated risks, particularly those stemming 

from infrequent multi-hazard events like floods and heatwaves, encounters two main challenges. Firstly, there 

is a lack of comprehensive and extensive observational data. Secondly, there is significant uncertainty 

regarding future local and global climatic conditions, including factors such as the distribution of extreme 

precipitation events and trends in urban development. These limitations result in substantial uncertainties in 

the outcomes and a potential tendency to underestimate the probabilities of emerging risks. Consequently, the 

MEDiate project emphasizes efforts to expand the existing observational database and maximize the utility of 

available data.  

This investigation is benefited by interactions with ongoing EU initiatives (e.g., MYRIAD-EU). The 

analysis draws upon ensembles of climate datasets, including those from EURO-CORDEX and the latest CP-

RCM runs available under H2020 EUCP (e.g., CMIP5, CMIP6). We adopt a contemporary typology, along 

with cutting-edge methods and research findings, to construct a plausible framework for diagnosing and 

classifying Europe's predominant interacting hazards and cascading impacts, both presently and in the future. 

This deliverable utilises a variety of datasets with varying resolutions, with a particular focus on those from 

the Copernicus Climate Change Service (C3S) of the Copernicus Earth Observation Programme of the 

European Union. Detailed descriptions of hazard-specific datasets can be found in sections 4 and 5. 
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1.2 The MEDiate testbeds 

This investigation spans across four distinct testbed locations—Oslo (Norway), Nice (France), Essex (UK), 

and Múlaþing (Iceland)—across Europe. To gauge the significance and nature of multi-hazards in these 

testbeds, historical events within each location are considered. These events serve as examples of the types of 

multi-hazard interactions that necessitate modelling within the MEDiate platform under development. The 

framework outlined in this deliverable builds the foundation of this platform. While various hazards, including 

meteorological, hydrological, climatological, and geological hazards, are observed in the testbeds, the primary 

focus lies on the interactions among meteorological, hydrological, and climatological hazards (such as 

compounding events) to assess the impact of climate change. Geohazards are also examined, particularly 

regarding their role as triggers for interactions between landslides and climate-related hazards. A brief 

description of the testbeds, including an overview of multi-hazard events, is given below.   

 

1.2.1. Oslo testbed 

The study area encompasses the municipal boundaries of Oslo (Figure 1.2.1), a coastal city in Norway with a 

moderate population density (650,000 inhabitants and a surface area of 454 km2). The climate profile report 

of Oslo (Klimaprofil Oslo og Akershus, KSS 2022) lists “extreme rainfall”, “rain floods”, “landslides, floods 

and mudslides” and “storm surge” as hazards that have probable increase based on analyses of downscaled 

climate models as was stated already in the IPCC AR5 report (IPCC, 2013).  

The most significant rainfall floods in eastern Norway typically occur during the summer or early 

autumn, coinciding with precipitation covering extensive areas. Many of the most devastating floods in Central 

Europe are attributed to a weather pattern known as the "Vb-tief or Vb-Zug" in Van Bebber's terminology 

(Van Bebber, 1882). While most Vb-tief occurrences affect Central Europe, they occasionally extend into 

Scandinavia. The Vb-tief is associated with blocking anti-cyclones in the North Atlantic Ocean, typically near 

Iceland, and over northeast Europe, near Finland. Warm air masses are prevalent in the east, while depressions 

often form in the Norwegian Sea near the coast of Norway, directing cool maritime air masses southward. 

Following a prolonged period of dry weather, rivers often experience minor floods. Subsequent rainfall can 

trigger more substantial floods once the ground becomes saturated (Roald, 2021).  

The city of Oslo is susceptible to compound flood events, including riverine floods, storm surges, 

extreme rainfall, erosion, and landslides, all potentially occurring concurrently under specific conditions. For 

instance, an extreme storm event in mid-October 1987 over southern and eastern Norway caused significant 

damage to the Oslo fjord due to multiple types of flooding, including coastal and riverine floods, as well as 

extreme winds. During that event, a 30-day period with rainfall reaching up to 240% of the normal level was 

succeeded by a period where the maximum daily rainfall had a recurrence interval of 10–15 years. This led to 

floods in eastern Norway and southern Norway with a recurrence interval of up to 100 years. These rainfall 

conditions, coupled with spring tides and wind conditions recurring at least every 25 years, contributed to 

notably extensive floods along the coast. The storm caused damage amounting approximately 650 million 

kroner (147 million euros present value), surpassing the total natural damage compensation recorded in the 

period from 1982 to 1986 (Engen, 1988). 

Furthermore, studies in Norway have identified precipitation, particularly short-term and intense 

rainfall, as the primary trigger for soil landslides, often exacerbated by rapid snowmelt or heavy rainfall (Nadim 

et al., 2009, Devoli, et al., 2019). This study focuses on rainfall-induced landslides and utilises events from the 

NVE landslide inventory (NVE, 2023). 

The Alna region of Oslo exhibits medium-to-high susceptibility to quick clay landslides due to various 

contributing factors like ground characteristics, topography, erosion, and flood events. Climate change has 

amplified the frequency and intensity of weather-related hazards, leading to increased risk of quick clay 
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landslides in the Alna region. Heavy summer precipitation (100–200 m³/s) saturates the ground, and high river 

flow rates in the Alnaelva contribute to erosion in waterways, a significant trigger for such landslides 

(Nesheim, et al., 2022; Huang, et al.,2023). The floods and landslides are considered as a precondition to quick 

clay hazard and specifically when preceded by an unusually wet summer. 

 

 

Figure 1.2.1 Oslo testbed region. The figure shows the location of a rain gauge (blue dot), tidal sensor, and the gauging 

station (red dot) on the river Gryta. Additionally, the closest nodes (green dots) used for extracting modelled surge and 

river flow data from global datasets are shown. 

1.2.2. Nice testbed 

The Nice-Côte d´Azur Metropolis is a French inter-municipal structure, situated in the southeastern part of 

France, around the city of Nice. It encompasses an area of approximately 1,500 km2 with a population of more 

than 540,000 inhabitants (Figure 1.2.2). It features a diverse landscape that includes coastal plains in the south, 

bordering the Mediterranean Sea, as well as steep mountainous and rural areas in the north. The Metropolis 

faces various environmental challenges, including the risk of natural hazards such as heatwaves, drought, 

earthquakes, landslides, and flooding (coastal and riverine), particularly in low-lying coastal areas. Climate 

change also poses a growing concern, with rising temperatures and shifting weather patterns affecting the 

region's ecosystems. 

The Nice Metropolis is characterized by small basins where the slopes are generally steep, and this 

makes the area very prone to flash floods. Flash floods have very short response times that sometimes lead to 

dramatic consequences in terms of casualties and damages (Braud et al., 2016). The city of Nice is crossed by 

the Lower Paillons River, a typical torrential river with low water levels throughout the year but that can be 

affected by violent floods (794 m3/s for a return period of 100 years) in autumn and winter (Game et al., 2023). 

These are normally the maximum rainy seasons, often characterized also by extreme events e.g., Storm Alex 

in October 2020, known as Brigitte in central Europe and Aiden in the UK and Ireland, brought powerful 

winds, intense rainfall, and thunderstorms. These weather conditions led to landslides and flooding in 
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southeastern France, northern Italy, and central Europe from October 2 to October 7, resulting in a minimum 

of 15 deaths (Copernicus, 2020). Moreover, part of the river crossing the city is covered, increasing the 

vulnerability of the area. To the east of Nice, there is the Var Valley, one of the main freshwater resources of 

the Nice Metropolis. The Var River is also subject to extreme events like the 5 November 1994 flood (Ma et 

al., 2016).  

This region is also affected by coastal floods. On 16 October 1979, a tsunami hit the French Riviera 

around Nice, killing 8 people and generating large economic losses, such as the collapse of part of the building 

site of a new harbour at the Nice airport. The flood extension reached 150 m inland with a 3.5 m runup and a 

sea level elevation of 2.5 m above mean sea level (Sahal and Lemahieu, 2011). This specific event was 

probably triggered by anthropogenic factors but tsunami hazards, mainly triggered by earthquakes, also exist 

at a regional scale and can have a high impact on the population and infrastructure (Hassoun et al, 2014). 

Further, coastal floods can be generated by surge storms like during the more recent flood event on the 3 

October 2015, which again led to high economic loss and several fatalities (Vinet et al., 2016; Bertrand et al., 

2022). 

The province of Nice is constantly affected by landslides. Among the annals of its history, one 

catastrophic event stands out—the 1959 Roquebillière Landslide. Triggered by torrential rainfall, this 

calamitous event induced a massive debris flow, wreaking infrastructure and claiming numerous lives. More 

recently, several landslides were triggered during high rainfall events in 2000 and 2020. 

In the available documentation of landslide events within the province, a total of 3,532 events have been 

recorded. These data were adopted to understand and address the susceptibility of the region to such natural 

phenomena. A significant portion of this data was sourced from the BDMvT (Base de Donnée Mouvements 

de terrain), accessible through Géorisques (BDMvT, 2024). Developed and maintained collaboratively by 

organizations such as BRGM, CEREMA, and RTM since 1994, this database provides insights into the spatial 

distribution, temporal trends, and characteristics of landslides across France. Furthermore, in pursuit of a 

comprehensive understanding, additional data were collected through photo-interpretation techniques 

(LUCAS, 2023). 

As a direct consequence of global warming, the Nice Metropolis is increasingly affected by heat and 

drought. Recent analyses show clear summer warming and drying trends in Europe in recent decades, 

especially in the Mediterranean region, such as the south of France (Tauling, 2018). For example, summer 

2003 was exceptionally hot and dry due to a combination of very low precipitation and extreme air 

temperatures. Moreover, sunshine duration was above normal and relative air humidity was below normal 

during the whole year (Rebetez et al., 2006).  A decrease in annual precipitation will also contribute to an 

increase in winter droughts. These extreme events are liable to increase regionally due to the variation in rain 

patterns led by climate change as well as the occurrence of recurrent droughts and heat waves. Repeated 

droughts happened for instance from 2004 to 2007. One of the most recent events occurred in the summer 

2015 which was characterized by pronounced drought, a heatwave and very low precipitation (Hauser et al., 

2017) 
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Figure 1.2.2 Nice testbed region. The figure also shows locations of observed tide and river gauges (red dots) and the 

closest nodes (green dots) selected for extracting modelled surge and river flow data from the global datasets. 

 

1.2.3. Essex testbed  

Essex, situated in the east of England (UK), is a low-lying region with a surface area of 3,670 km2 and boasts 

a 905 km long coastline (Figure 1.2.3). Bounded by the North Sea to the east, Suffolk to the northeast, 

Cambridgeshire to the north, Hertfordshire to the west, and Greater London to the southwest, Essex features 

the city of Chelmsford as its county town. Essex has a population of 185,000, mainly concentrated in the south 

of the county while the remainder is largely rural. The coastline is flat and deeply indented by estuaries.  

The geographical configuration of Essex, characterized by an extensive coastline and a network of rivers 

and canals traversing urbanized areas, makes the region prone to combined river and coastal flooding, as 

evidenced by five nationally defined flood risk areas. The Essex County Council Local Flood Risk 

Management Strategy (2013) addressed various flood risk types, including flash flooding caused by high-

intensity rainfall and groundwater flooding, occurring when water levels in the ground rise above the ground 

surface. Moreover, the southern North Sea is susceptible to significant storm surges, due to the narrowing of 

the English Channel and being relatively shallow compared to deeper basins to the north. This bathymetry 

funnels waves onto low-lying coastal margins. Thus, when extreme wind and wave forcing coincides with 

high spring tides there is the potential for extensive sea flooding (Spencer et al., 2015). This hazard is escalating 

because of climate change which is leading to a rise in the frequency of flood incidents on the south and 

southwest coasts of Britain, as already observed during the 20th century (Zong and Tooley, 2003). The 

Preliminary Flood Risk Assessment (PFRA) for Essex County Council reported approximately 1,300 local 

flood events over fifteen years.   

Historically, the Braintree and Witham areas (Braintree District of Essex) have been susceptible to 

significant flooding from fluvial and surface water sources (Essex Pluvial Model Update Braintree, BMT, 

2020). Additionally, south Essex faces sea-level rise and flooding in the Thames Estuary (Steed, 2023). The 
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benchmark storm surge event for the region occurred on 31 January–1 February 1953, which, in total, caused 

the deaths of over 2,000 people in UK, Belgium and the Netherlands. This is considered the most devastating 

natural disaster in NW Europe in the last century (Spencer et al., 2015). A southern North Sea event of 

comparable magnitude occurred between 5 and 6 December 2013 (almost 60 years later).  These events 

produced similar surge heights but the 1953 storm was dominated by the surge component, while the 2013 

event was also characterized by a large tidal component (Wadey et al., 2015).  

The winter of 2013/2014 was not only characterised by a single storm event, but it was also 

exceptionally wet and stormy as a succession of deep Atlantic low-pressure systems, associated with a 

powerful jet stream. It was the wettest winter in the UK's observational records, and the stormiest period of 

weather experienced for at least 20 years (Kendon and McCarthy, 2015). The major storm-surge on 5‒6 

December was followed by a sequence of major storms from mid-December to early January with strong winds 

and heavy rain that brought multiple fluvial and coastal flooding. This co-action of wind and rain is of 

particular interest to increase our knowledge of multiple or compound hazards, not only because strong wind 

is usually accompanied by continuous rainfall, but also because climate change leads to large-scale shifts in 

weather patterns that directly influence the co-occurrence of these hazards (Bi et al., 2023).  

Moreover, the winter 2013/2014 was very mild. The UK mean winter temperature was the fifth highest 

from 1910, with an absence of cold spells (Kendon et al., 2015). In general, over the last decade, Essex has 

been subject to major overheating events and the duration and intensity of heatwaves are expected to increase 

due to global surface temperature rise. In summer 2022, for example, a daily maximum temperature of 40.3°C 

was reached on 19 July making it the hottest July heatwave in the UK (Yule et al., 2023). 

 

 

Figure 1.2.3 Essex testbed region. The figure also shows locations of observed tide and river gauges (red dots) and the 

closest nodes (green dots) selected for extracting modelled surge and river flow data from the global datasets. 
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1.2.4. Múlaþing tesbed 

Austurbrú is the Association of Local Authorities of all municipalities in East Iceland (Austurland) (Austurbrú, 

2024), and it operates in all administrative matters related to this region. East Iceland covers the area from 

Vopnafjörður in the north to Krossnes in the south and has four municipalities: Fjarðabyggð, Múlaþing, 

Fljótsdalshreppur and Vopnafjarðarhreppur. In this report, the testbed is Múlaþing and more precisely the town 

of Seyðisfjörður. The municipality covers 10.671 km2, with a population of 5.359, but the town of 

Seyðisfjörður had a population of 685 as of 2019. The mountainside south of Seyðisfjörður is characterised by 

varied terrain including summits, large depressions, gullies, and cliffs. Standartindur on the south side rises to 

1010 m above sea level and Bjólfur, on the northern side of the fjord, is 1085 m high (Figure 1.2.4 and Figure 

1.2.5). 

The main natural hazards in Múlaþing – Seyðisfjörður are snow avalanches and landslides, collectively 

called “ofanflóð” in Icelandic. In 1995, two avalanches caused a total of 34 fatalities within residential areas 

in the Westfjords of Iceland. This led to an increase in avalanche research and development of a methodology 

for hazard zoning based on the individual risk, or annual probability of death due to avalanches. This approach 

has then been expanded also to account for landslides and is now a “ofanflóð” hazard assessment. The method 

considers the estimation of avalanche frequency, the run-out distribution, and the vulnerability, which is 

estimated using the data from the fatal accidents in 1995 (Arnalds et al., 2002). In a strict sense, the so-called 

“hazard” zoning is a risk zoning, but in Icelandic language the word “hazard” is used. According to this method 

there are defined three hazard zones, A, B and C, which are defined by the presence of acceptable risk. In 

hazard zone A, the acceptable local risk lies between 0.3 – 1.0 × 10-4 (yellow risk line), in zone B it is between 

1.0 and 3.0 × 10-4 (blue risk line), and in zone C, the level is 3.0 × 10-4 (red risk line). For each category, there 

are spatial planning rules in force and provisions to reduce or mitigate localised risk. Above the highest risk 

line (line C) constructions of new houses is forbidden. Notice that the red line (line C) extends into the sea to 

prevent infilling and reclamation of land for building purposes (Figure 1.2.5). 

 

Figure 1.2.4 Múlaþing testbed region. The figure also shows locations of Seyðisfjörður town and data stations (green and 

red dots). 
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Figure 1.2.5 Hazard (risk) map in force with place names as mentioned in this section. The coloured lines define the 

points on which the individual risk, or probability of death due to avalanches is respectively 3.0 × 10-4 (red line), 1.0 × 

10-4 (blue line) and 0.3 × 10-4 (yellow line). The extension of the zonation into the sea is intended to prevent future 

construction from reclaimed land. 

 

During the week 14 – 18 December 2020 several debris flows and a 74,000 m3 landslide occurred in 

Seyðisfjörður, destroying many businesses and homes but with no casualties. The event led to the total 

evacuation of the town for several days. The landslide hazard assessment was revised, and mitigation was 

planned (Gylfadóttir et al., 2021). The town of Seyðisfjörður has been known for its landslide hazard for 

several decades and especially after the fatal landslide in August 1950. The landslide inventory includes a 

short description of that event: “Great damages occurred and 5 people were killed, when a large debris flow 

hit the house Strönd. Many smaller debris flows fell this day (17 were counted) most of them on Fjarðarströnd” 

(Jensen and Sönser 2002, Gylfadóttir et al., 2019). 

In Seyðisfjörður snow melt, especially during late winter and/or springtime, can lead to slush flows 

within a stream and, as cascading effects, debris floods, hyper concentrated floods or floods can propagate in 

inhabited areas. A slush flow is defined as a flowing mixture of water and snow which can entrain soil or 

debris on its propagation path (Hestnes, 1998). For this kind of hazard, the physical conditions of the stream 

or channel define the potential of occurrence of slush flows (Gylfadóttir et al., 2021). 

The river Hádegisá runs from a plateau towards the base of valley, passing three main rock bands that 

interrupt the slope to form steps (Arnalds et al., 2002).  This type of slope morphology allows snow to 

accumulate, and during melting, slush flows are possible. On 21 February 1904, a slush flow from Hádegisá 

reached the river Fjarðará at the valley bottom (nr. 4023 in IMO inventory). From historical accounts, there 

were reports of heavy snowfall during January 1904, followed by a rapid thaw on 21 February. Many slush 
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flows and snow avalanches fell at the same time in the same area due to the destabilisation of the snow during 

the intense thaw.  

More recently, a slush flow occurred in Hádegisá (no. 55041 in the inventory of IMO) on 23 February 

2019. At the time, the whole area of the Eastfjords where subjected to slush flows and 16 events were recorded. 

The weather conditions were similar to the ones in 1904 with rapid thawing of pre-existing snow cover. 

However, this slush flow did not reach the river Fjarðará, with subsequent flooding further downstream. 

Many historical events of snow avalanches have been recorded in above the town of Seyðisfjörður. 

Among them the most fatal of all recorded snow avalanches in Iceland, the event of 18 February 1885, where 

24 people we killed. In the IMO snow avalanche inventory, the following description can be found: “A large 

avalanche fell from Bjólfur reaching from Jókugil to further out than Hlaupgjá. Many houses were destroyed 

and 24 people were killed.” (Arnalds et al., 2002). 

 

 

2 SCOPE OF THE REPORT AND DEFINITIONS 

The focus of this report is primarily on the interactions between hydrological, meteorological, and 

climatological hazards (flooding, heatwaves, cyclones and wildfires), in addition to geophysical hazards such 

as mass movements (landslides). These natural hazards can interact in ways that impact areas beyond their 

immediate surroundings. Floods can cause landslides, storms can bring heavy rain, which can lead to flooding 

and the triggering of landslides. These hazards can occur over both time and space. They can be hard to predict, 

rapidly changing, and difficult to mitigate. As the planet warms, natural hazards are becoming increasingly 

frequent and severe (IPCC, 2022), and communities are not used to such rapid changes. This can lead to 

communities becoming more vulnerable to natural hazards. 

