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Minimal surfaces are ubiquitous in nature. Here,
they are considered as geometric objects that bear a
deformation content. By refining the resolution of the
surface deformation gradient afforded by the polar
decomposition theorem, we identify a bending content
and a class of deformations that leave it unchanged.
These are the bending-neutral deformations, fully
characterized by an integrability condition; they
preserve normals. We prove that: (i) every minimal
surface is transformed into a minimal surface by a
bending-neutral deformation; (ii) given two minimal
surfaces with the same system of normals, there is a
bending-neutral deformation that maps one into the
other; and (iii) all minimal surfaces have indeed a
universal bending content.

1. Introduction
The Universe is parsimonious: so says the title of a
celebrated book [1], which among many other things
contains a fascinating account of minimal surfaces
(disguised as soap bubbles). The theory of plates and
shells should make no exception to this universal
rule. However, researchers are still debating the most
appropriate kinematic measures of deformation that
would enter the elastic energy functional in an intrinsic
(direct) theory of these bodies. In the language of the
book [2], an intrinsic theory represents plates and shells
as truly two-dimensional bodies, with mass distributed
on a surface S  in three-dimensional Euclidean space E .
The following works provide but a partial sample of the
current debate [3–10].

Here, we build on an earlier proposal for measures
of pure bending of a surface S  [7], which was formu-
lated as an invariance requirement under the class of
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bending-neutral deformations, which preserve normals. In this paper, we identify as bending
content of S  one geometric object (a vector field) left unchanged by these deformations.

We prove that all minimal surfaces share one and the same bending content and those
that share the same system of normals can be seen as the image of one another under a
bending-neutral deformation. Thus, making it impossible to properly bend one minimal surface
into another, if the system of normals is to be preserved.

The paper is organized as follows. In §2, to make our development self-contained, we collect
a few results about surface tensor calculus that are used in the rest of the paper. In §3, we
lay out our kinematic analysis: we recall the definition of bending-neutral deformations and
identify the bending content of a surface. In §4, we show how minimal surfaces are tightly
connected by bending-neutral deformations; we accordingly introduce the notion of bending-
neutral associates, which extends Bonnet’s classical one. Section 5 collects the conclusions of this
work and a few comments on their possible bearing on the theory of plates and shells, which
was our original motivation and remains our primary intent.

The paper is closed by two appendices, where we give details about proofs left out of the
main text to ease the flow of our presentation. Two animations and a Maple script are also
provided as electronic supplementary material for the reader. The animations show motions
traversing bending-neutral associates of a minimal surface: they visibly convey an impression
of gliding instead of bending, in accord with the theory. The Maple script was used to generate
the animations and can be modified by the reader to explore further minimal surfaces and their
deformations.

2. Glimpses of surface differential calculus
To make our paper self-contained, we recall some basic notions of differential calculus on
smooth surfaces in three-dimensional space, especially those playing a role in the development
that follows.

Let S  be a smooth, orientable surface in three-dimensional Euclidean space E ; it can be
represented (at least locally) by a mapping of class C2 defined on a domain S ⊂ ℝ2 described
by a system of coordinates. Here, however, we shall keep our discussion independent of any
particular choice of coordinates.

A scalar field φ : S ℝ is differentiable at a point p ∈ S , if for every curve c : t c(t) ∈ S

such that c(t0) = p there is a vector ∇sφ on the tangent plane T p to S  at p such that:

(2.1)d
dtφ(c(t)) t = t0 = ∇sφ ⋅ t,

where t is the unit tangent vector to c at p. We call ∇sφ the surface gradient of φ.1

Equivalently, ∇sφ can be introduced by extending φ in a three-dimensional neighbourhood
that contains S  to a smooth function φ~ such that φ~|S = φ. Letting ∇φ~ denote the ordinary,
three-dimensional gradient of φ~, we can uniquely decompose it in its tangential and normal
components relative to S :

(2.2)∇φ~ = P(ν)∇φ~ + (∇φ~ ⋅ ν)ν,

where ν is a selected unit normal to S  at p ∈ S  and P(ν) := I − ν ⊗ ν is the projection onto the
tangent plane T p. We can then set

(2.3)∇sφ := P(ν)∇φ~ and ∇νφ~ := ∇φ~ ⋅ ν,

the former depending only on φ and the latter on its extension φ~. One can devise φ~ so that∇νφ~ = 0, as in Šilhavý [12]: this is called a normal extension of φ. Here, we shall not make use of
such a restricted class of extensions.
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The advantage of defining ∇sφ as in (2.3) is that this definition is easily extended to higher
derivatives. Denoting by the same symbol also the extension of φ (no confusion can arise, as
only the normal derivative depends on the extension), we have that:

(2.4)∇s
2φ := ∇[∇φ − (∇φ ⋅ ν)ν]P(ν),

where ∇ denotes the standard gradient. By expanding (2.4) and setting ∇sν := (∇ν)P(ν), having
also extended ν out of S , by use of (2.3), we arrive at:

(2.5)∇s
2φ = P(ν)(∇2φ)P(ν) − (∇νφ)∇sν − ν ⊗ (∇sν)(∇sφ) .

Two consequences follow immediately from (2.5). First, ∇s
2φ clearly depends on the extension

of φ outside S ; an intrinsic definition can be achieved by resorting to normal extensions ofφ. Second, since both ∇2φ and the curvature tensor ∇sν, which at each point p ∈ S  maps T p
into itself, are symmetric, the skew-symmetric part of ∇s

2φ does not generally vanish, but it is
independent of the extension of φ,

(2.6)skw(∇s
2φ) = skw[(∇sν)(∇sφ) ⊗ ν],

which is both intrinsic and fully determined by ∇sφ and the curvature of S  (see also [13,14]).
Letting the axial vector associated with the skew-symmetric part of ∇s

2φ be the surface curl of∇sφ, we can rewrite (2.6) as:

(2.7)curls∇sφ = ν × (∇sν)(∇sφ) .