The project uses Participatory Action Research (PAR) to involve municipalities in the testbeds 

(Komendantova et al., 2023). The PAR work formed part of WP1 in the MEDiate project, and the authors of 

this report took part directly in the assessment and analysis of the survey results. Each testbed leader selected 

three multi-hazard pairs that represented vulnerabilities for the region in question. Stakeholder needs from 

each testbed were communicated to WP2. Hazard pairs in this report were defined according to the needs of 

each testbed. 

 

2.1 Definitions 

Definitions for WP2 were covered extensively in the deliverable of Task 2.1 (Kennedy et al., 2023). However, 

some terms need to be defined more precisely for this report as they feature widely in the treatment of hazard 

interactions, driving mechanisms, and the sequencing of hazard occurrence. The definitions below are refined 

versions of the nomenclature of Kennedy et al. (2023). They are also part of the UNDRR classification system 

for hazards (UNDRR, 2020). 

 

Compound hazard is often used as an alternative or is near synonymous to the term multi-hazard and 

therefore these terms are adopted in this report as having the same definition. 

 

Hazard driver: In the IPCC AR6 report (IPCC, 2022), climate change is defined as a significant hazard driver 

that can impact multiple hazard types and contribute to their interactions. Changes in temperature, precipitation 

patterns, sea levels, and weather events associated with climate change can intensify or alter the occurrence of 

various hazards. For example, rising temperatures can lead to more frequent and severe heatwaves, while 

increased rainfall can elevate the risk of flooding and landslides. Hazard drivers are factors or conditions that 
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contribute to the occurrence and severity of hazards. When it comes to interacting hazards, hazard drivers play 

a crucial role in shaping the interactions and interdependencies between different types of hazards. 

 

Intensity measures: Overall, intensity measures provide a quantitative basis for understanding and assessing 

the severity of various natural or human-induced phenomena, enabling better risk management, mitigation 

strategies, and decision-making processes. In wind engineering intensity measure describes the strength of 

wind loads on structures, in meteorology, it quantifies the severity of weather phenomena such as rainfall, 

snowfall, windstorms, or hurricanes. In the context of statistics or probability theory, intensity measure refers 

to quantities that characterize the severity or strength of an event or phenomenon. 

 

Multivariate events: Multivariate events refer to natural hazard events that involve the simultaneous 

occurrence or interaction of multiple hazards. These events can have complex and interconnected dynamics, 

resulting in increased risks and impacts. Multivariate events can occur in spatial or temporal proximity. For 

example, a hurricane can bring together strong winds, heavy rainfall, and a storm surge, leading to a 

multivariate event with compounding effects. Multivariate events can also be preconditioned if the occurrence 

or severity of one hazard is influenced by prior conditions or factors. 

 

Preconditioned events: Preconditioned events involve natural hazard events that are influenced or modified 

by prior conditions or factors. These conditions can increase the likelihood or severity of the hazard event. 

Preconditioning factors can be spatial or temporal in nature. For example, an area that has experienced 

prolonged drought is more susceptible to wildfires, or an area with already saturated soil is more prone to 

flooding. Preconditioned events can also involve multivariate aspects, where multiple factors interact to 

increase the risk or impact of a hazard event. 

  

Secondary hazard: The indirect consequences or effects that arise because of the primary hazards. Secondary 

hazards can be equally, if not more, damaging and can include effects such as landslides triggered by 

earthquakes or a storm-surge because of an extreme cyclone or hurricane. 

 

Spatially compounding events: Natural hazards that occur in close spatial proximity to each other. These 

events may be different hazards or related phenomena happening in the same geographic area. Spatial co-

occurrence events can include preconditioned or multivariate aspects. For instance, wildfires can lead to 

increased landslide risks in the surrounding area due to the loss of vegetation cover, creating a spatial co-

occurrence of two hazards. 

 

Temporally compounding events: Natural hazards that happen in close temporal proximity to each other. 

These events can be separate hazards or related phenomena happening within a relatively short timeframe. 

Temporal co-occurrence events can exhibit preconditioned or multivariate characteristics. For example, a 

strong earthquake followed by aftershocks over a short interval constitutes a temporally compounding event, 

where the subsequent seismic hazards are caused by the initial mainshock. 

 

Climate change is expected to be a significant hazard driver that can impact multiple hazard types and 

contribute to their interactions. Changes in temperature, precipitation patterns, sea levels, and weather events 

associated with climate change can intensify or alter the occurrence of various hazards. For example, rising 

temperatures can lead to more frequent and severe heatwaves, while increased rainfall can elevate the risk of 

flooding and landslides. Table 2.1.1 shows the selected climate impact drivers listed in the IPCC AR6 report 

for Europe. 
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Table 2.1.1 Climate impact drivers listed in the IPCC AR6 for North (NEU) and West Central Europe (WCE). Dec J̶an 

refers to change in mean precipitation in winter. 

 

 

 

 

Geographical and geological characteristics of an area can act as hazard drivers and shape the interactions 

between hazards. Features such as steep slopes, proximity to rivers, or presence of susceptible soils can 

influence the occurrence of landslides, and subsequent cascading hazards like liquefaction. Hydrological and 

environmental conditions are crucial hazard drivers that influence interactions between hazards. Factors like 

rainfall intensity, soil saturation, river flow rates, or coastal processes can affect the occurrence and severity 

of flooding, erosion, and related hazards. Changes in these factors can influence the timing and synchronization 

of hazard events and potentially amplify their impacts. 

 

3 METHODS AND OVERVIEW OF HAZARD INTERACTION TYPES 

This section is structured into five sections describing the methodologies used to define the interacting hazards 

in four testbed regions (section 3.1), selecting the appropriate measures to analyse joint probability, hazard 

pairing for possible future events, and four categories of multi-hazard events (section 3.2–3.5).  

To identify relevant types of hazard interactions across the four testbeds, this project employs the Participatory 

Action Research (PAR) approach (Komendantova et al., 2023), involving stakeholders from each testbed. In 

the PAR process, participants from each testbed selected the most pertinent hazards from a predefined list for 

their respective areas. In the initial PAR cycle, primary hazards within the testbed regions were identified 

(Figure 3.1.1).  

 

 
Oslo Nice Essex Múlaþing 

 

  Probability of top 5 hazards in each testbed 

  4 High  

  3 Medium 

  2 Low 

  1 Present but not top 5 

Figure 2.1.1 Hazards priorities in testbeds from the PAR process. 
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It is evident from Figure 3.1.1 that the first PAR process primarily focused on single-hazard events. To identify 

relevant interacting hazards, in line with the primary objectives of this deliverable, a PAR workshop was 

convened in June 2023. During this workshop, the concept of interacting hazards—where hazards combine, 

trigger other hazards, or lead to cascading impacts—was deliberated (see Figure 3.1.2). The primary natural 

hazards (Figure 3.1.1) identified during the previous PAR workshop served as a foundational basis for 

analysing and comprehending the interactions among these hazards. Additionally, the workshop introduced a 

typology of interacting hazards, encompassing preconditioned and triggering, multivariate, spatially 

compounding, and temporally compounding events (Figure 3.1.2). These four categories of multi-hazard 

events were selected to offer diverse perspectives for understanding and analysing the intricate nature of 

natural hazards and their interactions. These typologies align with the categorisation framework proposed and 

employed in various recent studies (Zscheischler et al., 2020; Lee et al., 2024). These categories underscore 

the interconnectedness, dependencies, and compounded risks arising from the simultaneous occurrence, 

proximity, or antecedent conditions associated with hazard events. 

Following the introduction of the multi-hazard typology, discussions were held with stakeholders to 

identify suitable multi-hazard events within their respective testbed regions. An evaluation of potential 

interactions among various individual hazards was undertaken (Figure 3.1.2). Subsequently, stakeholders 

identified three pairs of interacting hazards in each of the four testbed regions, prioritised accordingly (see 

Table 3.1.1). A variation in the order of hazards can be observed between Figure 3.1.1 and Table 3.1.1, 

underscoring the fact that while some hazards may have less individual impact, their interactions with other 

hazards could result in potentially significant effects. 

 

 

Figure 2.1.2 Multi-hazard interaction diagram, showing the interconnectedness and dependencies between hazard drivers. 

The diagram also shows the connections between tasks within WP2 (Kennedy et al., 2023). 
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Table 2.1.1 Identified multi-hazards of importance to each testbed. 

Testbed Multi-hazard interactions Typology 

Oslo 

1. Compound flood (coastal and riverine) Multivariate 

2. Flood and quick clay Preconditioned and triggering 

3. Flood and landslide Triggering 

Nice 

1. Compound flood (coastal and riverine) Multivariate 

2. Flood and landslide Triggering 

3. Extreme heat and drought Temporally compounding 

Essex 

1. Extreme wind and rainfall Spatially compounding  

2. Compound flood (coastal and riverine) Multivariate 

3. Extreme heat and rainfall  Spatially compounding 

Múlaþing 

1. Heavy rain and landslide Preconditioned and triggering 

2. Snow melt and flood Preconditioned and triggering 

3. Heavy snowfall and avalanche Preconditioned and triggering 

 

3.1 Preconditioned and triggering events 

In this report the triggering relationship between hazards is when one hazard causes another hazard to occur. 

The definition also suggest that the hazard can trigger zero, one or more secondary hazards (D2.1 report, 

Kennedy et al., 2023). The triggering hazards considered here are of meteorological and climatological nature. 

Figure 2.1.1 shows the method for evaluating the triggering hazard on a hillslope scale. The diagram allows 

for a focused assessment of hazards that can affect local conditions. 

 

 

Figure 3.1.1 Conceptual framework for estimating intensity measure of preconditioned and triggered events. 

 

In the case studies discussed later in the report (section 5), we are dealing with precipitation as a trigger for 

landslides, snow avalanches and floods.  We also analyse snow melt as a trigger for floods and the trigger is a 
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combined hazard of extreme rainfall and temperature increase where the precondition is snow. Figure 3.1.1 

shows the workflow of preparing the data to define the trigger and calculate the probability of the triggering 

event in connection to the relevant hazards.  

Selecting a triggering event involves finding a peak in the timeseries. To link timeseries and triggered 

events it is necessary to define what a time series event is. Timeseries are measured in different ways and with 

different time resolutions. In some cases, where measurements are sparse or not available, modelled data are 

used. Convenient time resolutions are hourly or daily values based on the nature of the data. The time resolution 

of both datasets, triggering and triggered affects the accuracy of selecting the “correct” time series event. When 

the time resolution of data decreases, the size of the event needed to trigger a hazardous event becomes more 

inaccurate.   

Methods for joining triggered events to the selected trigger (e.g., landslides to rainfall) may vary based 

on the geographical scale of the data. Joining landslide hazard to rainfall events on a regional scale requires a 

different approach than for a hillslope scale. The method described here looks at triggering events on a hillslope 

scale. The regional scale approach is described below. 

Several methods are available to separate time series into events. The threshold-based method is simple, 

but more complex methods e.g., ARMA (Auto Regressive Moving-Average) and TDS (Time-Domain 

Statistics), which are statistical methods, DTW (Dynamic Time Warping) and wavelet transform, which are 

machine learning methods could be used. Selecting the correct peak causing a hazard event can be challenging 

especially in large datasets where possible changes in the conditions have occurred from first events to the last. 

 Extreme Value Analysis (EVA) is a statistical discipline used to predict the occurrence of rare events 

by assessing their frequency from the most extreme values of a dataset, either observed or simulated. These 

extreme values are found in the tails of a probability distribution. Conducting an EVA enables the estimation 

of magnitudes associated with occurrences over periods that may extend far beyond the duration covered by 

the available time series data. Two main methods for finding the return levels exist: the Block Maxima 

approach and the Peak Over Threshold (POT) approach (Coles, 2001). To estimate the probability of various 

rainfall intensities and durations frequencies (IDF), we need a statistical model that accurately represents 

extreme rainfall events. 

 

Block Maxima 

The Block Maxima approach consists of dividing a timeseries into non-overlapping periods of equal size and 

retaining only the maximum values within each period. When dealing with meteorological and hydrological 

data, it is common to use the maximum hourly or daily measurements values from each year. A new timeseries 

that includes only the maxima is thus generated and referred to as an Annual Maxima Series (AMS). Under 

extreme value conditions, the AMS follows a General Extreme Value (GEV) family of distributions of the 

form given in equation (1): 

 

𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑧 − 𝜇

𝜎
)]
−1

𝜉⁄

} (1) 

 

 

where z is the extreme value and μ, σ and ξ are the three parameters of the GEV model G(z), defining location, 

scale, and shape parameters, respectively. This three-parameter distribution unites the three possible extreme 

value distributions, namely type I (Gumbel), type II (Fréchet), and type III (Weibull). The choice of distribution 

type depends on the extreme value characteristics of the parent dataset. This can be established by the shape 

factor ξ. Once the GEV distribution has been fitted to the AMS, the return level r associated with the return 

period (RP) 1/p can be estimated. 
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The Block Maxima approach is a simple method to implement as the data pre-processing requires only 

the creation of AMS by taking the yearly maxima at the time frequency considered. However, the main 

weakness is the omission of many possibly significant events because they do not represent an annual 

maximum value, even though they could be larger than maxima from other years. Also, there is a small 

potential for including dependent events if the yearly maximum spans a change of year e.g., maximum of 48 

hours precipitation passes the New Year. 

  

Peak-over-Threshold 

Another approach for EVA is the Peak-over-Threshold method (POT). In this case, all independent values from 

a timeseries that exceed a defined threshold are extracted and fitted to GPDs. The GPD has the following form, 

equation (2): 

  

𝐻(𝑧) = 1 − [1 + 𝜉 (
𝑧 − 𝜇

𝜎
)
−1

𝜉⁄

] (2) 

 

where x is the threshold excess, μ is the threshold, σ the scale parameter and ξ the shape parameter.  

  

Most of the main issues encountered by the Block Maxima model from a physical point of view are solved by 

the POT method as the extreme values extracted from the timeseries are not limited by their year of occurrence. 

However, the user must instead ensure independency of values and define a suitable threshold. In general, 

values in meteorological timeseries are dependent but, by declustering the data with a suitable minimum time 

window, the remaining values can be assumed approximately independent. The primary difficulty in 

configuring the POT model is finding a threshold that is sufficiently high to maintain the integrity of the 

Generalized Pareto Distribution (GPD) while also being low enough to extract an adequate amount of data 

from the original time series. 

 

Event detection: Events are delineated by establishing a minimum measured value and then determining the 

gap between them by selecting the minimum number of zeroes. When events have been separated it is possible 

to analyse e.g., the duration, intensity, and volume of rainfall for specific periods, thus obtaining a clearer 

picture of rainfall patterns. Rainfall events can also be separated from snowfall events by filtering out events 

that have a defined temperature over a certain limit. Using R Studio, the code presented by loreabad6 (2024) 

on the Stack Overflow page was applied and adjusted to this purpose. 

 

The Antecedent Precipitation Index (API): Antecedent Precipitation (AP) denotes the rainfall preceding a 

specific time, typically measured on the antecedent day (AD) within a designated area or basin. The API 

articulates this concept through a calculated aggregate of daily precipitation values, incorporating a weighted 

summation (Cordery, I., 1970; Xie and Yang, 2013; Ladson, 2016; Li et al., 2021). 

 

𝐴𝑃𝐼𝑑 = 𝑃𝑑 + 𝑘𝑃𝑑−1 + 𝑘
2𝑃𝑑−2 +⋯  𝑜𝑟 

 

(3) 

𝐴𝑃𝐼𝑑 =∑𝑘𝑖
∞

𝑖=0

𝑃𝑑−𝑖 
(4) 

 

Where APId
 is the Antecedent Precipitation Index for day d, k is an empirical decay factor less that one and Pd 

is rainfall for day d. 
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API has been used to supplement relative soil moisture data (Zhao et al., 2011). Some studies suggest 

normalised API (Heggen 2001; Ghosh et al., 2021) and the decay constant k has been analysed (Li, et al., 

2021). The decay constant value is traditionally an empirical single value, often between 0.80 and 0.98 

(Lindsay et al., 1975).  When analysed in context with landslides, the API has been known to add less weight 

to rainfall intensity contributions further back in time, as reported by Crozier et al. (1980) and Crozier (1986).  

 

A combined method of defining extreme rain events: This method uses the multivariate part of the code 

described in section 3.3. Daily API can be joined with predefined rolling blocks of 24-, 48- and 72-hour rainfall 

intensity. This can be done after the flagged events have been linked to landslide events and duration of rainfall 

triggering events had been confirmed. The combined values are then selected with the POT method (mainly 

to select the predefined blocks) and a running window of 3–7 days. The resulting “joint events” are linked to 

“triggered events” to estimate the “hit” score. 

Usually, hazard event inventories (here so-called triggered events) only have some of the events 

accurately timed. They may be assumed to be dated correctly but the time during the day is often not known. 

Therefore, when connecting a hazard event to a time series event it is not enough to look forward since the 

triggered event might have occurred around mid-day, but it might be recorded happening in the early morning 

(00:00 if time is not known) and therefore would be flagged the event number before. If the hazard event 

inventory is likely to have inaccurately dated events a window of 5–10 days (1–5 days before and 5 days after) 

might be needed to link the most likely triggering events depending on the duration of the rainfall event 

triggering the hazard event. As an example, predefined blocks of rain are dated based on their peak. When 

using a three-day block, the window must look back two days (in case the triggering event had shorter duration 

than 72 hours). Tsunetaka (2021) provides a thorough description of using IDF curves with estimated return 

periods of landslide-triggering rainfall events by standardizing the rainfall period. 

The result is a list of extreme events. The threshold defined in the POT method filters out the most likely 

events. When the threshold is set at a low level, numerous extreme events are identified, but the effectiveness 

of the "hit" score diminishes due to the lower ratio of triggered events to extreme events. When the threshold 

is raised, the "hit" score is expected to increase, but there is a risk of overlooking triggered events resulting 

from less intense yet prolonged events. 

The extreme events with missing hazard events might have natural explanations and are therefore not 

necessary failures. This is where the precondition comes in. The time of the year can explain why joint extreme 

events (high rainfall intensity and high antecedent rainfall) do not trigger a landslide. Even though the 

temperature during the rainfall events is above the freezing point the earth might be frozen. Also, a simple 

explanation might be a hillside that suffered a landslide erosion the year before (or even a decade before 

depending on the supply of loose material) might not respond to the same extreme events for some time. The 

analysis of extreme measured or simulated precipitation must consider uncertainties in measurement accuracy 

and unavoidable simplifications in meteorological models. Massad et al. (2020) list ten pertinent influences 

when considering extreme runoff at a catchment scale. One of these is the difference between daily and 24-

hour data. It must be noted that difference between hourly and daily data can vary. With only one data point 

per day, daily time series tend to smooth out intraday variations and emphasize longer-term trends and patterns. 

Differences between daily precipitation from midnight to midnight and precipitation accumulated over any 

24-hour window exist. As an example, for Iceland, results showed a that the 24-hour accumulated precipitation 

events were 13% higher when comparing the 50 highest daily accumulated values in a selection of 12 stations. 

While comparing results from the daily precipitation with a 5-year return period to the 24-hour precipitation 

with a 5-year return period, median differences in all grid points covering the country is 14% (Massad et al., 

2020). 
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Trigger-Driven Joint Extremes  

The identification of the joint extreme events follows a procedure similar to that described for the multivariate 

events (section 3.3, below). A preliminary identification of the extreme events for both triggering timeseries 

(first timeseries hazard-1) and triggered timeseries (second timeseries hazard-2) is performed using either the 

threshold–excess method without separating dependent peaks or POT analysis. Then, for any independent 

extreme triggering event, the eventually linked triggered event is identified. The identification is performed 

considering a search window that extends from the time of the triggering event for a desired period (usually 

3–7 days) (Figure 3.1.2). The length of the search window, as well as the thresholds used for the identification 

of the extreme events, can be defined based on Kendall’s coefficient. Moreover, the length of the window 

cannot exceed the distance between two consecutive extreme triggering events to ensure their independence. 

If at least one extreme event of the second timeseries (hazard-2) is found inside the search window, the 

analysed triggering event is considered to trigger the found event. If more than one event is found inside the 

search window, only the maximum value is considered. The extreme triggering events that do not trigger any 

events of the second timeseries are not considered in the following probabilistic analysis.  

The RPs for the joint peaks are then calculated with copula Stan, explained below (equations 1–9) for 

datasets with acceptable Kendall’s rank correlation coefficients and thresholds as well as number of extreme 

events. Climate data preparation can be handled the same way, but often the time resolution of climate 

projected data is more than an hour (e.g., daily). Depending on the dataset, the relevant method for dividing 

the events must be chosen.  

 

 

Figure 3.1.2 Examples of search windows for Triggering (a) and Multivariate (b) analysis. Blue asterisks are extreme 

events for Hazard-1 timeseries, red points are extreme events for Hazard-2 series, and red circles are the maximum 

extreme events for Hazard-2 timeseries inside the search window. 

 

Rainfall-induced hazard assessment at a regional scale 

In this subsection, the regional-scale landslide hazard assessment, including the effect of rainfall intensity, is 

discussed. 

 

Spatial probability 

The landslide inventory records the date and location of each event on a map. The landslide susceptibility map 

(Fell et al., 2008a, 2008b) is generated using the landslide inventory and various (pre-)conditioning factors 

such as elevation, slope, aspect, and lithology. This map illustrates the distribution of the Landslide 

Susceptibility Index (LSI), which is an index ranging from 0 (no landslide susceptibility) to 1 (the most 
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susceptible to landslides in the area). These maps are typically valuable for land use planning, disaster risk 

reduction, and emergency management purposes, as they help identify areas where landslides are most likely 

to occur and where preventative measures should be prioritized. Many approaches exist to build a susceptibility 

map; an example is illustrated in Gautam et al. (2021), where different methods have been employed to derive 

susceptibility maps. The susceptibility map can be created using either slope units or pixels. Here, a pixel-

based study is performed. 

Since the LSI index (0−1) is only a comparative measure of the landslide susceptibility within the area, 

the LSI index cannot be directly treated as the landslide spatial probability. The spatial probability is 

determined using the relationship between the landslide ratio (LR) and LSI. The LR is the ratio between the 

number of landslides [𝑁𝐿(𝑆𝐶)] and the total number of pixels for each susceptibility class (𝑁𝑝𝑖𝑥𝑒𝑙𝑠(𝑆𝐶)). The 

assumption is that all pixels that have the same LSI have the same landslide spatial probability, as stated in 

equation (5).  

 

𝐿𝑅(𝑆𝐶) =
𝑁𝐿(𝑆𝐶)

𝑁𝑝𝑖𝑥𝑒𝑙𝑠(𝑆𝐶)
 

 

 (5) 

The spatial probability is calculated by plotting the relationship between the LR and the various value intervals 

and converting the various susceptibility indices to spatial probability. Typically, LR increases with LSI. An 

application is illustrated in Wu and Chen (2013). 

 

Rainfall events triggering landslides and rainfall threshold. 

From the exact date of each landslide event in the landslide inventory, it is possible to determine the rainfall 

intensity that triggered it. In cases where actual rainfall gauge measurements are lacking, ERA5 data (Hersbach 

et al., 2023) can be utilized to estimate rainfall intensity at any point on the map, albeit at a coarse resolution 

of approximately 31 km. Within each cell, rainfall intensity data over time are available. These data are 

processed over the period covered by the landslide database to establish a proxy for rainfall intensity, termed 

the effective accumulated intensity (e.g., Wu and Yeh, 2020). Different measures exist to compute this proxy, 

for instance, computing the accumulated rainfall for the preceding n days, or by computing a weighted average 

over n days. To refine the proxy, different proxies may be combined, such as an effective accumulated intensity 

combined with a daily rainfall intensity.  

Rainfall intensity values can be discretized to simplify subsequent calculations. By analyzing rainfall 

data, it is possible to compute the density function and (joint) cumulative distribution of rainfall intensity, i.e., 

describing the correlation between rainfall intensity and its probability of occurrence. For instance, a rainfall 

intensity corresponding to the 95th percentile means that only 5% of rainfall events in the observed database 

period exceeded that intensity. With information on the date and intensity of rainfall events in the database, it 

becomes feasible to construct a database containing rainfall events with associated intensities. These events 

may be distinguished into two groups: events with and without landslides.  

A rainfall threshold (RT) may be used to distinguish the two groups, i.e., separating rainfall events which 

trigger landslides from those which do not. The process of determining the rainfall threshold (RT) involves 

varying a percentile threshold in the (joint) cumulative distribution to identify the corresponding rainfall 

intensity value. The RT value is optimized, to improve its capability of distinguishing between the two groups, 

by ensuring that indexes such as the True Positive Rate (TPR), True Negative Rate (TNR), and Youden’s 

Index are close to 1 (see Wu and Yeh, 2020). TPR is the ratio between the number of rainfall events which 

triggered a landslide and the number of rainfall events above the threshold (𝑛𝑅;𝑠𝑙𝑖𝑑𝑒/𝑛𝑅≥𝑅𝑇). TNR is the ratio 

between the number of rainfall events without a landslide and the number of rainfall events below the threshold 

(𝑛𝑅;𝑛𝑜 𝑠𝑙𝑖𝑑𝑒/𝑛𝑅<𝑅𝑇).  
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As noted by Zhang et al. (2023), in cases where unbalanced rainfall-induced landslide datasets are 

prevalent, characterized by a notably higher number of non-landslide observations compared to landslide 

observations (a common scenario in many regions worldwide), one approach is to initially identify rainfall 

thresholds based on non-triggering events. Then, as more information on landslide occurrences becomes 

available, the analysis can include methods that consider triggering events. This allows for the refinement and 

enhancement of the previously identified thresholds. 

 

Rainfall-dependent probability of a landslide 

The probability of occurrence of a landslide within a pixel can be expressed based on conditional landslide 

intensity given rainfall intensity as follows, in equations (6) and (7): 

 

𝑃(𝐿) = 𝑃(𝐿|𝑅 ≥ 𝑅𝑇) ∙ 𝑃(𝑅 ≥ 𝑅𝑇) + 𝑃(𝐿|𝑅 < 𝑅𝑇) ∙ 𝑃(𝑅 < 𝑅𝑇) (6) 

𝑃(𝐿) = 𝑃(𝐿|𝑅 ≥ 𝑅𝑇) ∙ 𝑃(𝑅 ≥ 𝑅𝑇) + 𝑃(𝐿|𝑅 < 𝑅𝑇) ∙ (1 − 𝑃(𝑅 ≥ 𝑅𝑇)) (7) 

 

This equation uses a single threshold (RT) to divide the rainfall events. Multiple thresholds may be used to 

further discretize the rainfall events.  

For a value of the rainfall threshold, the relation between LR and LSI can be conditioned on the rainfall 

intensity, using only landslide events where R ≥ RT and when R < RT, respectively: 𝐿𝑅(𝐿𝑆𝐼|𝑅 ≥ 𝑅𝑇) and 

𝐿𝑅(𝐿𝑆𝐼|𝑅 < 𝑅𝑇). In each pixel that belongs to a specific rainfall cell, the number of rainfall events above and 

below the threshold are counted, respectively 𝑛𝑅≥𝑅𝑇  and 𝑛𝑅<𝑅𝑇 , using data of the corresponding rainfall cell. 

Finally, the conditional probabilities may be approximated in each pixel as (equations (8) and (9)):  

 

𝑃(𝐿|𝑅 ≥ 𝑅𝑇) ≈  
𝐿𝑅(𝐿𝑆𝐼|𝑅 ≥ 𝑅𝑇) 

𝑛𝑅≥𝑅𝑇
 (8) 

 

𝑃(𝐿|𝑅 < 𝑅𝑇) ≈  
𝐿𝑅(𝐿𝑆𝐼|𝑅 < 𝑅𝑇) 

𝑛𝑅<𝑅𝑇
 (9) 

 

The probability of exceedance of the rainfall threshold 𝑃(𝑅 ≥ 𝑅𝑇) can be computed, for each pixel, for the 

current and future climate. The corresponding landslide probability 𝑃(𝐿) will be then computed using equation 

(9). 

3.2 Multivariate events 

The following methodology outlines the procedure employed to estimate multi-hazard intensity for 

multivariate events. The analysis adopts a bivariate hazard assessment approach, in line with several existing 

studies (Latif, et al., 2020; Ghanbari et al., 2021; Bateni, et al., 2022). Such approach is useful in estimating 

joint probability of multiple co-occurring hazards, enabling understanding of their complex interactions. The 

approach involves the following steps: 

 

• Selecting pairs of extreme events for bivariate analysis; 

• Quantifying the joint return period of the selected extreme events; and 

• Defining scenarios of multivariate events and deriving associated hazard maps. 

 

Figure 3.1.2 illustrates a graphical representation of the method. While this report focuses on two hazards 

(hazard pairs), a similar approach can be applied to three (hazard triples) or more hazards (hazard multiples). 
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The process may yield various joint extreme events, their Joint Return Periods (JRP), scenarios of joint extreme 

events, and associated hazard maps. As this study does not aim to establish numerical hazard models, hazard 

maps related to different JRP scenarios are obtained from an existing database. Nevertheless, the methodology 

is adaptable to incorporate numerical modelling within the framework of multivariate events. The hazard maps 

depict the spatial distribution of multivariate event intensities, serving as input for impact and risk analysis in 

WP3 of MEDiate project. 

 

 

Figure 3.2.1 Conceptual framework for analysing multivariate events. 

 

Identifying joint extreme events 

The bivariate analysis requires the identification of appropriate time series data for hazard drivers (i.e., hazard 

1 and hazard 2). In multivariate events, multiple hazards coincide within the same geographical region 

(Zscheischler et al., 2020). Therefore, data selection should be guided by the type of measurements, temporal 

scale of the data, and the spatial proximity of the two datasets. The chosen data should have long and 

overlapping time series (e.g., at least 30 years of data). For each driver, the data undergo cleaning to remove 

spikes or other problems, resampling to the same temporal resolution (e.g., hourly, daily, weekly), and 

consideration only of the overlapping period. Subsequently, the maximum values are estimated for each hazard 

driver. 

The identification of extreme events employs the threshold-excess method, a statistical approach 

commonly used to analyse extreme values. Additionally, this method facilitates the detection of multiple events 

per year (Zheng et al., 2014; Ghanbari et al., 2019; Ghanbari et al., 2021). Quantile regression analysis is 

utilised to establish the relationship between time and maximum values within a specified timeframe and 

define the threshold (μ) for each hazard. The threshold must be sufficiently high to be deemed extreme and 

low enough to provide enough data for bivariate analysis (Ming et al., 2022). The threshold to determine joint 

extreme events is determined based on Kendall’s rank correlation coefficient (τ), which assesses the correlation 

between random variables. A higher correlation values indicates a stronger dependency between two hazards 

in the specified time window (Figure 3.1.2). Values above the threshold are classified as extreme events for 

the respective driver. Depending on the driver's nature, a POT analysis may be necessary to select a single 

value for each event and to ensure independent events. Generally, it is assumed that exceedances should be at 

least 3–7 days apart but the specific length of this window is evaluated case by case based on the phenomenon 
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under study. According to the Pickands-Balkema-De Haan theorem (Balkema and Haan, 1974; Pickands, 

1975), the data of each hazard driver are expected to be well-approximated by the Generalized Pareto 

Distribution (GPD) characterised by location (μ), scale (σ), and shape parameters (ξ), where the location 

parameter equals the threshold (Park and Kim, 2016). 

After identifying extreme events for each individual hazard, compound events are selected. The 

combined hazard layout is considered, referring to the probability of exceedances of two hazard drivers over 

their respective thresholds, simultaneously or in close succession (Salvadori et al., 2016). To define compound 

events, a temporal window around each hazard is considered. The length of this window (usually 3–7 days) is 

evaluated based on the specific phenomenon and Kendall’s coefficient. Given the occurrence of an extreme 

event for hazard 1, if at least one extreme event for hazard 2 is found inside the search window, the two events 

regarded to be co-occurring. Only the maximum values of each driver inside the window are considered for 

subsequent analysis (Figure 3.1.2). It is important to note that when using this procedure, the time lag between 

two related events is not constant. 

 The process for identifying joint extreme events has been implemented in MATLAB (MathWorks®), 

and the outputs consist of time series data for each driver, showcasing joint extreme events and their respective 

thresholds. 

 

Estimating joint probability from identified extreme events. 

Once we have identified the joint extreme events, we need to estimate their Marginal Return Periods (MRPs) 

and JRP. The 𝑀𝑅𝑃, in days or years, for a hazard driver 𝑑, is given by equation (10). 

 

𝑀𝑅𝑃(𝑑) =
𝜆𝑑

𝑃𝑚𝑒𝑥(𝑑)
 

 

(10) 

where 𝑀𝑅𝑃(𝑑) is the MRP as a function of driver value 𝑑,  𝜆𝑑  is the mean interval between successive 

extreme events in days or years for driver 𝑑, and 𝑃𝑚𝑒𝑥(𝑑)is the marginal exceedance probability function, 

which gives the probability of the driver exceeding a given value 𝑑. This is simply one minus the marginal 

cumulative distribution function, 𝑃𝑚(𝑑), as shown in equation (11) 

 

𝑃𝑚𝑒𝑥(𝑑) = 1 − 𝑃𝑚(𝑑) (11) 

 

  

where  𝑃𝑚(𝑑) is the cumulative distribution function for driver 𝑑. As stated in the previous section, extreme 

events chosen by threshold can be expected to be distributed by the generalised pareto distribution, so 𝑃𝑚(𝑑) 

is given by equation (12) 

𝑃𝑚(𝑑|𝜇𝑑 , 𝜎𝑑 , 𝜉𝑑) =

{
 
 

 
 
1 − [1 + 𝜉𝑑 (

𝑑 − 𝜇𝑑
𝜎𝑑

)]
−
1
𝜉𝑑
,    𝜉𝑑 ≠ 0 

           1 − exp (−
𝑑 − 𝜇𝑑
𝜎𝑑

),   𝜉𝑑 = 0 

 

 

(12) 

where   𝜇𝑑 , 𝜎𝑑, 𝜉𝑑 are the location, scale and shape parameters for the distribution for driver 𝑑, respectively.  

The JRP, in days or years, is calculated in a similar fashion to the MRP. The 𝐽𝑅𝑃 for two drivers, d1 

and d2, is given by equation (13): 

 𝐽𝑅𝑃(𝑑1, 𝑑2)  =
𝜆𝑗𝜆

𝑃𝑗𝑒𝑥𝑒𝑥𝑗  (𝑑1,𝑑2)
 (13) 
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where 𝐽𝑅𝑃(𝑑1, 𝑑2) is the JRP as a function of values of the two drivers 𝑑1 and 𝑑2,  𝜆𝑗 is the mean interval 

between successive joint extreme events and 𝑃𝑗𝑒𝑥is the joint exceedance probability function, that gives the 

probability of two drivers exceeding values 𝑑1and 𝑑2, respectively. 𝑃𝑗𝑒𝑥  is given by equation (14): 

 

𝑃𝑗𝑒𝑥(𝑑1, 𝑑2) = 1 − 𝑃𝑚(𝑑1) − 𝑃𝑚(𝑑2)  + 𝑃𝑗 (𝑑1, 𝑑2) (14) 

 

where 𝑃𝑚(𝑑1) and 𝑃𝑚(𝑑2) are the cumulative distribution functions for the generalised pareto distributions of 

drivers 𝑑1 and 𝑑2 respectively, as given before in equation (12). Pj(d1, d2) is the joint cumulative probability 

function for both drivers (i.e. the probability of an extreme event with values below d1 and d2 for both drivers). 

Based on Sklar’s theorem, any joint distribution can be described in terms of its marginal distributions and a 

function known as a copula that accounts for any correlation (Sklar, 1973). Here we have chosen to use the 

extreme value Gumbel  copula (Gudendorf and Segers, 2010), because, as noted by Xi et al. (2023), paired 

hazards such as surge and rainfall have been found to be particularly correlated in the tails (e.g., Gori et al., 

2022), and the Gumbel copula, allowing any upper tail dependency, is frequently used to quantify this kind of 

tail dependency (e.g., Ismael et al 2018 for bivariate datasets relating to floods). It also has the advantage of 

being an Archimedean copula and is thus easy to implement, both for calculating probability densities and 

cumulative probabilities as well as generating random samples for posterior probabilistic checks. The function 

Pj(d1, d2) is given by equation (15) for the Gumbel copula: 

    

𝑃𝑗(𝑑1, 𝑑2) = 𝑒𝑥𝑝 {−[(−log(𝑃𝑚(𝑑1)))
𝜃 + (−log(𝑃𝑚(𝑑2)))

𝜃]
1
𝜃⁄ } (15) 

 

where  𝜃 is the Gumbel copula parameter that specifies the correlation, taking values from 1 to ∞.  

The MRPs and JRP for a pair of driver values are thus a function of the model parameters 

𝜇1, 𝜎1, 𝜉1, 𝜇2,𝜎2, 𝜉2 and 𝜃, i.e., the location, shape and scale parameters of the two marginal generalised pareto 

distributions and the copula parameter. The location parameters are fixed by the thresholding procedure, so 

we have a five-dimensional parameter space for our model, consisting of  𝜎1, 𝜉1, 𝜎2, 𝜉2, 𝜃. We adopt a Bayesian 

approach to infer the posterior distribution over this parameter space and as a consequence, the posterior 

distribution over MRP and JRP also. The advantage of this Bayesian approach is that once we have inferred 

the posterior distribution over the parameter space it is trivial to infer the posterior distribution over any values 

derived from the parameters like MRP and JRP and to investigate the probabilistic relationships between them. 

We start by assigning uniform priors over the permitted ranges of our model parameters (equations 16 to 20) 

 

𝜎1  ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,∞)       (16) 

  

𝜎2  ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,∞)             (17) 

  

𝜉1  ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−𝜎1/(𝑑1𝑚𝑎𝑥  − 𝜇1),∞)      (18) 

  

𝜉2  ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−𝜎2 /( 𝑑2𝑚𝑎𝑥  − 𝜇2 ),∞) (19) 

  

𝜃 ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,∞) (20) 

  

 



 

*******************************                                               ******************************* 

where we use the operator  ~ to indicate 𝑖𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑎𝑠 , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑚𝑖𝑛,𝑚𝑎𝑥) to indicate a uniform 

probability distribution between values 𝑚𝑖𝑛  and 𝑚𝑎𝑥 , and 𝑑1𝑚𝑎𝑥  and 𝑑2𝑚𝑎𝑥  are the maximum extreme 

values of the two drivers, respectively. We then introduce our data in the form of the likelihood, equation (21): 

 

(𝑑1, 𝑑2) ∼ 𝑔𝑢𝑚𝑏𝑒𝑙{𝐺𝑃𝐷(𝜇1, 𝜎1, 𝜉1), 𝐺𝑃𝐷(𝜇2, 𝜎2, 𝜉2)} ∗ 𝑔𝑝𝑑(𝜇1, 𝜎1, 𝜉1) ∗ 𝑔𝑝𝑑(𝜇2, 𝜎2, 𝜉2) (21) 

 

where (𝑑1, 𝑑2) are a pair of extreme values for drivers 𝑑1 and 𝑑2, 𝑔𝑢𝑚𝑏𝑒𝑙(𝑢, 𝑣) denotes the probability 

density function of the Gumbel copula for a point (𝑢, 𝑣) , and 𝑔𝑝𝑑(𝜇, 𝜎, 𝜉)  and 𝐺𝑃𝐷(𝜇, 𝜎, 𝜉)  are the 

probability density function and cumulative probability function for the generalised pareto distribution, 

respectively. 

We implemented this model in the Bayesian probabilistic programming language Stan (Carpenter et al. 