More generally, for h a given tangential vector field of class C1 on S , (2.6) is replaced by:

(2.8)skw(∇sh) = skw((∇sν)h⊗ ν) .

Similarly, for a given surface second-rank tensor field F of class C1 on S  such that Fν = 0,

(2.9)skw(∇sF) = skw(F(∇sν) ⊗ ν),

where the skew-symmetric part is taken on the last two legs of the third-rank tensors involved.
Consider now a closed curve c over S  and denote by s ⊂ S  the portion of S  that it

encloses. The circulation theorem (e.g. [11, p. 243]) says that for a (not necessarily tangential)
vector field h defined on S  the following identity holds:

(2.10)ch ⋅ tds = s curlsh ⋅ νdA,

where t is the unit tangent to c (oriented anticlockwise relative to ν), s is the arc-length measure
along c and A is the area measure on S .

It readily follows from (2.10) and (2.7) that a sufficient and necessary condition for a surface
vector field h to be the surface gradient of a scalar field φ is that both h and curlsh are
tangential to S  [15, p. 244]. Said differently, for a tangential surface vector field h, (2.8) is also
a sufficient integrability condition, which guarantees the existence (at least locally) of a scalar
field φ such that h = ∇sφ. Similarly, (2.9) is also a sufficient integrability condition for a surface
second-rank tensor field F that annihilates the normal: it guarantees the existence of a surface
vector field h such that F = ∇sh.

Finally, we define the surface Laplacian as △s φ := divs∇sφ and we shall say that a scalar
function φ of class C2 on S  such that △s φ = 0 is surface harmonic.2

3
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3. Bending-neutral deformations
In this section, we are concerned with the kinematics of plates. We think of S  as the image
of the mid-surface of a plate S ⊂ ℝ2 in the (x1,x2) plane of a Cartesian frame (e1, e2, e3) under
a deformation f : S E , which is assumed to be of class C2 (see figure 1). In turn, S  can be
regarded as the reference configuration of a shell, which can be further deformed, as it will be at
a later stage.

(a) Kinematics
Letting x = x1e1 + x2e2 denote the position vector in S and extending to the present geometric
setting results well-known from three-dimensional kinematics (e.g. chapter 6 of [17]), the
deformation gradient ∇f can be represented as:

(3.1)∇f = λ1b1 ⊗ c1 + λ2b2 ⊗ c2,

where ∇ denotes the gradient in x, the positive scalars λ1, λ2 are the principal stretches and the
unit vectors ci, bi are the corresponding right and left principal directions of stretching. Whilec1(x) and c2(x) live on the (e1, e2) plane for all x ∈ S, b1(x) and b2(x) live on the tangent plane
T f(x) to S  at f(x). The right and left Cauchy–Green tensors are correspondingly given by

(3.2a)Cf := (∇f)T(∇f) = λ1
2c1 ⊗ c1 + λ2

2c2 ⊗ c2,

(3.2b)Bf := (∇f)(∇f)T = λ1
2b1 ⊗ b1 + λ2

2b2 ⊗ b2.

By the polar decomposition theorem for the deformation of surfaces established in Man &
Cohen [18] within the general coordinate-free theory introduced in Gurtin & Murdoch [19,20]
(see also [21]), the deformation gradient ∇f can be written as:

(3.3)∇f = RfUf = VfRf,

where Rf is a rotation of the special orthogonal group in three dimensions SO(3) and,

(3.4)Uf = λ1c1 ⊗ c1 + λ2c2 ⊗ c2 and Vf = λ1b1 ⊗ b1 + λ2b2 ⊗ b2

are the stretching tensors. It readily follows from (3.3) that bi = Rfci.
(b) Bending and drilling rotations
In (3.3), the rotation Rf, which can be different at different places x, represents the non-metric
component of the deformation f. It follows from Euler’s theorem on rotations (e.g. [22], for a
modern discussion) that for every R ∈ SO(3) there is an axis, designated by a unit vector e ∈ S2,
and a scalar α ∈ [0, π] such that R is a (conventionally anticlockwise) rotation about e by angleα. More precisely, the following representation applies,

(3.5)R = I + sin αW(e) + (1 − cos α)W(e)2,

where I is the identity tensor, W(e) is the skew-symmetric tensor associated with e (so thatW(e)v = e × v for all vectors v). SO(3) is set by (3.5) into a one-to-one correspondence with the
ball Bπ

3 ⊂ E  of radius π centred at the origin. This latter corresponds to the identity I, whereas
the points on ∂Bπ

3  are π-turns, that is rotations by an angle π, which are the only symmetric
members of SO(3) other than I.

4
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As shown in appendix A, Rf can be uniquely decomposed into two rotations, Rf(d) with axis

along the normal e3 to S and Rf(b) with axis in the (e1, e2) plane. We shall interpret Rf(b) as the

bending component of Rf and Rf(d) as the drilling component.3 Formally, we write:

(3.6)Rf = Rf(b)Rf(d),

where the order of composition matters, as bending and drilling rotations are about different
axes. A pure drilling rotation, for which Rf(b) is uniform but Rf(d) is not, would pertain to a

deformation f that strains S but leaves it planar. A pure bending rotation, for which Rf(d) is

uniform but Rf(b) is not, would instead pertain to a deformation f that brings S out of a plane.