2017). We used the Stan language implementations of the Generalized Pareto Distribution of Aki Vehtari 

(Vehtari, A., 2017) except for the inverse cumulative distribution function / quantile function / ppf which we 

implemented based on (Zaiontz, 2020). For the Gumbel copula pdf we used Ben Goodrich’s Stan 

implementation (Goodrich 2017), while the cdf was based on (Nelson, 2006). For random draws from the 

Gumbel copula for posterior predictive checks we implemented in Stan the procedure outlined in Nelson 

(2006) and Genest and Rivest (1993). Stan uses the Hamiltonian Monte Carlo method with the No U-Turn 

Sampler (NUTS) to approximate probability distributions. Some diagnostic tests should be carried out to assess 

the goodness of the analysis and then, for each event, the posterior distributions over the return period can be 

computed. 

To check that the Hamiltonian Monte Carlo simulation is adequately sampling the density distribution, 

certain criteria must be met (Stan Development Team, 2024). Among them, the potential scale reduction factor 

�̂� can be used, and it is considered good practice to ensure values are below 1.05, the closer to 1.0 the better. 

The chains of successive samples from the posterior, drawn with the Hamiltonian Monte Carlo procedure, 

should also be checked for autocorrelation, which reduces the accuracy of the parameter estimates for a given 

chain length. This is measured by the Effective Sample Size. Additionally, it is also possible to check for 

divergences, which occur when the posterior distribution is too tightly curved for Hamiltonian Monte Carlo to 

sample properly. 

To check how well the marginal GPD fits the data, we use Bayesian Quantile-Quantile plots that 

compare empirical quantiles with those calculated from the distribution. Every sample in the chains gives us a 

single value of the scale and shape parameters for both distributions, which can be used to calculate quantiles. 

Thus, we get one Quantile-Quantile curve for each sample, and the posterior distribution defines a distribution 

over Quantile-Quantile curves. A perfect fit would be indicated by the curves lying along the 1:1 relationship. 

The whole model can also be tested using Posterior Predictive Checks (PPCs) that compare the distribution of 

simulated observations with the original observations. 

 

 

Mapping individual hazards of varying intensities 

Each sample joint probability corresponds to a pair of extreme events (hazard-1 and hazard-2) with different 

intensities. By considering various combinations of intensities for hazard-1 and hazard-2, multiple scenarios 

of multivariate events can be generated. For instance, in the context of compound coastal and riverine flood 

events, scenarios may involve high-surge and low-flow events, represented by return periods of surge and river 

flow. For each scenario, it is possible to calculate the posterior distributions over the JRP and the marginal 

RPs. The associated values for each marginal RP of individual hazard drivers are known. Ideally, numerical 

models should be employed to determine the intensity distribution of compound hazards. In each scenario, the 

values of the drivers, along with their associated RPs, can serve as input for the numerical model. The output 

consists of hazard intensity maps that will be utilised for impact analyses, when combined by exposure and 
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vulnerability models. In the absence of available numerical hazard modelling options within the project, this 

initiative links the RPs of individual hazards within a scenario to pre-computed hazard maps with the same 

RPs. These hazard maps facilitate the estimation of risk for multivariate events as part of the DSS.  

 

3.3 Spatially compounding events 

Spatially compounding events (SCE) occur “when multiple connected locations are affected by the same or 

different hazards within a limited time frame, thereby causing an impact” (Zscheischler et al., 2020). This 

study aims to quantify spatially compounding events based on pairs of two hazards. The methodology 

comprises three steps:    

  

1. identifying joint extreme events; 

2. quantifying the joint return periods of the extreme events identified; and 

3. mapping individual hazards of various intensities.   

  

Figure 3.3.1 presents a generalised framework for estimating probabilities and mapping SCEs. The framework 

can be applied to analyse SCEs in both baseline and future climate change scenarios. The framework helps to 

understand the pattern of changes in the frequencies of joint extreme events, indicated by JRP, for various 

combinations (scenarios) of exceedance probabilities (i.e., RPs) of individual hazards. The maps of individual 

hazards for various RPs are generated, corresponding to different scenarios. 

 

 

 
Figure 3.3.1 Framework for analysing spatially compounding events. 

 

Identifying joint extreme events 

The identification of joint extreme SCEs relies on gridded time series data of hazard drivers. This process 

hypothesises that SCE occur when multiple hazards impact the same or different locations within specified 

boundary conditions and timeframes. At each time step (e.g., hourly, daily, weekly), the maximum values of 
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two hazard intensity measures are determined across all grids within the study area. This yields two time series 

datasets for hazard 1 and hazard 2. Subsequently, after preparing the two time series datasets, joint extreme 

events are identified using the methodology outlined in section 3.2. 

 

Estimating joint probability from selected extreme events 

Joint extreme events, identified in the previous step, are included as input data for estimating JRPs of SCEs. 

Again, a copula-based approach is followed. The detailed methodology for estimating JRP is described in 

section 3.2. After estimating JRPs, different scenarios of SCEs are generated, based on various combinations 

of individual hazard intensities based on the RPs. In compliance with those scenarios, the spatial distribution 

of individual hazards is evaluated.     

 

Mapping individual hazards of various intensities     

To assess the severity of spatially compounded multi-hazard events, maps depicting individual hazard 

indicators with varying RPs are generated. Extreme value analysis is performed at each grid cell using the L-

moment method to fit a GEV distribution (Coles, 2001; Gilleland and Katz, 2016), using the equation (1). The 

return period (RP) for single hazards is estimated by following formula (22): 

𝑅𝑃 = 
1

1 − 𝐺(𝑧)
 

 

(22) 

 

3.4 Temporally compounding events  

Temporally Compounding Events (TCE) are a succession of hazards that affect a given geographical region, 

leading to or amplifying an impact when compared to a single hazard (Zscheischler et al., 2020). Climate 

extremes in the same location and extreme multivariate climate anomalies that are not essentially extreme in 

the contributing variables are part of TCE (Liu et al., 2016; Tilloy et al., 2019; Zscheischler et al., 2020). This 

study aims to quantify TCE based on pairs of two hazards. The methodology comprises the following steps:     

• identifying hazard-1 and hazard-2 events; 

• calculating the compound co-occurrence of the two hazards; and 

• mapping the individual hazards (hazard-1 and hazard-2) and the resulting compound events. 

 

Figure 3.4.1 presents a generalized framework for estimating frequency and mapping TCE. The framework can 

be applied to analyse TCE in both baseline and future climate change scenarios. The framework helps to 

understand the pattern of changes in the frequencies of compound extreme events.   

 

 
Figure 3.4.1 Framework for estimating frequency of temporally compounding events. 
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Identifying individual hazard events 

The present analysis first identifies hazard-1 and hazard-2 events individually, adopting specific composite 

indices, based on standardised indicators or percentiles. It is noteworthy that for TCEs, multiple time thresholds 

must be applied to compute the composite index. For instance, if the 90th percentile of daily temperatures 

persists for three consecutive days, such occurrences can be termed as heatwave events. The identification of 

these events can be done initially on a daily basis and subsequently by utilizing a monthly standardised index. 

Currently, a variety of indices with different temporal scales are available to identify events, depending on the 

specific requirements of the study or the sector under consideration. For instance, in the case of extreme heat 

and drought events, a heatwave event can be defined at the monthly scale when monthly standardized Heat 

Wave Index exceeds a threshold, while drought events can be investigated by using the canonical thresholds 

of a 3-month Standardised Precipitation Index (SPI).  

Compound co-occurrence 

The combined hazard events (COH1H2) are categorized on a monthly basis provided that both individual 

hazards occur within the specified monthly timeframe. COH1H2 occurrences are identified spatially at the grid 

point level within a domain encompassing the analysed area during historical and future periods. This 

information is stored in matrices for each year within the analysed time slices. It is important to note that the 

timescale for hazard co-occurrence varies in relation to the type of hazard in question; for instance, the onset 

of a drought requires weeks of unusually dry weather conditions. 

Mapping hazard 

The data regarding individual and temporally compounding events are summarised through the mapping of 

individual (hazard-1 and hazard-2) and composite (COH1H2) indicators across various time slices within the 

domain. Initially, information pertaining to hazard-1 and hazard-2 months is presented individually. 

Subsequently, the frequency of COH1H2 occurrence is provided at the seasonal scale, i.e., the fraction of 

COH1H2 months out of the months analysed. 

 

4 MULTI-HAZARD EVENTS IN FOUR TESTBED REGIONS 

The methods outlined in section 3 are employed to analyse 12 pairs of multi-hazard events across four testbed 

regions—Oslo, Nice, Essex, and Múlaþing—as listed in Table 2.1.2. This section delineates the attributes of 

multi-hazard events in the four testbed regions, and it provides a concise summary of the analytical outcomes.  

 

4.1 Oslo testbed: summary of multi-hazard event analysis  

In Oslo, among the identified pairs of multi-hazard events, compound coastal and riverine flood events emerge 

as one of the most frequently occurring hazards, inflicting detrimental effects on populations and assets. 

Through the analysis of time series data on surge and river flow, we identify 20 compound flood events in the 

baseline scenario (1979–2005), a number projected to increase to 27 in the future (2024–2050) (Table 4.1.1). 

A comparison of flood inundation maps between baseline and future scenarios reveals an anticipated increase 

in both depth and extent in the future. Notably, the probable extent of inundation during riverine flooding is 

significantly larger than that of coastal flooding. Areas near the coastal region are more susceptible to both 

riverine and coastal flooding compared to inland areas. A comprehensive description of this multi-hazard event 

is presented in Section 5.1.   
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Table 4.1.1 Summary of three categories of multi-hazard events analysed in Oslo.     

Multi-

hazard 

pairs 

Indicators 
Multi-hazard 

type 
Hazard indicators 

Threshold 

(percentile) 

Number of 

joint extreme 

events 

   Baseline Future Baseline Future 

Compound 

coastal and 

riverine 

flood 

events 

Surge and 

river flow 
Multi-variate 

Weekly average surge 

height (m) 
90th 90th 

20 27 
Weekly average river 

flow (m3/s) 
90th 90th 

Flood and 

landslide 

 

Observed 

rainfall 

triggered 

riverine floods 

Triggering 

1-day daily 

precipitation (mm) 
95th - 

123 - 
Daily average river 

flow (m3/s) 
95th - 

5-days daily 

precipitation (mm) 
95th - 

225 - 
Daily average river 

flow (m3/s s) 
95th - 

Baseline and 

future rainfall 

triggered 

riverine floods 

Triggering 

1-day daily 

precipitation (mm) 
85th 95th 

14 15 
Weekly average river 

flow (m3/s) 
95th 90th 

Baseline and 

future rainfall 

triggered 

riverine floods 

Triggering 

5-day daily 

precipitation (mm) 
85th 95th 

18 28 
Weekly average river 

flow (m3/s) 
97th 85th 

Flood and 

quick clay 

Preconditioned 

baseline and 

future rainfall 

triggered 

riverine floods 

Preconditioned 

and triggering 

5-day daily 

precipitation (mm) 
90th - 

49 - 
Weekly average river 

flow (m3/s) 
90th - 

Preconditioned 

baseline and 

future rainfall 

triggered 

riverine floods 

Preconditioned 

and triggering 

5-day daily 

precipitation (mm) 
75th 90th 

4* 15 
Weekly average river 

flow (m3/s) 
85th 85th 

*Time series overlapping of baseline data is limiting  

 

In this report, the focus has been on debris landslides registered in the NVE database, nevertheless rockfall 

was also included as is it can be an indicator of erosion cause by extreme rainfall. These landslides are 

categorized by specific codes: 111 (rockfall), 140 (unspecified), 142 (debris flow) and 144 (debris avalanche). 

The inventory database includes 22 landslides in the Oslo region for the period studied in this report, 12 of 

them occurred during summer or autumn (Table A1.1 in Appendix). Joint extreme events were defined using 

recorded rainfall at SN18700 station and discharge at Gryta station (Figure 1.2.1). Gryta Station was selected 

due to the availability of a long timeseries and uncontrolled discharge. The Gryta river is thought to be 

representative of natural response and therefore descriptive of possible erosion in small streams in the area. 
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Extreme events of 1- and 5-day precipitation from SN188700 was used and extreme rainfall events treated as 

a trigger for extreme events of discharge in Gryta. The method was described in section 3.1 (Trigger-Driven 

Joint Extremes). Landslide events were linked to selected extreme events to estimate the effect of the method 

(Figure A1.6 in Appendix A1). 

Rainfall data was projected by multiplying the estimated increase in precipitation. This method 

is expected to have significant effects on the statistics. This assumption means that every 36 years the 

same weather pattern repeats but with estimated percental increase from climate reanalyses (KSS, 

2024), providing loss of natural variability and false trends. However, using this method makes the 

link to the point location more precise and since this project does not have the scope to make statistical 

analysis on the data series and the effect of different climate data models on point locations, this was 

considered an acceptable approach. 

The precondition for quick clay landslides was defined above as an increased likelihood of 

events expected after a wet summer. The area where the analysis focuses on is the Alna region in 

Oslo (Figure 4.1.1). Measurements have been made at the Alna River at Kvernebyen since 2019. The 

Alna River is controlled and therefore not likely to respond naturally to precipitation events. 

 

 

Figure 4.1.1 Quick clay hazard in the Alna region of Oslo showing that the area is subjected to moderate-to-high risk. 

The colours refer to severity of the hazard, yellow being the least severe (low) and red the most severe (high) (NVE, 

2024). 

 

The same approach was used to define the extreme events as for the landslide and floods hazard pair, except 

that for the analysis of flood and quick clay extreme summer precipitation a 75th percentile threshold was used. 

The dataset was filtered so that only years with summer rain (Figure 4.1.2) above the threshold were joint with 

the discharge data (Figure A1.8 in Appendix A1).  
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The results from the joint extreme analyses were not realistic for the baseline since the overlapping of the 

baseline discharge data and the filtered rainfall was only one year. However, the future scenario of extreme 

precipitation and discharge, where extreme summers have been filtered out, shows that when looking at a RP 

of 50 years for single hazard the JRP is more than 200 years (Figure A1.9 in Appendix A1). 

 

Figure 4.1.2 Summer rain with a 75% threshold serving as a precondition to quick clay hazard. 

4.2 Nice testbed: summary of multi-hazard event analysis  

Through the PAR process under the MEDiate project, three pairs of multi-hazard events are identified in Nice. 

The multi-hazard events include: (1) compound coastal and riverine flood, (2) flood and landslide, and (3) 

extreme heat and drought events. Notably, these three pairs correspond to three categories of multi-hazard 

events: multivariate, triggering, and temporally compounding types. The methodologies to analyse the 

interactions of these multi-hazard events are explained in section 3.    

 

Compound coastal and riverine flood events 

By analysing time series of surge and river flow, we identify 17 compound flood events in the baseline scenario 

(1979–2005). For the future scenario (2024–2050), the number of events is found to be 14 (Table 4.2.1). The 

results indicate that while the joint probability of co-occurring surge and river flow could be lower in the 

future, their intensities would be higher (Figure A2.4 in the appendix). A comparison of coastal and riverine 

flood inundation maps reveals that the probable extent of inundation during riverine flooding is significantly 

larger than that of coastal flooding. Particularly, areas adjacent to the confluence of the Var River and the 

Mediterranean Sea are prone to both coastal and riverine flood inundations (Figure 4.2.1).
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Table 4.2.1 An overview of compound coastal and riverine events identified in Nice.     

Multi-hazard 

pairs 

Multi-

hazard type 

Hazard indicators Threshold 

(percentile) 

Number of joint 

extreme events 

Baseline Future Baseline Future 

Compound 

coastal and 

riverine flood 

events 

Multivariate 

Weekly average surge 

height (m) 
95th  90th  

17 14 
Weekly average river flow 

(m3/s) 
85th  90th  

 

 

 

Figure 4.2.1 Spatial distribution of coastal and riverine flood prone areas in Nice for a 50-year event. 

 

Flood and landslide 

Throughout this project, the available landslide inventory (accessible at https://infoterre.brgm.fr/) comprises 

1476 events spanning from as early as 1900 to 2020. These events are categorized into five groups: rockfalls 

(334 events), debris (34), collapse (29), erosion (38), and slides (1042). Many of these events consist of slides 

and debris, which were primarily utilized to establish the rainfall-induced landslide hazard, as other events 

might not be directly triggered by rainfall (e.g., rock falls). It was observed that the available database is not 

complete, as these events are predominantly situated along main roads and within municipalities, and it does 

not include events in remote mountain areas. For this reason, the landslide susceptibility map was calculated 

focusing only on the area along main roads, utilizing a constant buffer around them.  

In the figure below (Error! Reference source not found.), the landslide susceptibility map derived u

sing several pre-conditioning factors (proximity to rivers, DEM, slope, aspect, lithology, and land cover) and 

the landslide database, employing the Random Forest method (Breiman, 2001). The black dots represent the 

landslide events in the database. 

The susceptibility map reveals that a significant portion of the area falls within the medium to high 

susceptibility classes, underlining the significance of the hazard. 

 

https://infoterre.brgm.fr/
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Figure 4.2.2 Susceptibility map for the wider area of Nice. 

 

Climate change impact on rainfall 

The landslide rainfall trigger threshold was derived from the maximum intensity and duration of an event 

during the five days preceding a landslide. The best approximation of this quantity available from the 

Copernicus Climate Datastore (CDS) (Berg et al., 2021) is the future change in the highest 5-day rainfall 

amounts. If, in the future, maximum 5-day rainfall amounts increase, landslide occurrence will likely also 

increase, i.e., the threshold will be exceeded more often. 

The projected changes available from the CDS are calculated from an ensemble of eight EURO-

CORDEX regional climate models, that have been bias-corrected and down-scaled to 5 kilometers using the 

EFAS-Meteo reference dataset (Ntegeka et al., 2013), following a quantile mapping approach (Figure 4.2.3). 

The current analysis focuses on the far future time-horizon (2071–2100) and the moderate (RCP4.5) and 

extreme (RCP8.5) climate scenario for Nice (Figure 4.2.4).  
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Figure 4.2.3 Projected change (%) in highest five-day rainfall amounts for 2071 – 2100 for RCP8.5. Source: CDS. 

 

 

Figure 4.2.4 Projected change (%) in highest five-day rainfall amounts for Nice for 2071 – 2100 for RCP4.5 (left) and 

RCP8.5 (right). Source: CDS. 

 

According to the projections from RCP4.5, changes in 5-day precipitation amounts will vary approximately 

between -40% and +40%. Looking at the most extreme scenario (RCP8.5), most models predict an increase in 

the highest 5-day precipitation amounts (Figure 4.2.4). The 25 to 75% range of the projections indicate changes 

between -10% and + 45%. The median change for both scenarios is ~+ 10%, providing an indication that also 

the precipitation threshold will be exceeded more often in the future. 
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4.3 Essex testbed: summary of multi-hazard event analysis 

In Essex, three pairs of multi-hazard events encompass both multivariate and spatially compounding categories 

of multi-hazard events. Section 3 elaborates on the methodology used to quantify interactions between 

different types of multi-hazard pairs. Table 4.3.1 provides an overview of these multi-hazard pairs, including 

their intensity measures, the thresholds used for identification, and the number of events identified for both 

baseline and future climate change scenarios. The analysis reveals that the minimum threshold limit for each 

hazard indicator varies based on the multi-hazard category and the timeframe (i.e., baseline and future) for 

analysis. Results suggest that the occurrence rates of spatially compounding events such as extreme wind and 

rainfall are likely to increase in the future. Figure 4.3.1 compares the spatial distribution of 50-year wind, 

temperature, and rainfall intensities in Essex between the baseline and future scenarios, indicating a general 

increase in hazard intensities in the future. 

Table 4.3.1 Summary of three categories of multi-hazard events analysed in Essex.   

Multi-hazard 

pairs 

Multi-

hazard type 

Hazard indicators Threshold 

(percentile) 

Number of joint 

extreme events 

Baseline Future Baseline Future 

Extreme wind 

and rainfall 

events 

Spatially 

compounding 

Daily maximum wind 

speed of gust at 10m (m/s) 
97th 97th 

46 115 

Daily precipitation (mm) 90th 85th 

Compound 

coastal and 

riverine flood 

events 

Multivariate 

Weekly average surge 

height (m) 
85th 85th 

42 23 
Weekly average river flow 

(m3/s) 
85th 95th 

Extreme heat 

and rainfall 

events 

Spatially 

compounding 

Daily maximum 

temperature (°C) 
95th 90th 

24 43 

Daily precipitation (mm) 95th 97th 
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Figure 4.3.1 Spatially compounding multi-hazard indicators in Essex. This figure compares the spatial distribution of 

100-year wind, temperature, and rainfall intensities between the baseline and future scenarios.   