To identify both Rf(d) and Rf(b) for a given Rf, it is expedient to represent a member R ∈ SO(3)
via Rodrigues’ formula,4

(3.7)R(a) = 1
1 + a2 (1 − a2)I + 2a ⊗ a + 2W(a) ,

where a is a vector of arbitrary length a := a ⋅ a. This is the vector representation of a rotation,
where SO(3) is set into a one-to-one correspondence with the whole translation space V  of E :
the identity is still represented by the origin, but here π-turns are points at infinity.

Equation (3.7) follows from (3.5) by setting a = tan (α/2)e and remarking thatW(e)2 = −I + e ⊗ e. It can also be easily inverted: for given R ∈ SO(3), the representing vectora is identified by:

(3.8)W(a) = R − RT
1 + tr R ,

whence

(3.9)a2 = 3 − tr R
1 + tr R ,

which shows that a π-turn is characterized by having tr R = −1.
Rodrigues [27] proved a composition formula, which in modern terms can be phrased as

follows (e.g. also [28]): for R(a1) and R(a2) in SO(3) represented as in (3.7),

(3.10)R(a2)R(a1) = R(a),

S

f

g
ye3 e2

e1

Figure 1. The surface S  is obtained from the reference configuration S in the (x1,x2) plane of a Cartesian frame

(e1, e2, e3) via the deformation f. S ∗ is similarly obtained via the deformation g. S  is mapped onto S ∗ by the

deformation y; ν and ν∗ are the unit vector fields that orient S  and S ∗, respectively, while e3 is the unit normal
orienting S.

5
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where

(3.11)a = a1 + a2 + a2 × a1
1 − a1 ⋅ a2

.

In particular, (3.11) shows that the composed rotation R(a) is a π-turn whenever a1 and a2

belong to the cone defined by a1 ⋅ a2 = 1.
Let R(a) be given in SO(3); we prove in appendix A that it can uniquely be decomposed as in

(3.10) into a rotation R(a1) with a1 parallel to a given unit vector e and a rotation R(a2) with a2

orthogonal to e. The vectors a1 and a2 are explicitly determined as:

(3.12)a1 = (a ⋅ e)e, a2 = 1
1 + (a ⋅ e)2 {I + (a ⋅ e)W(e)}P(e)a,

where P(e) := I − e ⊗ e is the projector on the plane orthogonal to e. It easily follows from (3.12)
that:

(3.13)a1
2 = (a ⋅ e)2 and a2

2 = a2 − a1
2

1 + a1
2 .

It is interesting to note that the rotation R(a1) just determined can also be characterized as the
member in the subgroup SO(e) ⊂ SO(3) of all rotations with axis e that is the closest to R(a) in
the sense made precise in appendix A, where this result is proved in detail.5

For Rf ∈ SO(3), we set Rf(d) := R(df) and Rf(b) := R(bf), where, repeating (3.12) verbatim,

(3.14)df = (af ⋅ e3)e3, bf = 1
1 + (af ⋅ e3)2 {I + (af ⋅ e3)W(e3)}P(e3)af,

and af is the vector associated with Rf via (3.7), so that (3.6) applies. We shall call df and bf
the drilling and bending contents of Rf, respectively. It should be noted that, as typical of any
kinematic quantities, both df and bf inherit from Rf its frame-dependent character; neither
should be mistaken for measures of drilling and bending, for which we need frame-indifferent
quantities.

(c) Bending neutrality
We wish to identify a class of deformations that do not alter the bending content of a surface
S  (relative to its flat reference configuration S). Let S  be obtained as above from S via the
deformation f and let y : S E  be a deformation of S  that transforms it into S ∗ (see figure 1).
As for ∇f in (3.3), we can decompose the surface gradient ∇sy of the incremental deformation y
as:

(3.15)∇sy = RyUy,

where Uy is the surface stretching tensor that maps the tangent plane T ξ onto itself for all ξ ∈ S

and Ry is a rotation of SO(3). We say that y is a bending-neutral deformation if:

(3.16)Ry = Rf(d) = Rν ∈ SO(ν) onS ,

where ν is the unit normal to S  oriented coherently with the orientation of S. This amounts to
require that the bending component Ry(b) of y be any uniform rotation R0, which can always be
chosen to be the identity I by an appropriate change of frame.

The surface S ∗ can also be regarded as the image of S under the deformation g := y ∘ f. We
now show that for every bending-neutral deformation y of S , the deformations g and f have

6
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one and the same bending content. To this end, we first remark that the unit normal ν at f(x) is
given by:

(3.17)ν = (∇f)e1 × (∇f)e2
|(∇f)e1 × (∇f)e2|

= co(∇f)e3
| co(∇f)e3|

,

where co( ⋅ ) denotes the cofactor tensor (a definition is given, for example in section 2.11 of
[17]). Since, for any two tensors L and M, co(LM) = co(L) co(M) and co(R) = R for all R ∈ SO(3),
it follows from (3.3) and (3.17) that

(3.18a)ν(f(x)) = Rfe3 ∀x ∈ S,

as, by (3.4), co(Uf) = (det Uf)e3 ⊗ e3. Similarly, denoting by ν∗ the unit normal to S ∗, we also
have that,

(3.18b)ν∗(g(x)) = Rge3 ∀x ∈ S.

On the other hand, since S ∗ = y(S ),

(3.19)ν∗(ξ) = co(∇sy)ν
|co(∇sy)ν| ∀ ξ ∈ S .