Regarding multivariate events, the number of compound coastal and riverine flood events is estimated to be 

lower under the future scenario compared to the baseline scenario. However, global flood hazard maps (Ward 

et al., 2020) used in this study indicate that both flood depth and extent are likely to increase in the future. 

Figure 4.3.2 presents a comparison of 100-year coastal and riverine flood inundation depth and extent in the 
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coastal districts of Essex between the baseline (1980) and future (2050) scenarios. Generally, these districts 

are prone to coastal flooding compared to riverine flooding, which may experience an increase in the highest 

depth for a 100-year event from 3.84m in the baseline scenario to 4.22m in the future. Similarly, the highest 

riverine flood inundation depth of 0.13m for a 100-year event is projected to increase to 0.16m in the future. 

Notably, the PAR process indicates that Essex County frequently experiences extreme wind and rainfall events. 

Therefore, the MEDiate project further explored the results of extreme wind and rainfall events, as detailed in 

Section 5.3. 

 

 

 

Figure 4.3.2 Multivariate events in the coastal districts of the Essex County. This figure compares the spatial distribution 

of 100-year coastal and riverine flood events between the baseline and future scenarios.    

 

4.4 Múlaþing testbed: summary of multi-hazard event analysis 

In Múlaþing, the three pairs of multi-hazard events, include triggered events and, preconditioned and 

triggered events. Section 3 provides detailed insight into the methodology employed to measure the 

interactions among various types of multi-hazard pairs. Table 4.4.1 provides an overview of the hazard 

indicators used, while 
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Table 4.4.2 lists the multi-hazard pairs, the thresholds used for identification, and the number of events 

identified for both baseline and future climate change scenarios. The analysis reveals that the minimum 

threshold limit for each hazard indicator varies based on the multi-hazard category and the timeframe, i.e., 

historical (baseline) and future, for analysis. 

The precipitation timeseries used in this part of the analysis is the ICRA atmospheric reanalysis project 

for Iceland, (Nawri et al., 2017) downscaled data from 1979 to 2017. More detailed discussion about the 

dataset is provided in section 5.4.1 but point data were extracted from the dataset, the process is described in 

Massad et al. (2020). The snow avalanche inventory database of Iceland also includes landslides. The 

temperature data used is station data from the IMO weather database. Precipitation was projected by 

multiplying daily precipitation by the estimated increase in precipitation for the next decade (Massad et al., 

2023). 

Melting in connection to extreme precipitation was analysed. Melting is not a direct output of the model 

used for the ICRA, but a combination of the rate of graupel (soft snow pellets) and snowfall, the sublimation 

rate, and the snow-water equivalent.  

 

Table 4.4.1 Datasets used in the Múlaþing/Seyðisfjörður example. 

Indicators Dataset  Timeframe  Temporal resolution Spatial 

resolution  

Snow-avalanche and 

Landslide inventory 

 IMO 

database 

Year 965 to present Decades up to exact 

time of occurrence 

1 km to 1 cm 

Precipitation ICRA 1 September 1979–

2017 

Reanalysis: hourly data 

converted to daily 

2.5 km × 2.5 km 

Snowmelt 

  

ICRA 1 September 1979–

2017 

Reanalysis: hourly data 

converted to daily 

2.5 km × 2.5 km 

Projected precipitation ICRA - 

projected 

2020–2100 Daily data 2.5 km × 2.5 km 

 

Temperature data  Station 620  

IMO database 

1938– Daily   Point location 

Projected Temperature 

data  

Station 620  

IMO database 

2020–2100 Daily   Point location 

 

 



 

*******************************                                               ******************************* 

Table 4.4.2 Summary of the categories of multi-hazard events analysed in Múlaþing/Seyðisfjörður.   

Multi-

hazard 

pairs 

Indicators 
Multi-hazard 

type 
Hazard indicators 

Threshold 

(percentile) 

Number of 

joint extreme 

events 

Baseline Future Baseline Future 

Compound 

coastal and 

riverine 

flood events 

Surge and 

river flow  
Multi-variate 

Weekly average 

surge height (m) 
90th  90th  

20 27 
Weekly average 

river flow (m3/s) 
90th  90th  

Flood and 

landslide 

 

 

Observed 

rainfall 

triggered 

riverine floods 

Triggering 

1-day daily 

precipitation (mm) 
95th - 

123 - 
Daily average river 

flow (m3/s) 
95th - 

5-days daily 

precipitation (mm) 
95th - 

225 - 
Daily average river 

flow (m3/s s) 
95th - 

Baseline and 

future rainfall 

triggered 

riverine floods 

Triggering 

1-day daily 

precipitation (mm) 
85th 95th 

14 15 
Weekly average 

river flow (m3/s) 
95th 90th 

Baseline and 

future rainfall 

triggered 

riverine floods 

Preconditioned 

and triggering 

5-day daily 

precipitation (mm) 
85th 95th 

18 28 
Weekly average 

river flow (m3/s) 
97th 85th 

Flood and 

quick clay 

Preconditioned 

baseline and 

future rainfall 

triggered 

riverine floods 

Preconditioned 

and triggering 

5-day daily 

precipitation (mm) 
90th - 

49 - 
Weekly average 

river flow (m3/s) 
90th - 

Preconditioned 

baseline and 

future rainfall 

triggered 

riverine floods 

Preconditioned 

and triggering 

5-day daily 

precipitation (mm) 
75th 90th 

4* 15 
Weekly average 

river flow (m3/s) 
85th 85th 

 

For hazard pair 1 “heavy rain and landslide” the rolling sum of 1,2,3 and 5 days rain were analysed against 

scaled and normalised API (sNAPI) to define the possible critical conditions for landslides to be triggered. 

Only the 1- and 5-days rolling sums of rainfall were then analysed with the projected rainfall to estimate the 

effect of climate change (Table 4.4.2). The results for these extreme events are discussed in detail in section 

5.4. 

For the second hazard pair “snow melt and flood” the hazard evaluation is based on the Hazard 

Assessments from 2002 and 2019 carried out by the Icelandic Meteorological Office (Arnalds et al., 2002; 

Gylfadóttir et al., 2019). Figure A4.3 in Appendix A4 shows the connection between selected extreme hazards 

and slush flow events. No slush flow is recorded during the selected extreme pairs or landslides registered in 

connection with snowmelt. This could have the simple explanation that slush flows generally occur very locally 
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under very special preconditioned circumstances that have not been met in these cases. Also, the timing of the 

melt extreme might have to be defined differently to be able to connect them to the landslide / flood events. 

The joint extreme pairs show a better correlation between 1-day rainfall and snowmelt than for 2-day or 3-day 

rainfall. 

For the category “heavy snowfall and avalanche” the inventory of IMO was analysed to find correlations 

between heavy precipitation and snow avalanche occurrence around Seyðisfjörður. New snow can act as 

additional loading on the existing snow layer and a lack of cohesion in the newly fallen snow can cause 

avalanches. Avalanches can occur immediately or up to a few days after the snow fall (EAWS, 2022). Figure 

A4.5 in Appendix A4 shows the connection between selected extreme hazards and snow avalanche events. 

The recorded avalanche events were defined as dry avalanches and the correlation between intensive snowfall 

and antecedent precipitation (snow) is good. Each year has limited datapoints due to the seasonal effect of the 

data (Figure A4.6). 

5 RESULTS FOR THE SELECTED MULTI-HAZARD PAIRS 

Among the 12 pairs of multi-hazard events identified across four testbed regions, four hazard pairs are selected 

for thorough investigations, with the objective of contributing to the development of the DSS that the MEDiate 

project intends to deliver. Additionally, these selected four hazard pairs align with the four categories of multi-

hazard events expounded in Section 3. The following are the four hazard pairs along with their corresponding 

multi-hazard type: 

 

1. Oslo – Compound coastal and riverine flood events (Multivariate).  

2. Nice – Extreme heat and drought events (Temporally compounding).  

3. Essex – Extreme wind and rainfall events (Spatially compounding).  

4. Múlaþing – Heavy rain and landslide events (Preconditioned and triggering).  

 

5.1 Oslo testbed: compound coastal and riverine flood events  

This section illustrates the application of a proposed methodology for multivariate events by analysing 

compound coastal and riverine flood events in Oslo. Surge height (m) and river flow (m3/s) are selected as 

intensity measures for coastal and riverine floods, respectively.   

5.1.1 Data  

This study employs a diverse set of data related to surge height, river flow, and flood inundation resulting from 

coastal and riverine flooding. Table 5.1.1 provides an overview of the data, including their timeframe, temporal 

resolution, spatial resolution, and sources. To identify joint extreme events, involving surge and river flow, 

various global databases are employed, considering the availability of information for both baseline and future 

scenarios. Specifically, reanalysis data is used for the baseline scenario, and modelled projected data is utilized 

for the future scenario. The “Global sea level change time series from 1950 to 2050 derived from reanalysis 

and high resolution CMIP6 climate projections” from Copernicus (Muis, 2023) is used for surge height, while 

the Futurestreams dataset, provided by Utrecht University, is used for the river flow. Both datasets provide 

results from several global climate models, therefore we selected the same model for surge and river flow. 

These global datasets cover extensive geographical areas. The selection of appropriate grid nodes is based on 

their proximity to real-world observed gauges of the same quantities. 

Table 5.1.1 illustrates the location of the selected observed gauges (red points) and the closer grid nodes 

of the two datasets (green points). In terms of observed surge and river flow data, Oslo municipality features 
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only one tidal station, as indicated by the Norwegian Hydrographic Service. However, there are several river 

gauges managed by NVE Sildre. Among these river gauges, we focus on the Gryta gauge due to its proximity 

(~10 km apart) to the tidal station. The selection of tidal and river gauges in proximity is crucial for analysing 

compound flood events (Ghanbari et al., 2021). The Gryta station is situated in a small inflow of the 

Maridalsvannet Lake, hence the discharge is not very high. It is, however, representative of the catchment 

basin's behaviour and quick response to rainfall.  

 

Table 5.1.1 Different types of data used to analyse compound flood events in Oslo. 

Indicator Dataset  Timeframe  Temporal 

resolution 

Spatial 

resolution  

Source  

Surge height Copernicus 

dataset: Global 

sea level 

change time 

series from 

1950 to 2050 

derived from 

reanalysis and 

high 

resolution 

CMIP6 

climate 

projections 

ERA5 

reanalysis: 

1979 to 2018 

  

Climate 

projections 

future: 2015 to 

2050 

Reanalysis: 

10-minute, 

hourly and 

daily 

maximum 

  

Climate 

projections 

historical and 

future: 10-

minute, annual 

Coastal grid 

points: 0.1° 

  

Ocean grid 

points: 0.25°, 

0.5°, and 1° 

within 100 

km, 500 km, 

and >500 km 

of the 

coastline, 

respectively 

Muis et al., 

(2022) 

https://api.seha

vniva.no/tidea

pi_no.html 

River flow  Futurestreams 

dataset 

E2O 

reanalysis: 

1976 – 2005 

Future: 2006–

2099 

 Weekly 

averaged data 

10 km × 10 

km  

Wanders, et. 

al. (2021) 

https://sildre.n

ve.no/ 

Riverine flood 

inundation  

Aqueduct 

Floods Hazard 

Maps 

Base year: 

1980 

Projected year: 

2030, 2050, 

2080 

Return 

periods: 1, 2, 

5, 10, 25, 50, 

100, 250, 500, 

and 1000 

years.  

5′ × 5′ 

  

Ward et al. 

(2020) 

Coastal flood 

inundation  

The 

Norwegian 

Water 

Resources and 

Energy 

Directorate – 

NVE flood 

maps 

Base year: 

2017 

Future year: 

2100 

Return 

periods: 20, 

200, and 1000 

years. 

Vector data The 

Norwegian 

Water 

Resources and 

Energy 

Directorate – 

NVE  

 

  

 

 

https://api.sehavniva.no/tideapi_no.html
https://api.sehavniva.no/tideapi_no.html
https://api.sehavniva.no/tideapi_no.html
https://sildre.nve.no/
https://sildre.nve.no/
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To investigate the spatial distribution of riverine and coastal flood hazard intensities, we use two datasets. For 

riverine flood inundation maps, Aqueduct flood maps are utilised due to the availability of coastal and riverine 

flood inundation data for various RPs under historical (baseline) and future climate change scenarios. The 

analysis of potential future compound flood events considers the RCP 8.5 climate change scenario and mid-

to-end-of-century projections. Regarding coastal flood inundation in Oslo, NVE flood maps from the 

Norwegian Water Resources and Energy Directorate are employed (NVE, 2023). Coastal flood inundation 

extent is provided for baseline (year 2017) and future (year 2100) climate change scenarios, considering return 

periods of 20, 200, and 1000 years. However, since the coastal flood maps are in vector format, they are 

converted into a gridded dataset using the methodology outlined by Cohen et al. (2018). The European Digital 

Elevation Model (EU-DEM) at a 25m spatial resolution is used for this conversion process, transforming the 

flood extent into water depth. 

 

5.1.2. Joint extreme events 

Following the methodology outlined in section 3.2, we identify joint extreme events by analyzing time series 

of surge and river flow data at both baseline and future scenarios. Joint extreme events are recognized when 

values exceed the threshold for surge height and river flow. These thresholds are determined based on 

Kendall’s rank correlation coefficient (τ). To identify optimal thresholds (i.e., percentile) for surge height and 

river flow in the context of compound flood events in Oslo, a sensitivity analysis has been performed by testing 

various combinations of thresholds (Appendix Tables A1.2-A1.3).  

For the baseline period (1979–2005) and future scenario (2024–2050), Figure 5.1.1 presents different 

threshold combinations for the two drivers along with their corresponding τ values. In the baseline scenario, 

we choose the 90th percentile as the threshold, resulting in the highest τ value of 0.44. The surge height and 

river flow threshold values are 0.73 m and 1.59 m³/s, respectively. A total of 20 compound flood events have 

been identified from 1979 to 2005. Figure 5.1.2a illustrates these joint extreme events at the baseline scenario. 

In the future scenario, we also select the 90th percentile for surge height and river flow as thresholds, 

yielding a τ value of 0.02 (Figure 5.1.1). The surge height and river flow threshold values are 0.67 m and 1.95 

m³/s, respectively. While three other threshold combinations result in higher τ values, they yield very few joint 

extreme events (see table in Appendix A1.3). A relatively lower τ value could be attributed to the availability 

of coarser temporal resolution data, which could cause an impact on the extreme events detected. However, 

the τ that we selected agree with existing studies, carrying out similar analyses. For instance, Ming et al. (2022) 

found a flow/surge Kendell’s coefficient equal to 0.0216 while Ghanbari et al. (2021) Kendell’s coefficient 

for flow/sea level, ranged from -0.03 to 0.30. As explained in section 3.2, the optimal percentiles for the 

threshold and the length of the search window are determined through the evaluation of τ values and the 

number of extreme pairs to allow the bivariate analysis. A total of 27 compound flood events are identified 

over the projection period of 2024–2050. 
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Figure 5.1.1 Various combinations of thresholds for surge height and river flow along with the resulting Kendall’s rank 

correlation coefficients (τ). The red circle highlights the thresholds selected for joint probability analyses. (a) Baseline 

condition; (b) Future climate change scenario. 

 

Figure 5.1.2 Joint extreme events. Scatter plot of all pairs of weekly sea surge level and river flow (blue) and pairs of 

extreme compound events (red). (a) Baseline scenario; (b) Future climate change scenario. 

5.1.3. Joint probability of compound flood events  

After identifying joint extreme events in Oslo under both baseline and future scenarios, the analysis focuses 

on the probability of concurrent coastal and riverine flood events by estimating their JRPs. As detailed in 

section 3.2, a Stan model is utilised, featuring a GPD for the marginal distribution of the single variable, and 

uniform priors. The joint extreme events identified in Figure 5.1.2 serve as input data for JRP estimation. 

Initially, the marginal cumulative distribution function of flow and surge is computed by fitting selected 

extreme data to a GPD. The Stan language implementations of the GPD, following Vehtari (2017), are used, 

with exceptions for the inverse cumulative distribution function, quantile function, and pdf curves, which are 

implemented based on Zaiontz (2020). Subsequently, utilising a Gumbel copula, the joint distribution function 

is estimated. For the Gumbel copula probability density function, the implementation by Goodrich (2017) is 

employed, while the cumulative distribution function is coded for this study. 
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A model diagnostic is performed by running four chains for 5,000 samples each. The diagnostic 

indicates no divergences, and the chains exhibit good mixing with minimal autocorrelation. Both the effective 

sample size and �̂�, confirm that the model adequately samples the posterior. For random draws from the 

Gumbel copula for posterior predictive checks, the procedure outlined in Nelsen (2006) and Genest and Rivest 

(1993) is implemented in Stan. The goodness of the GPD fitting is checked with the Bayesian Quantile-

Quantile plot. While the model fits smaller extreme values well, it struggles with the largest ones. However, 

Posterior Predictive Checks yield satisfactory results. Finally, the corner plot illustrates the correlation between 

the scale and shape parameters for the GPD. No unusual patterns are detected, but the θ parameters of the 

Gumbel copula are close to 1, indicating weak correlation between surge and flow data. Model diagnostic 

results are provided in Appendix A1 (see Figures A1.1-A1.5). 

For the baseline scenario, the JRPs estimated for surges and flows are shown in Figure 5.1.3. The figure 

shows that when only the surge component is considered, the maximum RP is approximately 57 years among 

the 20 extreme events. The maximum RP for river flow is estimated to be around 22 years. However, for the 

combined hazard scenario, the maximum JRP is approximately 63 years, a combination of a 57-year surge and 

a 3-year river flow event. Generally, relatively low-intensity compound flood events are found to be frequent, 

and this pattern is projected to continue in the future. 

 

 

Figure 5.1.3 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for river flow (a) and 

surge (d) under baseline conditions. The distribution of Joint Return Periods (JRPs) across surge and flow values is 

depicted in panel (b). JRPs for four random joint extreme events are displayed in panel (c). The contour lines in panels 

(b) and (c) represent the JRP in years. The bold lines of the contour (red and blue) indicate the median JRP, while the 

remaining lines represent random draws from the posterior distribution, providing an understanding of the variability. 
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In Figure 5.1.3, and all similar figures with return-period-based probabilities, each data point is visualised as 

a distribution. This means that there is a MRP for each individual driver value and a JRP for each combination 

of driver values. We represent the variation in JRP as a contoured surface over driver values in the upper right 

frame (Figure 5.1.3). To the left and below this frame, we plot the MRP as a function of driver value, so the 

MRP for any point in the top right plot can be read easily. This naturally defines a panel in the lower left with 

axes of MRP, which is where we plot the JRP again, but this time as a function of driver MRP, again visualised 

using contours. 

However, the addition of the data to our model specifies a distribution across the five-dimensional 

parameter space, rather than a single best fit point, and therefore a distribution over MRP for each driver value 

and a distribution over JRP for each pair of driver values. This has several consequences. Firstly, we have a 

distribution over JRP contours, which is difficult to visualise – here we have opted to simply plot the contours 

of the 50th percentile JRP surface (in bold) as well as the contours for some randomly selected samples from 

the parameter space (fainter) to give an idea of the variability. This is less of a problem for the 1D MRP plots 

where we simply show the 20, 50 and 80th percentile curves. Secondly, it means that there is no one-to-one 

relationship between driver MRP and value. If we select an extreme event using two MRP values in the lower 

left plot it will define a distribution over driver values in the top right plot and vice versa. The corresponding 

distribution over bivariate driver MRP or value for a point defined in the opposite panel is shown as blue 

contour enclosing x% of the probability mass. The distribution of JRP for a given point is plotted over the 

contour plot as a histogram. 

Among the 27 extreme events identified in the future scenario, the most extreme surge and river flow 

events are estimated to be 1-in-112-year and 1-in-20-year events, respectively. The highest JRP is found to be 

285 years, a combination of a 112-year surge and a 7-year river flow (see Figure 5.1.4). The overall JRP for 

the future scenario appears to be higher than the baseline scenario. This indicates that low-probability and 

high-intensity compound flood events are likely to become more prominent compared to the baseline scenario. 

Figure 5.1.5 provides a comparative picture of JRPs between the baseline and future scenarios. 

 



 

50  

 

 

Figure 5.1.4 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for river flow (a) and 

surge (d) under future climate change conditions. The distribution of Joint Return Periods (JRPs) across surge and flow 

values is depicted in panel (b). JRPs for four random joint extreme events are displayed in panel (c). The contour lines in 

panels (b) and (c) represent the JRP in years. The bold lines of the contour (red and blue) indicate the median JRP, while 

the remaining lines represent random draws from the posterior distribution, providing an understanding of the variability. 

 

 

Figure 5.1.5 (a) JRPs estimated for different joint extreme events identified at baseline and future scenarios; (b) surface 

plot comparing JRPs between baseline and future scenarios.  
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The outcomes of joint probability analyses offer insights into various scenarios of compound flood events. For 

instance, Table 5.1.2 presents four random scenarios of compound flood events in Oslo under both baseline 

and future climate change conditions, as also highlighted in Figure 5.1.3 and Figure 5.1.4. While the 

probabilities of potential future events are relatively low, their intensities, especially for surge events, surpass 

those observed under baseline conditions. 

  

Table 5.1.2 Sample compound flood scenarios in Oslo derived from joint probability analyses.  

Scenarios 
Surge return 

period (year) 

River flow return 

period (year) 

Joint return period (year) 

Baseline Future 

1. Low surge and low flow 2 2 2.5 3.8 

2. High surge and low flow  20 2 20.5 29.7 

3. Low surge and high flow  2 25 25.5 36.6 

4. High surge and high flow 20 25 41.5 113.9 

 

 

5.1.4. Spatial distribution of coastal and riverine flood events 

The identified compound flood events can be incorporated into a hydrodynamic flood model to analyse the 

spatial distribution of such occurrences. However, the scope of the MEDiate project does not encompass the 

establishment of hydrodynamic flood models. To gain insights into flood inundation extents, we utilize the 

Aqueduct Floods Hazard Maps and NVE flood maps (see Table 5.1.1). Figure 5.1.6 and Figure 5.1.7 depict 

the spatial extent and depth of riverine and coastal flood events with different return periods, respectively. 

These flood maps facilitate the quantification of exposure and risk to populations and assets resulting from 

various types of flooding. 

It is evident that the probable extent of inundation during riverine flooding is substantially 

larger than that of coastal flooding. We also compare the depth and extent of these two types of 

flooding for baseline and future scenarios. The results indicate a significant increase in the depth of 

inundation in the future, while no significant changes in the extent of inundation are observed. Areas 

near the coastal region are more susceptible to both riverine and coastal flooding compared to inland 

areas. These results validate the outcomes of joint extreme event analysis, which identifies several 

compound flood events in both baseline and future scenarios. 
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Figure 5.1.6 Spatial distribution of coastal flood prone areas in Oslo at baseline and future scenarios. These figures only 

show flood depth and extent along the coastline in Oslo municipality.  
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Figure 5.1.7 Spatial distribution of riverine flood prone areas in Oslo at baseline and future scenarios. 
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5.2 Nice testbed: Extreme heat and drought 

This section demonstrates the execution of a proposed approach for spatially compounding events (section 

3.3.) by investigating extreme heat and drought. This is achieved by identifying the compound co-occurrence 

of heat waves and droughts, employing standardized Heat Wave Index and Standardized Precipitation Index. 

5.2.1. Data 

This testbed employs a diverse set of data related to daily ground-based temperature and precipitation 

measurements. Table 5.2.1 provides an overview of the data, including their timeframe, temporal resolution, 

spatial resolution, and sources. For all indicators, an open database is used due to the availability of information 

for both baseline and future scenarios. The present analysis uses climate simulations for the European domain 

performed by Regional Climate Models (RCMs), made available by the EURO-CORDEX climate modelling 

initiative. A multi-model approach is required to provide an estimation of the uncertainty associated with the 

individual model sensitivity to the increasing radiative forcing driven by increasing green-house gas 

concentrations. RCMs dynamically downscale global climate simulations run within the Climate Model 

Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) to a spatial scale of 0.11º (~12.5 km). In this 

research, the simulations are run for the historical period (1850–2005), and future projections (2006–2100) are 

run in low (RCP 2.6), medium (RCP 4.5) and high (RCP 8.5) emission scenarios. For this analysis, climate 

simulations run with the RCM CSC-REMO2009 (REMO hereafter) are used. REMO was created originally 

at the Max-Planck-Institute for Meteorology (MPI), and it is currently maintained at the Climate Service Center 

Germany (GERICS). 

REMO downscales historical climate simulations and future climate projections run with the global 

climate model MPI-ESM-LR (MPI hereafter). Specifically, REMO outputs analysed in this study are the 

downscaling of one MPI historical simulation for the period 1971–2005, and one MPI climate projection in 

the RCP 8.5 scenario for the period 2006–2100. REMO data are also biased corrected, using the EFAS-Meteo 

data set as a reference (Ntegeka et al., 2013), re-gridded to a spatial resolution of 5km and daily means are 

analysed. 

 

Table 5.2.1  Regional climate models simulation and data used to compute the heat wave and drought indices.

RCM 
Forcing 

GCM 
Realizations RCP Time frame 

Spatial 

resolution 
Variables 

CSC-

REMO2009 

MPI-ESM-

LR 

r1i1p1 

r2i1p1 
8.5 

1971–2100 in a 

daily basis 
5 km 

2-m temperature 

 

Precipitation 

 

This dataset served as input for the detailed analysis explained below, summarized in the following three steps: 

(1) identification of heat wave events at grid-point level, based on a monthly standardized HW index; (2) 

identification of drought events at grid point level, based on a 3-month Standardized Precipitation Index 

(SPI3); (3) identification of compound co-occurrence of heat waves and drought (COHWD) at grid point level 

and at the monthly time scale. 

Heat waves were identified during the summer season (June to August), for every year during the period 

1971–2100. Here, a heat wave is defined as a hot spell of at least 3 consecutive hot days defined as days with 

maximum temperature above the 90th percentile. The 90th percentile was computed following a similar 

approach as Fischer and Schär (2010): for each day of summer, the percentile was calculated during the whole 
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period (1971–2100) using a 15-day moving window. Subsequently the number of hot days belonging to a heat 

wave (i.e. isolated hot days were not considered) for each summer month was computed, and a monthly 

standardized heat wave index (HWI) was defined. Monthly heatwave (HW) events were identified as the 

months exceeding 1 in the HWI. 

 

Drought was defined using the SPI, calculated using the nonparametric approach by Hao et al. (2014), where 

a marginal probability distribution of precipitation is computed using the empirical Gringorten plotting 

position, as shown in Equation 1 (Hao et al. (2014; Hao and AghaKouchak, 2014; Gringorten, 1963). The 

empirical probability of precipitation (Pp) is then standardized as SPI= φ-1(Pp), with φ being the standard normal 

distribution (Hao et al., 2014). Specifically, monthly drought events (D) were defined as summer months 

showing a SPI3 value below -1. 

 

After monthly HW and D events were identified, the compound occurrence of heatwaves and droughts 

(COHWD) was determined for each summer month and at each grid point according to the following criterion 

(23): 

 

𝐶𝑂𝐻𝑊𝐷 = {
1, 𝑤ℎ𝑒𝑛 𝐻𝑊𝐼 ≥  1 𝑎𝑛𝑑 𝑆𝑃𝐼3 ≤  −1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23) 

 

 

 

The frequency of occurrence of COHWDs is finally computed, considering three summer months within 30-

year time slices, as the number of COHWDs out of 3x30 months. The 30-year time slices identified are: 1976–

2005, to account for the historical period (Hist); 2041–2070, to account for the near future (NF); 2071–2100, 

to account for the far future (FF). Time slices are defined on 30 years in agreement with the WMO definition 

of climate normal, i.e. the minimum time span for the definition of a climatology. 

 

5.2.2 Heatwaves 

Figure 5.2.1 shows the number of hot days within a heatwave simulated by CSC-REMO2009 simulations. 

During the historical period (Figure 5.2.1a, d, g) most of the domain is affected by up to 1 hot day per month. 

Under the high emission scenario, the number of hot days increases in the NF to 1-2 along the French 

Mediterranean coast and up to 2-3 in the whole domain in June (Figure 5.2.1b, e, h). Towards the end of the 

century (Figure 5.2.1c, f, i), while the number of hot days increases to 6-7 along the French Mediterranean 

coast in June, the whole domain is affected by at least 6 days in July and August, with more than 10 days in 

the southern part.  
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Figure 5.2.1 Number of hot days in a heatwave in (a-c) June, (d-f) July and (f-h) August, during (left) the Historical period 

(Hist: 1976–2005), (middle) Near Future (NF: 2041–2070) and (right) Far Future (FF: 2071–2100) periods. 

 

5.2.3 Droughts 

The climatology of the SPI in the three sub periods is presented in Figure 5.2.2. During historical time (Figure 

5.2.2a, d, g) southern France shows slightly wet conditions. In the NF, the domain is characterised by overall 

wet conditions, with only limited areas experiencing dry conditions (Figure 5.2.2b, e, h). Towards the end of 

the century (Figure 5.2.2c-i), and especially in August in France (Figure 5.2.2i), the whole domain will 

experience SPI3 values between -0.5 and -1, indicating widespread dry conditions. 
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Figure 5.2.2 Mean SPI3 in (a-c) June, (d-f) July and (f-h) August, during (left) the historical (Hist: 1976–2005), (middle) 

near future (NF: 2041–2070) and (right) far future (FF: 2071–2100) periods. 

 

5.2.4 Compound Occurrence of Heat Wave and Drought   

The frequency of COHWDs during each time slice is shown in Figure 5.2.3. In the historical analysis (Figure 

5.2.3a), only a restricted region in France demonstrates approximately a 4% frequency of COHWD events. 

This means that ~4 summer months are characterised by hot and dry conditions during this period. During NF 

(Figure 5.2.3b), the frequency increases up to 5% (~6 summer months) along the French Mediterranean coast, 

with peaks above 10% in the Rhone Valley, i.e. around 9 summer months characterised by extreme conditions. 

During FF (Figure 5.2.3c), southern France is characterized by COHWD frequency exceeding 10% frequency, 

corresponding to a widespread area experiencing at least 9 hot and dry summer months. 

 

Figure 5.2.3 Frequency of occurrence of COHWDs (%) in summer during (a) the historical (Hist: 1976–2005), (b) near 

future (NF: 2041–2070) and (c) far future (FF: 2071–2100) periods. 
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5.3 Essex testbed: Extreme wind and rainfall 

The hazard pair involves analysing joint extreme wind and rainfall events, which are defined as spatially 

compounding multi-hazard events. Daily maximum wind speed of gust at 10m (m s-1) and daily precipitation 

(mm) are selected as indicators for wind and rainfall, respectively. 

5.3.1. Data  

In the analysis of extreme wind and precipitation events, this study utilizes the UK Climate Projection 2018 

datasets. Table 5.3.1 presents a comprehensive overview of the data, encompassing details such as the 

timeframe, temporal resolution, spatial resolution, and sources. The baseline scenario for these indicators 

incorporates data from 1981 to 2000, while the future scenario comprises data from 2061 to 2080. The 

extraction of wind and precipitation data is conducted based on the Essex County boundary (Figure 1.2.3). 

Figure A3.1 in Appendix shows the spatial distribution of the grid and the cells considered for the analysis. 

 

Table 5.3.1 Different types of data used to analyse extreme wind and precipitation events in Essex.  

Indicators Dataset Timeframe 
Temporal 

resolution 

Spatial 

resolution 
Source 

Maximum 

wind speed 

of gust at 

10m (ms-1) 

UK Climate 

Projection 

2018 

(UKCP18) 

data 

The projections 

cover the UK and 

three time-slices 

(1981–2000, 2021–

2040 and 2061–

2080), for a high 

emissions scenario, 

RCP8.5. 

Daily 5km 

Met Office 

Hadley Centre 

(2019) 
Precipitation 

(mm) 

 

5.3.2. Joint extreme events 

Following the methodology outlined in Section 3.3, we identify joint extreme events by considering both 

baseline and future scenarios. Following the harvesting of gridded wind gust speed and precipitation data from 

the UKCIP18 daily dataset, we pre-processed data to organise the timeseries data for estimating JRP. Daily 

maximum values of the two hazard intensity measures (wind speed and precipitation) across all grids within 

the study area are determined, resulting in the creation of two time series datasets. 

The joint extreme wind and rainfall events occurs when gust speed and precipitation surpass the 

thresholds. Like multivariate events, these thresholds are established based on Kendall’s rank correlation 

coefficient (τ). To pinpoint optimal thresholds (i.e., percentiles) for gust speed and precipitation in the context 

of spatially compounding events, various combinations of thresholds are tested (Appendix Tables A3.1-A3.2) 

Figure 5.3.1 illustrates different threshold combinations for the two drivers along with their corresponding τ 

values for baseline and future scenarios. Additionally, the selected thresholds are marked. 
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Figure 5.3.1 Various combinations of thresholds for daily maximum wind gust speed and precipitation along with the 

resulting Kendall’s rank correlation coefficients (τ). The red circle highlights the thresholds selected for joint probability 

analyses. (a) Baseline condition; (b) Future climate change scenario. 

In the baseline scenario (1981–2000), we opt for the 97th percentile for daily maximum wind gust speed and 

the 90th percentile for daily precipitation as the thresholds, yielding the highest τ value of 0.19. The threshold 

gust speed and precipitation values are 17.74m s⁻¹ and 15.56 mm, respectively. A total of 46 joint extreme 

events are identified from 1981 to 2000, as illustrated in Figure 5.3.2a. 

In the future scenario (2061–2080), we choose the 97th percentile for daily maximum wind gust speed 

and the 85th percentile for daily precipitation as the thresholds, resulting in the highest τ value of 0.09. The 

threshold gust speed and precipitation values are 18.07m s⁻¹ and 11.46 mm, respectively. Over the 20-year 

projection period, 115 joint extreme events are identified (Figure 5.3.2b). 

 

 

Figure 5.3.2 Joint extreme events. Scatter plot of all pairs of daily maximum wind gust speed and daily precipitation 

(blue) and pairs of joint extreme events (red). (a) Baseline condition; (b) Future climate change scenario. 

5.3.3. Joint probability of extreme wind and precipitation events 

Following the identification of joint extreme events, we used a Stan model with a Gumbel copula, GPD for the 

marginal distribution of the single variable with uniform priors, similar to the approach for multivariate events 

(see Section 3.2). The model incorporates input data from the joint extreme events identified in the previous 

section. The diagnostic results of the model are summarized in Appendix A3 (see Figure A3.2-A3.6). 
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For the baseline scenario, Figure 5.3.3 illustrates the JRP estimated for daily maximum wind gust speed and 

precipitation. Among the 46 joint events identified, the maximum daily gust speed is approximately associated 

with a 41-year RP. The maximum RP for precipitation is estimated to be around 134 years. Notably, the 

maximum JRP is approximately 163 years, representing a combination of a 1-year extreme wind and a 134-

year precipitation event. Generally, relatively low-intensity joint extreme events are found to be frequent, and 

this pattern is projected to persist in the future. 

 

 

Figure 5.3.3 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for daily precipitation 

(a) and daily maximum wind gust speed (d) under baseline conditions. The distribution of Joint Return Periods (JRPs) 

across surge and flow values is depicted in panel (b). JRPs for four random joint extreme events are displayed in panel 

(c). The contour lines in panels (b) and (c) represent the JRP in years. The bold lines of the contour indicate the median 

JRP, while the remaining lines represent random draws from the posterior distribution, providing an understanding of the 

variability. 

 

In the future scenario (2061–2080), the number of joint extreme events is projected to increase to 115. Among 

these events, the highest RPs for daily maximum gust speed and daily precipitation are estimated to be 406 

years and 77 years, respectively. The highest JRP is found to be 462 years, representing a combination of a 

406-year daily maximum gust speed and a 1-year precipitation event (see Figure 5.3.4). While the most extreme 

precipitation event is associated with the highest intensity and lowest probability event in the baseline years, 

extreme wind is projected to have a more significant influence on future joint extreme events. Figure 5.3.5 

provides a comparative visualization of JRPs between the baseline and future scenarios. Compared to baseline 

scenario, JRPs for the future scenario appears to be higher for relative less intensity events, while lower for 

high-intensity events (Figure 5.3.5 (b)). This indicates that that low-probability and high-intensity joint extreme 

wind and rainfall events are likely to become more prominent in the future.  
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Figure 5.3.4 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for daily precipitation 

(a) and daily maximum wind gust speed (d) under future climate change conditions. The distribution of Joint Return 

Periods (JRPs) across surge and flow values is depicted in panel (b). JRPs for four random joint extreme events are 

displayed in panel (c). The contour lines in panels (b) and (c) represent the JRP in years. The bold lines of the contour 

indicate the median JRP, while the remaining lines represent random draws from the posterior distribution, providing an 

understanding of the variability. 

 

Figure 5.3.5 (a) JRPs estimated for different joint extreme events identified at baseline and future scenarios, (b) surface 

plot comparing JRPs between baseline and future scenarios. 

The results of joint probability analyses provide valuable insights into different scenarios of joint extreme wind 

and precipitation events. As illustrated in Table 5.3.2 and highlighted in Figure 5.3.3 and Figure 5.3.4, four 
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random scenarios of these joint extreme events in Essex are presented under both baseline and future climate 

change conditions. Although the probabilities of potential future events are relatively low, their intensities, 

particularly for wind events, exceed those observed under baseline conditions. 

 

Table 5.3.2 Sample scenarios for joint extreme wind and precipitation events in Essex derived from joint probability 

analyses.   

Scenarios 

Return period of 

daily maximum 

wind gust speed 

(year) 

Return period 

of daily 

precipitation 

(year) 

Joint return period (year) 

Baseline Future 

1. Low gust speed and low 

precipitation 
2 2 5.2 8.9 

2. High gust speed and low 

precipitation 
50 2 72.7 103.9 

3. Low gust speed and high 

precipitation 
2 50 72.7 103.9 

4. High gust speed and high 

precipitation 
50 50 209.9 311.7 

 

5.3.4. Spatial distribution of extreme wind and rainfall events   

Following the methodology outlined in Section 3.3, we create RP maps for daily maximum wind gust speed 

and daily precipitation to assess the spatial distribution of extreme wind and rainfall events in Essex. Figure 

5.3.6 present extreme wind maps for three different RPs (2-year, 200-year, and 500-year) in both baseline 

(1981–2000) and future (2061–2080) scenarios. Overall, the intensity of maximum daily gust speed is predicted 

to increase in the future. For example, the maximum gust speed of 19.2ms-1 in the baseline scenario is projected 

to rise to 20.5ms-1 for a 200-year event. Highly impacted areas are mostly concentrated along the coastline. 
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Figure 5.3.6 Spatial distribution of daily maximum wind gust speed for different return periods in Essex at baseline and 

future scenarios. 

Figure 5.3.7 shows extreme precipitation maps for three different RPs (2-year, 200-year, and 500-year) in both 

baseline and future scenarios. Both the exposure and intensity of precipitation are expected to increase in the 

future. For a 200-year precipitation event, for instance, the maximum daily precipitation of 35.8mm across 

Essex County is projected to increase to 36.8mm in the future.  
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A larger area is likely to experience the impact of extreme precipitation in the future compared to the baseline 

conditions. The southwestern districts of Essex County are identified as being significantly exposed to extreme 

precipitation events. 

 

 

Figure 5.3.7 Spatial distribution of daily precipitation for different return periods in Essex at baseline and future scenarios. 
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5.4 Múlaþing testbed: heavy rain and landslides 

The hazard pair involves analysing joint extreme rainfall and landslide events, which are defined as 

preconditioned and triggering events. Rolling sums of 1-day, 2-day, 3-day and 5-day rainfall (mm) in 

connection with extreme antecedent precipitation are selected as indicators of landslide hazard. 