Moreover, since ∇sy can be decomposed as in (3.15), and Uy can be written as

(3.20)Uy(ξ) = μ1u1 ⊗u1 + μ2u2 ⊗u2 with μ1, μ2 > 0,

in its eigenframe (u1,u2) on the tangent plane T ξ to S , we see that ν∗ = Ryν, as
co(Uy) = (det Uy)ν ⊗ ν. Then (3.16) implies that:

(3.21)ν∗(g(x)) = ν(f(x)) for all x ∈ S,

which by (3.18) and (3.7) amounts to the equation:

(3.22)(bf − bg) × e3 = 0 ⇒ bf = bg = b since bf ⋅ e3 = bg ⋅ e3 = 0.

This is the desired result, which justifies our identifying the vector b as the universal bending
content, as it is common to all surfaces related via a bending-neutral deformation.

While, as already remarked, both drilling and bending contents are frame-dependent, the
notion of bending-neutrality is frame-indifferent: it says that whatever bending content is
assigned to a surface S  in a frame, it will be the same as the one assigned to S ∗, if y is
bending-neutral.

The definition of bending-neutral deformations was introduced in [7] in an attempt to
provide a solid foundation to the notion of pure measures of bending in plate theory. These
were defined as deformation measures (either scalars or tensors) invariant under the action of
all bending-neutral deformations. For example, it was shown in Virga [7] that the tensor:

(3.23)A := (∇ν)T(∇ν)

is a pure measure of bending, whereas the tensor K := (∇ν)(∇ν)T is not, even if it shares with A
all scalar invariants.

(d) Compatibility condition
The existence of a bending-neutral deformation is subject to a compatibility condition that
involves the curvature of S : as shown in Virga [7], the rotation Rν and the surface stretching Uy
that decompose ∇sy must be such that:

(3.24)∇sν = RνUy−1(∇sν)RνUy .

7
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This condition ensures that the tensor ∇sν∗ be symmetric, as it should. We represent ∇sν as:

(3.25)∇sν = κ1n1 ⊗n1 + κ2n2 ⊗n2,

where (κ1, κ2) are the principal curvatures of S  and (n1,n2) the corresponding principal
directions of curvature, and we let β be the angle the eigenframe (n1,n2) of ∇sν makes with
the eigenframe (u1,u2) of Uy in (3.20). By writing Rν as in (3.5),

(3.26)Rν(α) = I + sin αW(ν) − (1 − cos α)P(ν) with α ∈ [−π, π],

equation (3.24) can then be reduced to a single scalar equation, see [7],

(3.27)
μ2μ1

= 1 − (κ1 + κ2) sin ακ2sin α + (κ1 − κ2) cos β sin (α + β) ,

which is thus the general compatibility condition for the existence of a bending-neutral
deformation of S . Since only the ratio between the principal surface stretches is prescribed
by (3.27), Uy can only be determined to within a multiplicative surface dilation λP(ν), with λ an
arbitrary positive scalar field on S .

A special class of solutions of (3.27) is obtained for β = 0 and α ∉ {0, π}. This requires S  to be
a hyperbolic surface, that is such that the Gaussian curvature K := κ1κ2 < 0, as (3.27) reduces to:

(3.28)
μ2μ1

= − κ2κ1
> 0.

In this class of solutions of (3.27), Uy can be represented as:

(3.29)Uy = λ(κ1n1 ⊗n1 − κ2n2 ⊗n2).

It is not restrictive to assume that both κ1 > 0 and λ > 0. As proved in Virga [7], for Uy as in

(3.29), the curvature tensor of S ∗ can be written as:6

(3.30)∇sν∗ = κ1μ1
n1 ⊗Rνn1 + κ2μ2

n2 ⊗Rνn2,

which, by (3.26) and (3.28), implies that the total curvature of S ∗ is
(3.31)2H∗ := tr(∇sν∗) = cosα κ1μ1

+ κ2μ2
= 0.

Thus, if there exists a bending-neutral deformation y of a hyperbolic surface S  with stretching
tensor Uy as in (3.29), it necessarily maps S  into a minimal surface S ∗.

(e) Integrability condition
Having solved (in a special case) the compatibility condition (3.24), we found a class of possible
bending-neutral deformations y of a hyperbolic surface S  characterized by:

(3.32)∇sy = Rν(α)Uy,

where Uy is given by (3.29) and both λ and α are surface fields to be determined. However,
there is no guarantee that (3.32) actually represents a surface gradient. For this to be the
case, the tensor field F := Rν(α)Uy must satisfy the integrability condition (2.9). It is shown in
appendix B that (2.9) is satisfied if and only if λ and α obey the following system of equations:

(3.33)
∇s(λκ1cosα) ⋅ n2 −∇s(λκ2sinα) ⋅ n1 = λ(κ1 + κ2)(cosα c ⋅ n1 + sinα c ⋅ n2),∇s(λκ1sinα) ⋅ n2 + ∇s(λκ2cosα) ⋅ n1 = λ(κ1 + κ2)(sinα c ⋅ n1 − cosα c ⋅ n2),

where c is the Cartesian connector field defined as:7

8
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(3.34)c := (∇sn1)Tn2 = − (∇sn2)Tn1 .

The system (3.33) acquires a more compact form when S  itself is a minimal surface,

(3.35)∇s(μ sinα) = ν × ∇s(μ cosα),

where μ := λκ > 0 and κ := κ1 = −κ2, so that (3.32) reduces to:

(3.36)∇sy = μRν(α)P(ν) .

It follows from (3.35) that:

(3.37)
∇s(μ sinα) ⋅ ∇s(μ cosα) = 0,
|∇s(μ sinα)| = |∇s(μ cosα)| .