 

5.4.1. Data 

The longest hourly precipitation data series for Seyðisfjörður is from the station Vestdalur, just outside 

Seyðisfjörður town and approximately 2.5 km from the critical hillside. The measurements date back to 1995 

but gaps in the series, especially at critical times for landslide monitoring, led to the use of modelled data 

series. The ICRA atmospheric reanalysis project for Iceland (Nawri et al., 2017) downscaled data series dates 

from 1979 to 2017, which also leaves out a critical period for landslide monitoring (i.e., the December 2020 

event), but by using the ICRA series at least three critical events for this project are included. Massad et al. 

(2020) analysed the difference between the measured data and ICRA. They found that the correlation between 

measured rain and ICRA was good for Seyðisfjörður (Seyðisfjörður ICRA= 119 mm, observed =111 mm, 

correlation coefficient= 93%). The measured accumulated rainfall in Seyðisfjörður, during the days 14–18 

December 2020, was a total of 569.9 mm, which is the highest ever recorded in Iceland (Björnsson et al., 

2023). 

Measured daily temperature from the Dalatangi station was used to filter out snowfall. The station is 

located by the coast with open sea to the east and therefore would be expected to be warmer than stations in 

the town of Seyðisfjörður, a location in a narrow fjord. The climate data reanalysis CMIP6 (Coupled Model 

Intercomparison Project; Copernicus Climate Service, Eyring et al., 2016) was tested for the point location of 

Seyðisfjörður. The models that are considered the most representative for the area had around three times too 

few maximum values compared to ICRA data. It was not within the scope of this project to fit the best model 

to the station site. Therefore, it was considered acceptable to test the tools and methodology to repeated ICRA 

data and add expected extreme increases to simulate future rainfall. As mentioned above, we projected rainfall 

data by multiplying the historical data by an estimated precipitation increase. While this method simplifies the 

link to the specific location, it has limitations. Notably, it artificially repeats weather patterns every 37 years 

with adjusted intensity, reducing natural variability and potentially creating false trends. Figure A.4.1 in 

Appendix A4 shows some of the effect, where the σ of the ξ1 parameter decreases. We acknowledge these 

limitations but given the project's focus on a single point location and constraints on in-depth climate 

modelling, we consider this approach acceptable.  

5.4.2. Precondition 

During a field trip in June 2001, in connection with landslide hazard assessment, recent surface cracks were 

discovered at the edge of Þófi and Neðri-Botnar (Jensen, 2001. In the autumn 2001, a 30 m long crack formed 

in Nautaklauf in Botnabrún during an extreme rainfall event. Movement there did not lead to large-scale 

landslides, but a year later, specifically in November 2002, new cracks opened in Botnabrún following a 

prolonged wet season, most of them in the area between Skuldarlækur and Nautaklauf. This movement led to 

two debris flows from the edge just west of Búðará (Figure 5.4.1). Old reports also discuss cracks forming in 

the year 1925 in the area. Furthermore, sediments from four large landslides were found in survey pits in 

Seyðisfjörður (Knudsen & Larsen, 2013). They have been dated between 4500 BP to 580 AD (Gylfadóttir et 

al., 2019). The largest landslide events expected in Seyðisfjörður are assumed to be ~100,000 m3 (Gylfadóttir 

et al., 2019). In the landslide inventory the recoded events in Seyðisfjörður that occurred during the 20th and 

21st century are assumed to be dated correctly, but time during the day is often not known. Table 5.4.1 lists the 

landslide hazard in Seyðisfjörður, based on the recent hazard assessment (Gylfadóttir et al., 2019). 
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Table 5.4.1 Definition of landslide hazards in Seyðisfjörður 

Landslide 

return period 
Type of event Size of event Vol. (m3) 

Length (m) or 

area (m2) 

Rainfall 

duration 

10 yr Debris flow Small* <102 100 m 24h – 72h 

500–1000 yr 
Debris induced 

landslide 
Medium** 5x104–2.5x105 2x103-4 m2 3-5 days 

2500 yr 
Debris induced 

landslide 

Medium-

large** 
2.5x105–1x106 2x104-5 m2 >7 days 

* Jakob (2005) ** Fell (1994) in McColl & Cook (2023) 

 

In September 1981 debris flows fell from Botnabrun and from Imslandsgil on the south side of Seyðisfjörður, 

while the same weather conditions also triggered a debris flow from Bjólfur mountain, situated opposite (on 

the northern side of the fjord). In October 2001 a series of debris flows occurred both on the south side, from 

Þófi all the way to Hádegisá and on the north side under the mountain Bjólfur. In total, there are eleven 

recorded landslides, ranging from debris to mudflows on 2 October. Road damage and road closures followed 

this landslide cycle. In June 2002 a mudflow fell from Bjólfur mountain and, during November of the same 

year, eight other debris- and mud flows were recorded. In December 2015 another landslide cycle hit the town 

of Seyðisfjörður, both on the south and on the north side of the fjord. 

Map of landslides in Seyðisfjörður where these events are highlighted is in Figure 5.4.1. The thick red 

lines and dots represent events that, using the methodology applied here, would classify as possible precursors 

to larger events. The map also shows finer red lines where the large landslide of December 2020 occurred 

(slightly left of the middle on the map). The large landslide was one of the last events in that cycle, and other 

fine lines on the map denote smaller events. 



 

*******************************                                               ******************************* 

 

Figure 5.4.1 Map showing landslides and a slush flow in Seyðisfjörður. Thick red lines and dots represent the events used 

in calculations. Fine red lines are other events. The dark blue line depicts the outline of a slush flow. For joint-probability 

analysis, only landslide dates are used. 

5.4.3. IDF calculations 

IDF (intensity duration frequency) curves for filtered rain (Table 5.4.2) were calculated and RPs for different 

rainfall intensity durations estimated. A time window of five days was selected as the minimum time separating 

two values in a timeseries. It is a realistic interval due to extreme precipitation being associated with large 

weather systems, and thus a synoptic timescale is appropriate to ensure independent events. Furthermore, the 

same interval has been used for extreme analysis of winds in Iceland (Petersen, 2015). Several methods exist 

to determine the ideal threshold for a timeseries, but in this study, the commonly used 90th percentile is used 

as a threshold as for previous studies in Iceland (Massad et al., 2020, 2022).  

 

Table 5.4.2 IDF for liquid precipitation (rain) calculated for a rolling sum of different durations and frequencies. 

Rainfall 

duration in hours 

Return period (years) 

2 5 10 25 50 100 500 1000 2000 

Rolling sum of rainfall (mm) 

3 h 10 15 19 24 27 31 40 44 47 

6 h 24 33 40 51 59 68 89 99 109 

12 h 50 67 80 99 114 130 170 189 208 

24 h 92 121 144 179 208 239 321 361 404 

48 h 147 187 219 265 303 343 446 495 548 

120 h 243 299 344 407 458 511 648 712 780 

168 h 302 349 384 432 467 503 585 621 657 
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5.4.4. Joint extreme events 

The aim was to define the extreme rainfall conditions that lead to debris flows, as defined by Hungr et al. 

(2014), which is very rapid to extremely rapid surging flow of saturated debris in a steep channel. The small 

debris flows in Seyðisfjörður have proven to be an indicator of possible larger events, but small events 

triggered by intensive rainfall without high saturations of the ground are not likely to lead to larger events. 

Therefore, the analysis aimed at defining the situation where smaller events indicate the beginning of a larger 

event. 

The joint extreme events analysis explained in section 3.2 (the multivariate method) was applied on a 

timeseries with daily values with rolling sums of 1-, 2-, 3- and 5-days rain and antecedent rainfall (Figure 

5.4.2). Therefore, for each pair the selected drivers are different rainfall intensity durations and scaled 

normalised API (sNAPI). As discussed in section 3.1 the API is assumed to represent the state of the soil 

saturation and by joining it to different intensity durations, joint extreme pairs where selected using the 

MATLAB (MathWorks®) code discussed in section 3.2 since the rain cannot be considered to trigger the API 

that falls before it happens. When each pair of extreme events had been defined, the recorded landslides were 

linked to the sample.  

 

  

  

Figure 5.4.2 Joint extreme events. Scatter plot of all pairs of rainfall and sNAPI (blue) and pairs of joint extreme events 

(red). (a) 1-day Baseline condition; (b) 1-day Future climate change scenario (c) 5-day Baseline condition; (d) 5-day 

Future climate change scenario. 
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The method picked up several known events, which are listed in (Table 5.4.3). Several events in the inventory 

did not match the joint extremes of the 1-day and 5-days rainfall events. In some cases, this can be explained 

by the fact that the landslide inventory does not define cause correctly and intense rainfall was not the cause 

e.g., 21 August 2003, where recorded rainfall is 5.8 mm in 12 hours (see Table A4.1 in Appendix 4). 

Preconditioned circumstances must have been in favour of erosion on the hillside and extreme rainfall was not 

needed to trigger the landslides. In three other cases landslides occurred during extreme rainfall but low API. 

Since this analysis focuses on defining conditions that can accelerate to large landslides, this is considered 

acceptable. 

 

Table 5.4.3 Results of the extreme event analysis for the selected debris flows. The first column shows the date 

(dd.mm.yyyy) of the landslide event, and the following are the dates of the extreme events for 24 h, 48 h, 72 h and 120 h 

precipitation when API was high, respectively. 

Date landslide Extreme date 24 h Extreme date 48 h Extreme date 72 h Extreme date 120 h 

25.9.1981 25.9.1981 25.9.1981 26.9.1981  
1.10.2001 1.10.2001 2.10.2001 3.10.2001 1.10.2001 

2.10.2001 1.10.2001 2.10.2001 3.10.2001 1.10.2001 

2.10.2001 6.10.2001    
17.6.2002 17.6.2002 18.6.2002 19.6.2002  

11.11.2002 11.11.2002 12.11.2002 12.11.2002  
24.11.2002 24.11.2002 28.11.2002   
23.11.2002 24.11.2002    
25.11.2002 24.11.2002 28.11.2002 29.11.2002  
24.11.2002 28.11.2002    
25.11.2002 28.11.2002    
28.12.2015 28.12.2015    

 

5.4.5. Joint probability 

The results of the joint probability analysis show that of 54 joint events identified, the maximum 1-day rainfall 

of 144.4 mm is approximately associated with a 78-year RP. The maximum RP for antecedent rainfall (sNAPI) 

is estimated to be around 260 years. Notably, the JRP is approximately 134 years for the maximum rainfall. 

The 1-day maximum rainfall intensity is estimated to become more frequent as well as the combination of 

maximum 1-day rainfall and extreme antecedent rainfall with a 42-year RP. The maximum of the 46 joint 

extreme events the maximum 5-day rainfall of about 311 mm had a RP of about 88 years and the maximum 

antecedent rainfall about 70 years, whereas the JRP of the maximum rainfall was about 103 years. This 

combination is expected to become much more frequent with a JRP of 18 years for the maximum 5-day rainfall 

intensity. 
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Table 5.4.4 Sample scenarios for joint extreme wind and precipitation events in Múlaþing – Seyðisfjörður derived from 

joint probability analyses. 

Scenarios 
Return period 

of rain (year) 

Return period 

sNAPI (year) 

Joint return period (year) 

Baseline Future 

1. Low daily rainfall 

and low daily sNAPI 
2 2 4.4 2.8 

2. High daily rainfall 

and low daily sNAPI 
50 2 68.0 50.1 

3. Low daily rainfall 

and high daily sNAPI 
2 50 68.0 50.1 

4. High daily rainfall 

and high daily sNAPI 
50 50 206.2 72.0 

5. Low 5-day rainfall 

and low daily sNAPI 
2 2 3.2 2.7 

6. High 5-day rainfall 

and low daily sNAPI 
50 2 52.8 50.1 

7. Low 5-day rainfall 

and high daily sNAPI 
2 50 52.8 50.1 

8. High 5-day rainfall 

and high daily sNAPI 
50 50 109.2 71.5 

 



 

*******************************                                               ******************************* 

 

Figure 5.4.3 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for antecedent 

precipitation (sNAPI) (a) and 120-hour precipitation (d) under historical conditions. The distribution of Joint Return 

Periods (JRPs) across rain and sNAPI values is depicted in panel (b). JRPs for four random joint extreme events are 

displayed in panel (c). The contour lines in panels (b) and (c) represent the JRP in years. The bold lines of the contour 

indicate the median JRP, while the remaining lines represent random draws from the posterior distribution, providing an 

understanding of the variability. 

The aim of Figure 5.4.3 and Figure 5.4.4 is to illustrate the relationship between JRPs specified in terms of 

driver values (i.e., 120 hours (5-days) rainfall and sNAPI in this case) and JRPs specified in terms of driver 

marginal RPs, i.e. the return period for a given rainfall value. Figure 5.4.3 represents historical data and Figure 

5.4.4 is the projected future data. We start with our statistical model, which, to recap, describes the distribution 

of bivariate extreme values using marginal GPD linked by a Gumbel copula. This model is specified by the 

free parameters σ1, σ2, ξ1, ξ2 and θ, which form a five-dimensional parameter space.  
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Figure 5.4.4 Plots of the 20th, 50th and 80th posterior marginal probabilities across return periods for antecedent 

precipitation (sNAPI) (a) and 5-day precipitation (d) under future conditions. The distribution of Joint Return Periods 

(JRPs) across rain and sNAPI values is depicted in panel (b). JRPs for four random joint extreme events are displayed in 

panel (c). The contour lines in panels (b) and (c) represent the JRP in years. The bold lines of the contour indicate the 

median JRP, while the remaining lines represent random draws from the posterior distribution, providing an 

understanding of the variability. 

5.4.6. Identifying causal relationships 

Typically, landslides in Seyðisfjörður occur in cycles. At the same time, more than one event occurs in both 

surroundings, north and south hillslopes. In this case, the same weather conditions are responsible for the cycle 

of activity, and heavy rain is the recorded cause in the inventory database. In Seyðisfjörður, debris flows occur 

often at the same time. For instance, debris flows can occur from both sides of the hillslopes above the town 

due to prevailing weather conditions. In addition, spontaneous shallow mud or debris slides can occur, and 

they are not confined to a channel, making them more difficult to forecast beforehand, if not for the formation 

of cracks. These factors are the precondition of larger and deeper-seated landslides, as witnessed in 

Seyðisfjörður in December 2020. Intensity duration values from  

Table 5.4.2 (above) were selected for the appropriate return period of the predefined landslide hazard in Table 

5.4.5. 
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Table 5.4.5 Defined landslide events of three different sizes with rainfall IDF and joint extreme thresholds 

Landslide 

return period 

Rainfall 

duration 

Rain return 

period, IDF 

Joint extreme 

threshold 

Rain 

return 

period, 

IDF 

Joint extreme 

threshold 

Historical Projected 

10 yr 24h–72h 150–300 
24h ~ 27|1.7 

72h ~150|1.7 
180–360 1day ~ 28|1.9 

500–1000 yr 3–5 days 500–600* 120h ~ 87|1.3 575–712 120h ~99|1.9 

2500 yr >7 days >700  >800  

*14.–18. December 2020, a total of 569.9 mm was measured in Seyðisfjörður. 

 

Gylfadóttir (2022 unpublished) calculated possible pressure (kPa) caused by modelled landslides above a 

critical part of the town of Seyðisfjörður with and without extended mitigation (Figure 5.4.5). The data was 

made available for the MEDiate project, and it defines the load that two types of landslides of different sizes, 

12,000 m3 and 60,000 m3 can be expected to exert on the houses below the hillside. The return period of each 

landslide has been estimated (Table 5.4.5) by the landslide inventory and geological analysis in the area 

(Gylfadtóttir et al., 2019). 
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A medium-sized landslide is ≥12,000 m3 with a return period of 500–1,000 years. 

 
a) Without limited mitigation b) With extended mitigation 

 

A medium- to large-sized landslide is ≥60,000 m3 with a return period of 2,500 years. 

  
c) Without limited mitigation d) With extended mitigation 

Figure 5.4.5 Four ensembled scenarios of landslide hazard events: (a) 12,000 m3 medium-sized landslides with a return-

period of 500–1,000 years with limited mitigation; (b) with extended mitigation; (c) 60,000 m3 medium to large-sized 

landslides with a return period of 2,500 years with limited mitigation; and (d) with extensive mitigation measures. 

The small events (Table 5.4.1) are those that can be seen and confirmed by the joint extreme method. The 

number of medium to large events is too low to confirm a direct connection between the extreme rainfall and 

API. However, the analysis gives an indication on what rainfall pattern can be critical and possibly lead to 

medium to large landslides.  

The hillside above the town of Seyðisfjörður is monitored by extensive network of instruments. Adding 

this information to extreme rainfall patterns and correlation to antecedent rainfall could be valuable in 

monitoring medium to large landslides. 

 

6 DISCUSSION AND CONCLUSIONS 

This study focuses on the complex interplay of multi-hazards, revealing intricate dependencies that are crucial 

for understanding and managing risk. The results from the four testbeds challenge traditional natural-hazard 

management approaches, which often focus on single hazards, underscoring the need for integrated hazard 

assessment strategies. A key challenge was integrating diverse datasets from various sources. Successfully 

managing these challenges was pivotal in creating a comprehensive hazard assessment model. This 
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achievement highlights the importance of advanced data analysis techniques in contemporary disaster risk 

management. However, the study faced challenges in implementation, particularly in terms of data availability 

and the complexity of integrating different modelling approaches. These issues highlight the need for 

continued investment in data collection and methodological research in the field of interacting natural hazards. 

The inclusion of diverse European testbeds in the study underlines the importance of regional variability 

in disaster risk management. Each testbed provided insights into how different geographical and climatic 

contexts can influence hazard interactions. This diversity of data enriches the findings and enhances their 

applicability across various European settings. 

The study introduced innovative methodologies for assessing multi-hazard impacts, particularly in 

modelling interactions between different types of hazards. These methodological advancements are crucial for 

the ongoing evolution of risk assessment models (WP3), and they can be applied in other contexts to improve 

disaster preparedness and response. The methodologies and insights derived from this report are instrumental 

in creating sophisticated, data-driven tools for more accurate predictions and effective mitigation of multi-

hazard risks (Lee et al., 2024). 

The project's insights into the impact of climate change on hazard timing, intensity and interactions are 

particularly significant. The findings align with global climate trends, showing an increase in the frequency 

and severity of natural hazards. This aspect of the research provides a critical foundation for developing 

climate-resilient disaster management strategies, as considered in WP3. 

The results from the four testbeds also touch on the socio-economic implications of risks occurring due 

to multi-hazard interactions. Understanding the societal impact of interacting natural hazards, including 

economic losses and human displacement, is vital for developing holistic risk management strategies. This 

perspective ensures that disaster risk management is not only about predicting and mitigating hazards, but also 

about protecting communities and their livelihoods. Another output of this research is potential role in raising 

awareness and educating the public about multi-hazard risks. By disseminating the findings and insights, the 

project can contribute to a more informed public, better equipped to understand, and to respond to the risks 

associated with natural hazards. 

 

Work-package two sets the stage for future research in several key areas. This study has significantly advanced 

our understanding of multi-hazard interactions, focusing on four distinct European testbeds: Oslo, Nice, Essex, 

and Múlaþing. Each testbed provides unique insights into the complex relationships between different natural 

hazards within diverse geographical and climatic conditions. These findings are imperative for developing 

targeted and effective disaster risk management strategies in these regions and beyond. 

 

Oslo testbed: Compounding flooding, rainfall-triggered river floods and mass movements 

Among the three pairs of multi-hazard events in Oslo, compounded coastal and riverine flood events emerge 

as some of the most frequently occurring hazards, resulting in detrimental effects on populations and assets. 

Advanced modelling within the project has revealed that the frequency and severity of such events are likely 

to increase in the future, underscoring the need for integrated urban planning and flood defences. Furthermore, 

the project identifies associations between rainfall-induced flooding and landslides/quick clay landslides. 

These findings suggest a necessity for robust infrastructure planning that simultaneously addresses the co-

occurrence of various combinations of hazards, signifying a significant shift from traditional, singular hazard-

focused strategies to multi-hazard-based approaches. 