Expanding this system, we arrive at:

(3.38)
μ∇sμ ⋅ ∇sα = 0,
|∇sμ|2 = μ2 |∇sα|2 ,

which amounts to the alternative ∇sμ = ± μν × ∇sα. Insertion of either forms in (3.35) shows that
the latter is only solved by ∇sμ = − μν × ∇sα, which can equivalently be written as:

(3.39)∇sα = ν × ∇sφ,

where we have set φ := ln μ.
As recalled in §2, for (3.39) to be integrable, the field h = ν × ∇sφ, which is tangential to S ,

must also be such that curlsh ⋅ ν = 0. For φ of class C2, we easily see that:

(3.40)curlsh = (∇sν)∇sφ − (∇s
2φ)ν + ( △s φ)ν − (divs ν)∇sφ,

where divs ν := tr(∇sν) = 2H is the total curvature of S , which vanishes for a minimal surface. By
use of (2.5) in (3.40), we conclude that curlsh ⋅ ν = 0 whenever

(3.41)△s φ = 0.

Thus, for any surface harmonic function φ on S , we can set μ = exp (φ) in (3.36). Correspond-
ingly, (3.39) is integrable and it too delivers a surface harmonic function α, as it implies that, forα of class C2,

(3.42)△s α = curls ν ⋅ ∇sφ − ν ⋅ curls∇sφ = 0

because curls ν = 0, by the symmetry of the curvature tensor. This identifies (at least locally) a
drilling rotation Rν that makes equation (3.36) integrable, so as to determine locally (to within
a translation) a bending-neutral deformation of S . We have actually found a whole class of
bending-neutral deformations of S , each represented by a surface harmonic function φ on S .

We shall see in the following section that this bond between bending-neutral deformations of
minimal surfaces and surface harmonic functions is indeed much stronger.

4. Minimal surfaces
Here, we show that every two minimal surfaces of class C2 with the same spherical image8 are
one the image of the other under a bending-neutral deformation in the family described in
§3. To this end, it is particularly instrumental to resort to the celebrated Enneper–Weierstrass
representation of minimal surfaces (e.g. section 3.3 of [35]), which requires the use of isothermal
parameters (u, v) to describe a surface S .
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In an isothermal parameterization, the mapping r : Ω E  that represents S  as image of a
simply connected set Ω of the (u, v) plane enjoys the following properties:

(4.1)|r,u| = |r,v| and r,u ⋅ r,v = 0,

where a comma denotes differentiation.9 Moreover, since also

(4.2)△r = r,uu + r, vv = 0
(e.g. [38, p.268]), for any scalar-valued function φ defined on S  in terms of the (u, v) parameters,

(4.3)△s φ = 1
|r,u|2 △φ = 1

|r,u|2 (φ,uu + φ, vv),
so that φ is surface harmonic on S  whenever it is harmonic in Ω.

(a) Weierstrass representation
Let w := u + iv ∈ ℂ be a complex representation of the (u, v) plane. A minimal surface S  such
that the normal ν regarded as a map from Ω into the unit sphere S2 is injective, but does not
cover the whole of S2, can be represented (to within a translation) by a holomorphic functionF : Ω ℂ as

(4.4)r(w) = ℜ 1
2 (1 − w2)F(w)dwe1 + i

2 (1 + w2)F(w)dwe2 + wF(w)dwe3 ,

where (e1, e2, e3) is a Cartesian frame in V  and ℜ denotes the real part (e.g. [35, p. 117]). F is also
called the Weierstrass function that represents S  (see also [39,40]).

A number of interesting consequences follow from (4.4), which can easily be interpreted
geometrically.

We first write F as:

(4.5)F = eΦ + iχ = eΦ(cos χ + i sin χ).

Since F is holomorphic, the Cauchy–Riemann relations imply that both Φ and χ are harmonic in
Ω. Explicit computations give:

(4.6a)

r,u = eΦ uv sin χ + 1
2(1 − u2 + v2) cos χ e1 − uv cos χ + 1

2(1 + u2 − v2) sin χ e2

+(u cos χ − v sin χ)e3 ,

(4.6b)

r,v = eΦ uv cos χ − 1
2(1 − u2 + v2) sin χ e1 + uv sin χ − 1

2(1 + u2 − v2) cos χ e2

−(u sin χ + v cos χ)e3 ,

which satisfy

(4.6c)|r,u| = |r,v| = 1
2eΦ(u2 + v2 + 1) and r,u ⋅ r,v = 0.

Letting eu and ev denote the unit vectors of r,u and r,v, respectively, we form an orthonormal
frame (eu, ev) on the tangent plane T r(w) on S ; the unit normal ν is then obtained from:

(4.7)ν = eu × ev = 1u2 + v2 + 1
{2ue1 + 2ve2 + (u2 + v2 − 1)e3}.

This equation shows clearly the geometrical meaning of the (u, v) coordinates in Weierstrass’
representation: w is the stereographic projection of ν (on the equatorial plane of S2 with the
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North pole identified with e3). Thus, all functions F defined on the same domain Ω represent
minimal surfaces with the same spherical image.

Consider now a trajectory in Ω parameterized by (u(t), v(t)); r maps it into a trajectory on S
for which:

(4.8)ṙ = |r,u|(u̇eu + v̇ev),
where a superimposed dot denotes differentiation with respect to t. Correspondingly,

(4.9)ν̇ = u̇ν,u + v̇ν, v = (∇sν)ṙ .

By differentiating with respect to u and v both sides of (4.7) and projecting both ν,u and ν,v in the
frame (eu, ev), we obtain that:

(4.10a)ν,u = 2u2 + v2 + 1
(cos χeu − sin χev),

(4.10b)ν,v = − 2u2 + v2 + 1
(sin χeu + cos χev).

Inserting (4.10) and (4.7) into (4.9), with the aid of (4.6c), since u̇ and v̇ are arbitrary, we arrive at
the following representation of the curvature tensor in terms of the functions Φ and χ,

(4.11)∇sν = 4
eΦ(u2 + v2 + 1)2Rν( − χ)(eu⊗ eu − ev⊗ ev),

from which we obtain at once that:

(4.12)2H = tr(∇sν) = 0 and K = det (∇sν) = − 16
e2Φ(u2 + v2 + 1)4 .

Comparing (4.11) and (3.25), we easily see that:

(4.13)κ1 = −κ2 = 4
eΦ(u2 + v2 + 1)2 , n1 = cos χ

2 eu − sin χ
2 ev, n2 = sin χ

2 eu + cos χ
2 ev.

(b) Bending-neutral associates

Let S ∗ be a minimal surface, different from S  but with the same spherical image, represented
by the holomorphic function:

(4.14)F∗ = eΦ∗ + iχ∗ = eΦ∗
(cos χ∗ + i sin χ∗),

where both Φ∗ and χ∗ are harmonic functions in Ω. Precisely as in (4.4), F∗ induces the mappingr∗ : Ω E  that represents S ∗. The vectors r,u∗  and r,v∗  are still given by (4.6) with Φ replaced by

Φ∗ and χ by χ∗. The unit vectors (eu∗, ev∗) that identify a frame on the tangent plane T r∗(w) to S ∗
are defined accordingly and the unit normal ν∗ = eu∗ × ev∗ is still given by (4.7) in the Cartesian
frame (e1, e2, e3), so that ν∗ ≡ ν, although r∗ ≠ r. It is not difficult to show by direct computation
that:

(4.15)eu∗ ⋅ eu = ev∗ ⋅ ev = cos (χ∗ − χ).

Let y be a deformation that maps S  onto S ∗. For any trajectory (u(t), v(t)) in Ω, we have that:

(4.16)ṙ∗ = (∇y)ṙ,

which by (4.6c) and (4.8), along with the corresponding equations for r∗, can also be written as:
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(4.17)eΦ∗
(u̇eu∗ + v̇ev∗) = eΦ(u̇eu + v̇ev).

Since the frames (eu∗, ev∗) and (eu, ev) are on parallel planes (both orthogonal to ν) and both u̇ andv̇ are arbitrary, (4.17) and (4.15) imply that:

(4.18)∇sy = eΦ∗ − ΦRν(χ∗ − χ)P(ν) .

By comparing (4.18) and (3.36), we readily conclude that y is a bending-neutral deformation
with:

(4.19)μ = eφ = eΦ∗ − Φ and α = χ∗ − χ
directly derived from the Weierstrass functions representing the surfaces S ∗ and S . This
proves our claim that any two minimal surfaces with the same spherical image are associated through a
bending-neutral deformation.

In the classical theory of minimal surfaces, a special role is played by the families of associate
surfaces. Given a minimal surface S , the classical family of its associates S θ = yθ(S ), described
by a real parameter θ, consists of minimal surfaces in isometric correspondence with one
another and such that normals are preserved for all θ. The mapping that changes S  into S θ is
also called Bonnet’s transformation (e.g. section 3.1 of [35]); in the Weierstrass representation, it
has the following simple form [35,p. 119]:

(4.20)F(w) Fθ(w) := eiθF(w)

with θ a constant.
Perhaps the best known of these families is that transforming catenoids into helicoids, for

which,

(4.21)Fθ = cw2 (cos θ + i sin θ),

where c ∈ ℝ is a constant and θ ∈ [0, π
2 ]. For θ = 0 or θ = π

2 , Fθ represents a catenoid or a helicoid,

respectively; for 0 < θ < π
2 , the intermediate associate surface S θ is Scherk’s second surface (e.g.

[35, p. 148]).
Bending-neutral deformations generate far more general families of associate minimal

surfaces through the transformation:

(4.22)F(w) F∗(w) := eφ + iϑF(w),

where both φ and ϑ are harmonic functions. Furthermore, in this broad sense, any minimal
surface is the bending-neutral associate of another with the same spherical image. Like
Bonnet’s, the transformation (4.22) preserves normals, and it is isometric for φ ≡ 0. In particular,
by (4.19), we may say that for any θ ∈ (0, π

2 ) Scherk’s second surface S θ is the image of a
catenoid (or a helicoid) under an isometric bending-neutral deformation with μ ≡ 1 and α ≡ θ.

(c) Universal bending content
We learned in §3 that in general two surfaces related by a bending-neutral deformation have
one and the same bending content. Here, we prove that the bending content b of a minimal
surface is as universal as the normal ν in Weierstrass’ representation.

Interpreting r as a deformation from a reference configuration Ω, by (3.3), we can write∇r = RrUr, where

(4.23)Ur = 1
2eΦ(u2 + v2 + 1)P(e3) and Rr = eu⊗ e1 + ev⊗ e2 + ν ⊗ e3,
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having chosen (e1, e2) as the frame of the (u, v) coordinates in Ω with e3 = e1 × e2. By use of (3.8),
we identify the vector ar that represents Rr in (3.7),

(4.24a)ar = 1u sin χ + v(1 + cos χ) {−(1 + cos χ)e1 + sin χe2 + [v sin χ − u(1 + cos χ)]e3}.