 

Nice testbed: Extreme heat and drought, extreme rainfall-landslides and compound flooding 

The Nice testbed provided critical insights into compound heatwaves and drought (COHWD) events, a direct 

consequence of global warming. This region, with its Mediterranean climate and distinctive topography, is 

witnessing a notable increase in the frequency of extreme weather events. Projections suggest a decrease in 
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annual precipitation, leading to an escalation in winter drought occurrences. This study identifies anticipated 

changes in the spatial distribution of COHWD events, which are poised to become more frequent in the future. 

Furthermore, the project's analyses project an increase in the frequency and severity of compound coastal and 

riverine flood events, alongside landslides triggered by riverine flooding. In conclusion, the project 

underscores the imperative for response programs, such as the provision of water and food relief, the 

implementation of advanced removal of livestock from drought-affected regions, and the promotion of 

alternative livelihood strategies and to develop adaptive management strategies that cater to the dual threat of 

compound heatwaves and drought, exacerbated by climate change. 

 

Essex Testbed: Wind, rainfall, temperature, and compounding flooding 

In Essex, the project focuses on the interdependencies among various combinations of extreme winds, 

temperatures, heavy rainfall, and coastal processes. The findings reveal an increasing tendency for 

these hazards to coincide, with the frequency of spatially compounded events—extreme wind and 

rainfall—expected to rise in the future. Although the number of compound coastal and riverine flood, 

as well as, extreme heat and rainfall events may remain relatively low, projections indicate that their 

intensities will be substantially high. These insights are crucial for coastal management in Essex, 

emphasising the importance of reinforcing coastal defences and developing early warning systems 

for multi-hazard events stemming from different combinations of extreme wind, temperature, rainfall, 

river discharge, and surge. 

 

Múlaþing Testbed: Landslides, snow avalanches and hydro-meteorological hazards 

The Múlaþing region in Iceland, with its unique geological and climatic conditions, has yielded 

valuable data on landslide and snow avalanche hazard influenced by hydro-meteorological factors. 

The testbed's findings highlight the critical role of the combinations of intensity and antecedent 

rainfall in triggering landslides. Despite this, no association was observed between rainfall-triggered 

snowmelt and landslides/snow avalanches, possibly due to the scarcity of recorded events and the 

ambiguous nature of preconditions, particularly since slush flows are highly localized occurrences. 

The documented snow avalanche events were categorized as dry avalanches, with a strong correlation 

noted between intense snowfall and antecedent precipitation (snow). Nevertheless, the 

meteorological conditions identified in the analysis are anticipated to occur less frequently in the 

future. Given these projections, there is a pressing need for Múlaþing to enhance monitoring and 

forecasting efforts targeting these specific triggers and to integrate them into regional land-use 

planning and disaster preparedness strategies. 
 

Wider implications and future research directions 

The outcomes of deliverable 2.2 have broader implications beyond the testbed regions. They underscore the 

need for a paradigm shift in disaster risk management – from single hazard-specific approaches to more 

integrated, multi-hazard perspectives. This shift is crucial in the face of climate change, which is altering the 

frequency, intensity, and interdependencies of natural hazards. For future research, there is a clear need to 

refine the methodologies developed in the MEDiate project and extend them to other regions with different 

climatic and geographical characteristics. Additionally, the project sets a precedent for the development of 

more sophisticated, integrated decision-support systems that can predict and mitigate risks associated with 

multi-hazard events more effectively. In conclusion, the MEDiate project's findings from the four testbeds 

provide a roadmap for developing more resilient and adaptive disaster risk management strategies in diverse 

European contexts. These strategies must account for the complex interplay of multiple hazards and the 

evolving nature of these risks under the influence of climate change. 
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8 APPENDICES  

8.1 Appendix A1: Oslo  

 
Figure A1.1. Trace plot for the five parameters of the joint distribution function used to analyse compound 

flood events in Oslo at baseline conditions. Here, xi1 and xi2 are the Generalised Pareto Distribution (GPD) 

shape parameters, and sigma1 and sigma2 are the GPD scale parameters for surge and river flow, respectively. 

‘Theta’ is the Gumbel copula parameter. 

 

 



 

*******************************                                               ******************************* 

 

 
Figure A1.2. Trace plot for the five parameters of the joint distribution function used to analyse compound 

flood events in Oslo at future scenario. Here, xi1 and xi2 are the GPD shape parameters, and sigma1 and sigma2 

are the GPD scale parameters for surge and river flow, respectively. ‘Theta’ is the Gumbel copula parameter. 
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Figure A1.3. Model assessment results for analysing Oslo compound flood events. Bayesian Quantile-

Quantile plots for the two (surge and river flow) marginal GPD, at baseline (upper) and future (lower) 

scenarios. 
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 (a) (b) 

  
Figure A1.4. Model assessment results for analysing Oslo compound flood events. Posterior predictive 

checks at baseline (a) and future (b) scenarios  

 

(a) (b) 

  
Figure A1.5. Model assessment results for analysing Oslo compound flood events. Corner plots for 

baseline (a) and future (b) scenarios.  
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Table A1.1 Landslide events in Oslo region in the analysed period (1987-2023). Grey entries are outside the 

focused season. 

 

Date Type Placename 

26.3.1995 111 Ekeberg 

29.5.1997 140 Grefsen - Kjelsås 

30.7.1998 111 Grefsenkollveien 

23.6.2000 142 Oslo S - Bekkelaget 

23.6.2000 142 Oslo S - Bekkelaget 

14.11.2000 111 Ljan - Holmlia 

17.5.2001 111 Oslo S (delstr.) stasjon 

2.3.2004 111 Sandermosen - Movatn 

6.7.2007 111 Hagaløkkaveien 

1.5.2009 111 Ljan - Holmlia 

14.7.2009 111 Ljan - Holmlia 

2.5.2010 111 Kjelsås - Sandermosen 

7.4.2011 111 Konowsgate 5 

19.11.2011 111 Bekkelaget stasjon 

30.7.2014 111 (Grefsen) - (Alnabru) godsspor 

1.11.2016 111 Oslo S (delstr.) stasjon 

15.4.2019 111 Kjelsås - Sandermosen 

6.6.2019 142 Måltrostveien  

6.6.2019 142 Måltrostveien 23B 

18.3.2022 111 Avkjøring Karihaugen 

22.5.2023 111 Klemetsrud 

8.8.2023 111 Åsland 
 



 

*******************************                                               ******************************* 

 
Figure A1.6 Diagnostic figures used to analyse landslide events against joint extreme events. Above 1-day 

rainfall duration and floods. Below 5-day rainfall duration and floods. 

 

 
Figure A1.7 Precipitation extreme thresholds plotted against normalised extreme threshold for discharge from 

Gryta station and modelled data series. Labels on the points are 1-day to 5-days rain for O (observed, rain and 

discharge), B (observed rain and baseline for discharge) and (F) future pairs (projected rain and discharge).  
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Figure A1.8 Seasonal distribution of extreme events and joint extreme events a) 1-day rainfall b) daily average 

discharge, c) joint extreme vents of 1-day rainfall and discharge, d) 5-day rainfall e) daily average discharge, 

f) joint extreme vents of 5-day rainfall and discharge.  

 

 
Figure A1.9 Diagnostic figures use to analyse landslide events against joint extreme events. Selected years 

with extreme summer rain, 1-day rainfall duration and floods. 

 



 

*******************************                                               ******************************* 

A1.2 Sensitivity analysis to identify the higher Kendall’s rank correlation coefficients for Oslo compound 

coastal and riverine flood events (baseline scenario). In red the selected combination of thresholds. 

Scenario 

Surge 

threshold 

(percentile) 

Flow 

threshold 

(percentile) 

Surge 

threshold  

(m) 

Flow 

threshold  

(m3/s) 

 

Surge-

Flow  

τ 

 

n° joint 

extreme 

events 

 

Baseline 

85 85 0.63 1.45 0.05 45 

85 90 0.63 1.59 0.16 32 

85 95 0.63 1.90 0.15 19 

85 97 0.63 2.09 0.10 13 

90 85 0.73 1.45 0.32 31 

90 90 0.73 1.59 0.44 20 

90 95 0.73 1.90 0.13 11 

90 97 0.73 2.09 0.07 8 

95 85 0.87 1.45 0.08 18 

95 90 0.87 1.59 0.21 13 

95 95 0.87 1.90 0.02 10 

95 97 0.87 2.09 0.07 8 

97 85 0.98 1.45 0.38 11 

97 90 0.98 1.59 0.14 7 

97 95 0.98 1.90 -0.20 2 

97 97 0.98 2.09 0.20 5 
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A1.3 Sensitivity analysis to identify the higher Kendall’s rank correlation coefficients for Oslo compound 

coastal and riverine flood events (future scenario). In red the selected combination of thresholds. 

Scenario 

Surge 

threshold 

(percentile) 

Flow 

threshold 

(percentile) 

Surge 

threshold  

(m) 

Flow 

threshold  

(m3/s) 

Surge-Flow 

τ 

n° joint 

extreme 

events 

Future 

85 85 0.56 1.84 -0.21 52 

85 90 0.56 1.95 -0.15 41 

85 95 0.56 2.17 0.11 19 

85 97 0.56 2.36 0.18 12 

90 85 0.67 1.84 -0.03 37 

90 90 0.67 1.95 0.02 27 

90 95 0.67 2.17 0.07 10 

90 97 0.67 2.36 0.14 7 

95 85 0.81 1.84 0.09 19 

95 90 0.81 1.95 0.00 12 

95 95 0.81 2.17 -0.80 5 

95 97 0.81 2.36 -1.00 4 

97 85 0.86 1.84 -0.14 8 

97 90 0.86 1.95 -0.20 6 
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8.2 Appendix A2: Nice 

 
Figure A2.1. Compound flood events in Nice. Scatter plot of all pairs of weekly sea surge level and river flow 

(blue) and pairs of extreme compound events (red). (a) Baseline scenario; (b) Future climate change scenario. 

 

 
Figure A2.2. Nice compound coastal and riverine flood events at the baseline (1979-2005) scenario. The figure 

indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme river flows (upper 

left), extreme surge (lower right); joint return period of extreme paired data based on the selected copula (upper 

right). 
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Figure A2.3. Nice compound coastal and riverine flood events at the future (2016-2050) scenario. The figure 

indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme river flows 

(upper left), extreme surge (lower right); joint return period of extreme paired data based on the selected 

copula (upper right). 

 

 

 
 

 

Figure A2.4. Nice compound coastal and riverine flood events. Comparison of JRPs between baseline and 

future climate change conditions.   
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8.3 Appendix A3: Essex 

 

 
Figure A3.1. Overlapping of the 5 km grid of the UK Climate Projection 2018 datasets with Essex County 

boundary. The cells highlighted in green has been used for the analysis. 
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A3.1. Sensitivity analysis to identify the higher Kendall’s rank correlation coefficients for Essex wind and 

rainfall events (baseline scenario). In red the selected combination of thresholds. 

Scenario 

Wind gust 

speed threshold 

(percentile) 

Rainfall 

threshold 

(percentile) 

Wind gust speed 

threshold     (ms-

1) 

Rainfall 

threshold 

(mm) 

Wind gust 

speed-

rainfall  

τ 

n° joint 

extreme 

events 

Baseline 

85 85 14.08 11.57 -0.40 302 

85 90 14.08 15.56 -0.03 184 

85 95 14.08 22.63 -0.05 76 

85 97 14.08 29.69 -0.05 40 

90 85 15.12 11.57 0.02 223 

90 90 15.12 15.56 0.08 132 

90 95 15.12 22.63 -0.03 49 

90 97 15.12 29.69 -0.08 24 

95 85 16.62 11.57 0.07 120 

95 90 16.62 15.56 0.13 71 

95 95 16.62 22.63 0.14 29 

95 97 16.62 29.69 -0.10 13 

97 85 17.74 11.57 0.12 76 

97 90 17.74 15.56 0.19 46 

97 95 17.74 22.63 0.11 20 

97 97 17.74 29.69 -0.42 10 
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A3.2 Sensitivity analysis to identify the higher Kendall’s rank correlation coefficients for Essex wind and 

rainfall events (future scenario). In red the selected combination of thresholds. 

Scenario Wind gust 

speed 

threshold 

(percentile) 

Rainfall 

threshold 

(percentile) 

Wind gust speed 

threshold (ms-1) 

Rainfall 

threshold 

(mm) 

Wind gust 

speed-

rainfall  

τ 

n° joint 

extreme 

events 

Future 

85 85 14.08 11.46 -0.02 370 

85 90 14.08 15.73 -0.09 229 

85 95 14.08 24.56 -0.05 100 

85 97 14.08 31.06 -0.01 51 

90 85 15.23 11.46 0.04 280 

90 90 15.23 15.73 -0.07 170 

90 95 15.23 24.56 -0.08 68 

90 97 15.23 31.06 -0.22 33 

95 85 16.94 11.46 0.06 170 

95 90 16.94 15.73 -0.03 108 

95 95 16.94 24.56 -0.12 38 

95 97 16.94 31.06 0.01 19 

97 85 18.07 11.46 0.09 115 

97 90 18.07 15.73 -0.02 75 

97 95 18.07 24.56 0.02 23 

97 97 18.07 31.06 -0.56 9 
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Figure A3.2. Trace plot for the five parameters of the joint distribution function used to analyse joint extreme 

wind and rainfall in Essex at baseline conditions. Here, xi1 and xi2 are the Generalised Pareto Distribution 

(GPD) shape parameters, and sigma1 and sigma2 are the GPD scale parameters for daily maximum wind 

gust speed and daily precipitation, respectively. ‘Theta’ is the Gumbel copula parameter. 
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Figure A3.3. Trace plot for the five parameters of the joint distribution function used to analyse joint extreme 

wind and rainfall in Essex at future scenario. Here, xi1 and xi2 are the Generalised Pareto Distribution (GPD) 

shape parameters, and sigma1 and sigma2 are the GPD scale parameters for daily maximum wind gust speed 

and daily precipitation, respectively. ‘Theta’ is the Gumbel copula parameter. 
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Figure A3.4. Model assessment results for analysing Essex joint extreme wind and rainfall events. 

Bayesian Quantile-Quantile plots for the two (gust speed and precipitation) marginal GPD, at baseline 

(upper) and future (lower) scenarios. 
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 (a) (b) 

  
Figure A3.5. Model assessment results for analysing Essex joint extreme wind and rainfall events. 

Posterior predictive checks at baseline (a) and future (b) scenarios  

 

  

(a) (b) 

  
Figure A3.6. Model assessment results for analysing Essex joint extreme wind and rainfall events. Corner 

plots for baseline (a) and future (b) scenarios. 
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Figure A3.7. Compound flood events in Essex. Scatter plot of all pairs of weekly sea surge level and river flow 

(blue) and pairs of extreme compound events (red). (a) Baseline scenario; (b) Future climate change scenario. 

 

 

 
Figure A3.8. Essex compound coastal and riverine flood events at the baseline (1979-2005) scenario. The 

figure indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme river flows 

(upper left), extreme surge (lower right); joint return period of extreme paired data based on the selected copula 

(upper right).  
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Figure A3.9. Essex compound coastal and riverine flood events at the future (2016-2050) scenario. The figure 

indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme river flows (upper 

left), extreme surge (lower right); joint return period of extreme paired data based on the selected copula (upper 

right). 

 

 
Figure A3.10. Essex compound coastal and riverine flood events. Comparison of JRPs between baseline and 

future climate change conditions.   
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Figure A3.11. Joint extreme temperature and precipitation events in Essex. Scatter plot of all pairs of daily 

maximum temperature and daily precipitation (blue) and pairs of joint extreme events (red). (a) Baseline 

condition; (b) Future climate change scenario. 

 

 

 
Figure A3.12. Essex joint extreme temperature and precipitation events at the baseline (1981-2000) scenario. 

The figure indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme 

precipitation (upper left), extreme temperature (lower right); joint return period of extreme paired data based 

on the selected copula (upper right). 



 

*******************************                                               ******************************* 

 

 
Figure A3.13. Essex joint extreme temperature and precipitation events at the future (2061-2080) scenario. 

The figure indicates marginal distribution based on generalized Pareto distribution (GPD) for extreme 

precipitation (upper left), extreme temperature (lower right); joint return period of extreme paired data based 

on the selected copula (upper right). 

 

 
Figure A3.14. Essex extreme temperature and precipitation events. Comparison of JRPs between baseline and 

future climate change conditions.   
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8.4 Appendix A4: Múlaþing 

Table A4.1 Landslide events and weather. Yellow text highlights landslides without heavy rain, brown text 

highlights landslides occurring during extreme rain without high API 

date R T TX 
Land-
slide 

events 

Rain-
length 
hours 

3h 12h 24h 48h 72h 120h 

25.9.1981 1.07 6.3 6.9 3 65 3.7 27.2 66.7 68.9 68.9 68.9 

4.10.1985 1.4 5.4 7.7 1 16 1.9 1.9 1.9 1.9 1.9 1.9 

12.8.1989 6.22 8.2 8.6 6 32 17.4 59.1 100.5 114.0 137.2 142.3 

27.8.1994 4.94 8.4 9.4 1 32 14.6 63.2 101.1 101.1 101.1 101.1 

9.9.1999 2.04 9.8 11.8 2 19 4.7 31.9 44.8 46.8 46.8 46.8 

1.10.2001 2.69 7.8 8.5 1 81 8.5 30.3 53.9 86.6 86.6 86.6 

2.10.2001 5.61 6.5 7.8 11 81 18.7 84.9 144.0 197.9 230.6 230.6 

17.6.2002 0.82 6.7 8.1 1 56 1.3 1.3 1.3 1.3 1.3 1.3 

11.10.200
2 

2.23 7.7 8.8 1 53 6.6 11.1 16.2 26.6 44.9 52.8 

11.11.200
2 

4.4 5.3 5.7 3 62 8.4 18.9 20.2 20.2 20.2 20.2 

23.11.200
2 

2.92 5.3 5.8 1 61 8.5 16.7 17.3 44.0 101.0 151.1 

24.11.200
2 

2.22 5.3 6.1 1 61 5.9 17.6 31.0 48.2 74.9 178.0 

25.11.200
2 

2.36 5.7 6.4 1 61 6.6 12.4 32.2 63.1 80.4 164.1 

21.8.2003 1.77 
10.
9 

11.3 1 14 4.6 5.8 5.8 5.8 5.8 5.8 

24.8.2009 4.66 9.7 10.1 2 13 9.7 10.5 10.5 10.5 10.5 10.5 

7.7.2010 2.91 8 9.4 1 17 5.5 6.9 6.9 6.9 6.9 6.9 

28.5.2013 2.49 5.3 8.6 2 37 8.8 44.2 96.2 104.8 104.8 104.8 

28.12.201
5 

4.64 7 8 5 29 12.2 23.6 23.6 23.6 23.6 23.6 

24.6.2017 2.68 6.4 7.2 4 38 9.5 65.7 126.8 131.3 142.4 142.4 
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a) 24h rain and sNAPI extremes b) 1-day rain and sNAPI extremes 

  
Figure A.4.1 Model assessment results for analysing Múlaþing joint extreme rainfall and sNAPI events. 

Corner plots for historical (a) and future (b) scenarios. 



 

108  

 

 

 

 
Figure A4.2 Diagnostic figures used to analyse landslide events against joint extreme events. Above 1-day 

rainfall duration and floods. Below 5-day rainfall duration and floods.  

 

 

 

 
Figure A4.3 Seasonal distribution of extreme events and joint extreme events a) 1-day rainfall b) sNAPI, c) 

joint extreme vents of 1-day rainfall and sNAPI, d) 5-day rainfall e) sNAPI, f) joint extreme vents of 5-day 

rainfall and sNAPI. 
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Figure A4.3 Diagnostic figures used to analyse landslide events against joint extreme events. 1-day rainfall 

duration and snowmelt.  

 

 

 

 
Figure A4.4 Seasonal distribution of extreme rainfall and snowmelt 
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Figure A5. Diagnostic figures use to analyse landslide events against joint extreme events. 1-day rainfall 

duration and snowmelt.  

 

 

 

 
Figure A4.6 Seasonal distribution of extreme rainfall and snowmelt 
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Figure A4.7 Map showing snow avalanche outlines in Seyðisfjörður. 
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