Then, we obtain from (3.14) the vectors dr and br that represent the drilling and bending
components Rr(b) and Rr(d) of Rr,

(4.24b)dr = vsinχ − u(1 + cosχ)usinχ + v(1 + cosχ)e3 = − cot χ2 + ϕ e3,

(4.24c)br = 1u2 + v2 ( − ve1 + ue2) = 1ρeϕ,

where we have expressed (u, v) in polar form,

(4.25)u = ρ cos ϕ, v = ρ sin ϕ,

and set eϕ := −sin ϕ e1 + cos ϕ e2. It is clear from (4.24c) that br = b is the same for all minimal
surfaces, as it is independent of both Φ and χ, precisely like ν in (4.7).

In a similar way, we can prove directly that the pure measure of bending A in (3.23) is the
same for all minimal surfaces. Since

(4.26)∇ν = ν,u⊗ e1 + ν,v⊗ e2,

by use of (4.10), we give A the following explicit form:

(4.27)A = 4
(u2 + v2 + 1)2P(e3).

(d) Illustration by Bour’s surfaces
To illustrate graphically our findings, we consider an exemplary family S t of bending-neutral

associates of two minimal surfaces S  and S ∗, both with historical pedigree. The parameter t
ranges in the interval [0,1], so that S t is S  for t = 0, and S ∗ for t = 1. The Weierstrass function
representing S t is

(4.28)Ft(w) = wt = ρteitϕ,

where we have set w = ρ exp (iϕ). It is immediately seen that S t is the image of S  under the
bending-neutral deformation characterized by μ = ρt and α = tϕ.

Here, S  is Enneper’s surface, while S ∗ is Bour’s surface of index m = 3. The Weierstrass
function of the former is F(w) ≡ 1, while that of the latter is obtained by setting m = 3 into the
general formula:

(4.29)FB(w) := cwm − 2,

where c ≠ 0 is a complex constant and m ∈ ℝ (see [35, p. 156]).10 Actually, S t is a Bour’s surface
for all t ∈ [0,1], with m = t + 2.

Figure 2 shows a gallery of surfaces extracted from the family S t represented by (4.29):
these are images of a disk BR centred at w = 0 (described in polar coordinates by 0 < ρ < R
and −π ⩽ ϕ ⩽ π); the colour coding is such that each individual radius of BR conveys on S t a
specific colour.
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As a supplement to this paper, we also provide an animation showing the whole family
S t. We think that this makes it apparent how the moving surface progressively unfolds gliding
over itself, with no sign of bending. In a companion animation, we also capture the motion that
illustrates the classical association between catenoid and helicoid described by (4.21): it clearly
conveys the same gliding impression.

We finally remark that by the change of variable w 1/w in (4.4) for F = FB as in (4.29) Bour’s
surfaces are shown to be invariant (to within a reflection) under the transformation m −m.
This makes catenoids and helicoids somehow special members of Bour’s family, as they are
obtained from (4.29) for m = 0.

5. Conclusions
Understanding how surfaces deform is the proper foundation for a sound, intrinsic theory of
plates and shells (as abundantly discussed, for example in section XIV.13 of [2]). Expressing
the appropriate energy contents involved in the elasticity of these bodies requires a clear
identification of the local independent modes for changing their shape.

Intuitively, we may say that there are only two such modes, that is, stretching and bending.
Rigorously, we may associate unambiguously the former mode with the stretching componentU of the surface deformation gradient F, as delivered by the polar decomposition theorem. But
associating the bending mode with the whole orthogonal component R of F cannot be right, as
this deformation descriptor would in general fail to be intrinsic to the surface.

(a)

t = 0

(b)

t = 
1
4

t = 
1
2

t = 
3
4

(c) (d)

(e)

t = 1

Figure 2. Surfaces S t extracted from the family described by the Weierstrass function Ft in (4.28). They are images via the
mapping rt(w) induced by Ft(w) through (4.4) of the disk BR of radius R centred at w = 0; the scaling factor of each
image is |rt(R)|. The selected values of the parameter t are shown in panels (a)-(e).
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By decomposing uniquely R into a drilling rotation R(d) about the surface normal ν and a
complementary rotation R(b) about an axis orthogonal to ν, we identified the latter as the correct
bending descriptor. Bending-neutral deformations were then naturally defined as those deforma-
tions that would leave the bending content unchanged, while affecting the drilling one. These
deformations preserve normals. In a variational elastic theory for shells, these deformations, if
existent, would not affect the bending energy, while still prompting effective changes in shape,
at the expenses of a drilling energy.

Whether bending-neutral deformations do actually exist is not a trivial issue. In this paper,
we gave a necessary and sufficient integrability condition that guarantees their existence, at
least locally. A large class of surfaces can indeed be subjected to bending-neutral deformations:
all minimal surfaces. Actually, there is more to it: (i) every minimal surface is transformed into
a minimal surface by a bending-neutral deformation; (ii) given two minimal surfaces with the
same system of normals, there is a bending-neutral deformation that maps one into the other;
and (iii) all minimal surfaces have indeed a universal bending content.

All conceivable normal preserving motions driving one minimal surface into another can
only consist of drilling and stretching, as is apparent from the gliding motions shown in the
animations accompanying this paper.

In the light of our finer decomposition of surface deformations, speaking of ‘a bending
procedure which, at every stage, passes through a minimal surface’ [35, p. 102], as done in
almost every textbook, would be inaccurate whenever normals are preserved: there is indeed no
way to bend a minimal surface, other than by altering the system of its normals.

Although we deem our kinematic analysis of surfaces possibly also relevant to the energetics
of elastic plates and shells, we have not attempted any systematic treatment of this issue. A
preliminary step toward this aim would be to extract from both df and bf objective measures of
drilling and bending that would feature in a stored-energy functional.

We are also guilty of another omission. Our deformation study was local in nature: we left
out all global considerations. This came with the price of allowing self-intersecting surfaces as
deformed images, which is forbidden in continuum mechanics by the principle of identification
of material body points.
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Appendix A: Rotation decomposition
Here, we use equation (3.10) for the decomposition of a rotation R(a) ∈ SO(3) to prove that the
vectors a1 and a2 can be identified uniquely by requiring the former to be parallel to a given
unit vector e and the latter orthogonal to it.
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Let a ∈ V  and e ∈ S2 be given so that a × e ≠ 0.11 We solve (3.11) with a1 = ue and a2 ⋅ e = 0.
Projecting both sides of (3.11) along e and on the plane orthogonal to it, we find that:

(A 1a)u = a ⋅ e,

(A 1b)P(e)a = a2 − ue × a2 .

Representing a2 as:

(A 2)a2 = b1P(e)a + b2e × P(e)a,

where b1 and b2 are scalar parameters to be determined, we easily see that the only solution of
(A 1b) is obtained for:

(A 3)b1 = 1
1 + u2 and b2 = u

1 + u2 .

Use of (A 3) and (A 1a) in (A 2) readily leads us to (3.12) in the main text.
To prove that R(a1) with a1 as in (3.12) is indeed the rotation of SO(e) closest to R(a), we
introduce the (squared) distance:

(A 4)d(u) := |R(a) − R(ue)|2 := tr{[R(a) − R(ue)]T[R(a) − R(ue)]}.

A direct computation shows that

(A 5)d(u) = 6 + 2
1 + a2

1
1 + u2 {[1 + a2 − 4(a ⋅ e)2]u2 − 8(a ⋅ e)u + a2 − 3},

and it is then a simple matter to conclude that d attains its minimum for u = a ⋅ e and its
maximum for u = −1/a ⋅ e.

Appendix B: Gradient integrability
In this appendix, we gather a number of details needed to derive the integrability conditions in
(3.33). The objective is to enforce (2.9) for the surface tensor field F = Rν(α)Uy where Uy is given
by (3.29) and Rν(α) by (3.26).
We begin by writing F explicitly in the eigenframe (n1,n2, ν) of the curvature tensor,

(B 1)F = λ{κ1cos αn1 ⊗n1 + κ2sin αn1 ⊗n2 + κ1sin αn2 ⊗n1 − κ2cos αn2 ⊗n2}.

To compute ∇sF, we also need to express both ∇sn1 and ∇sn2 in the frame (n1,n2, ν),

(B 2)
∇sn1 = n2 ⊗ c − κ1ν ⊗ n1,∇sn2 = − n1 ⊗ c − κ2ν ⊗ n2,

where c is the tangential field defined by (3.34).
A lengthy but simple calculation shows that equation (2.9) acquires the following structure:

(B 3)n1 ⊗W1 + n2 ⊗W2 = 0,

where both W1 and W2 are skew-symmetric second-rank tensors, which by (B 1), (B 2) and
(3.25) are associated with the following axial vectors

(B 4)
w1 = ∇s(λκ1cosα) × n1 + ∇s(λκ2sinα) × n2 − λ(κ1 + κ2)Rν(α)n2 × c,w2 = ∇s(λκ1sinα) × n1 −∇s(λκ2cosα) × n2 − λ(κ1 + κ2)Rν(α)n1 × c,

which are both parallel to ν. The system of scalar equations (3.33) in the main text follows from
requiring that w1 = w2 ≡ 0 on S .
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Endnotes
1This definition agrees with that given by Weatherburn [11, p. 220], who identifies ∇sφ with the 'vector
quantity whose direction is that direction on the surface p at which gives the maximum arc-rate of increase
of φ , and whose magnitude is this maximum rate of increase', which is perhaps more descriptive.
2As remarked in Weatherburn [15 p. 5], △sφ is just the same as the differential parameter of the second order
introduced by Beltrami (see pp. 148, 321 of [16]).
3We have retraced the first occurrence of 'drilling degrees of freedom' to [23]; it was soon picked up [24]; see
also [25] for an instance of more recent usage.
4The reader is referred to Altmann [26] for a witty account on Rodrigues’ representation of rotations and its
connections with Hamilton’s quaternions.
5Much in the spirit of the variational characterization of the polar decomposition itself [29,30] initiated by a
kinematic note of Grioli [31] recently revived and commented in Neff et al. [32].
6It would be a simple matter for the reader to check directly that use of (3.29) in (3.24) makes the latter
equation identically satisfied for any Rν as in (3.26) and that use of (3.28) in (3.30) makes ∇sν∗ correspond-
ingly symmetric for any Rν.
7The definition of Cartesian connectors is further expounded in Ozenda et al. and Ozenda & Virga [33,34].
8The spherical image of a surface is the image of its normal map (or Gauss map) on S2 (e.g. [35 , p. 9]).
Saying that two surfaces share the same spherical image amounts to saying that they have collectively the
same system of normals, which is perhaps a more colloquial expression.
9The existence of isothermal parameters for a generic surface is not obvious, and for surfaces of class C1 it
is even not generally true. For surfaces of class C2 , they always exist (at least locally) by a classical theorem
(see also [36]) whose proof is indeed much easier for minimal surfaces (e.g. [37 p. 31]).
10Bour [41] proved that the surfaces represented by (4.29) constitute the complete set of minimal surfaces
that can be mapped isometrically onto a surface of revolution. The paper [41] is the published version of
the manuscript that won Bour the 1859 Grand Prix des Mathématiques granted by the French Academy of
Sciences in Paris. A terse account of Bour’s manuscript and two others competing with it for the same prize
can be found in [42].
11Were a × e = 0, our claim would be trivially valid with a1 = a and a2 = 0.
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