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Abstract—This paper deals with the problem of clustering data
returned by a radar sensor network that monitors a region where
multiple moving targets are present. The network is formed by
nodes with limited functionalities that transmit the estimates of
target positions (after a detection) to a fusion center without
any association between measurements and targets. To solve the
problem at hand, we resort to model-based learning algorithms
and instead of applying the plain maximum likelihood approach,
due to the related computational requirements, we exploit the
latent variable model coupled with the expectation-maximization
algorithm. The devised estimation procedure returns posterior
probabilities that are used to cluster the huge amount of data
collected by the fusion center. Remarkably, we also consider
challenging scenarios with an unknown number of targets and
estimate it by means of the model order selection rules. The
clustering performance of the proposed strategy is compared to
that of conventional data-driven methods over synthetic data.
The numerical examples point out that the herein proposed
solutions can provide reliable clustering performance overcoming
the considered competitors.

Index Terms—Batch algorithms, expectation-maximization,
measurement clustering, multiple moving targets, radar, sensor
network, unsupervised learning.

I. INTRODUCTION

IN the recent years, the increase of computational resources
has heavily promoted the development and the implemen-

tation of sophisticated signal processing techniques in real
radar systems. More importantly, with the advent of the big
data era, statistical signal processing algorithms have been
incorporated into a wider class called “Machine Learning” that
has become more and more popular over the years [1], [2] and
also comprises deep learning techniques. Two main design
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approaches can be identified within this wide class: data-
driven and model-based oriented designs. The former operates
through a learning stage that relies on training data, namely a
set of input-output pairs used to learn the algorithm from the
available data, whereas the latter relies on a model grounded
on the first physics principles. In both cases, the exploitation
of high performance boards becomes unavoidable to fulfill the
tight (time) requirements of real radar systems. The methods
devised in this paper are framed in the model-based class.

In parallel with the technological advancements, the oper-
ating scenarios have become more and more challenging as
well as the corresponding estimation/optimization problems.
A related example is represented by scenarios where swarms
of (possibly noncooperative) targets are moving in the region
of interest that is monitored by a network of passive/active
radars [3]–[13]. As a matter of fact, the advantages arising
from the use of a sensor network are well-known and we
mention here the spatial diversity and the energy integration.
For this reason, in modern radar systems, the cooperation
between systems distributed over the region under surveillance
becomes a key factor to improve the reliability of the entire
surveillance system. For instance, with focus on ground radars,
the spatial diversity of the sensor network can be exploited to
face deception/saturation jamming techniques such as range
gate stealing [14], [15], that generate false targets to make the
radar lose range track on the target.

However, radar networks require special attention in han-
dling a huge amount of data provided by each node, especially
in the presence of multiple moving targets [16]–[18]. In this
case, the detection can be either centralized or decentralized.
In centralized detection, sending raw observations from radar
sensors to the fusion center (FC), where the final decision
process takes place, imposes a large communication burden.
On the other hand, in decentralized detection, radar sensors
take their local decisions on the presence of prospective targets
and, then, transmit the results of such decisions (compressed
data) to the FC. In this case, the amount of transmitted data
is lower than in the previous configuration with a consequent
energy saving but at the price of performance loss. As a matter
of fact, the overall system does not take advantage of diversity.
The design of an optimized decentralized detector network,
which entails the design of both optimal local detectors and
fusion rules at FC, does not represent an easy task [19]
and some strategies to solve this difficult problem have been
proposed in the past [20]–[22]. Moreover, in radar networks,
the tracking of multiple targets represents a very challenging
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problem due to the limited data computational capacity of
the FC as well as of the transmit energy of each radar [22]–
[25]. Generally speaking, this implies the necessity of using
sophisticated (centralized or decentralized) fusion methods
[26]–[29]. Anyway, the implementation of centralized fusion
methods is computationally expensive [26]. Nevertheless, a
preliminary stage that preprocesses and clusters the received
observations into homogeneous measurement sets, might re-
duce the computational load at the FC [30]–[35]. As a matter
of fact, although the data volume handled by the FC does
not decrease after clustering, a preliminary data clustering,
according to some criterion, can provide an indication of the
number of objects that move within the region of interest
along with the associated measurements. As a consequence,
the tracking algorithms used to form target trajectories can
be fed by these clusters and simplified (from a computational
point of view) since they are not required to solve a data
association problem.

Clustering algorithms have been also applied for the design
of CFAR and/or selective/robust detectors [36], [37]. Particu-
larly, in [36], received data are transformed to generate specific
features based upon the maximal invariant statistic [38] for
that problem. Then, such features are clustered in a two-
dimensional plane to come up with a detector that is invariant
to the disturbance parameters and, hence, can guarantee the
constant false alarm rate property. Another design method-
ology, based on the previous approach, is proposed in [37],
where sub-optimal strategies with low complexity have been
developed. The expectation-maximization (EM) algorithm is
also used for clustering data that can be modeled as a Gaussian
Mixture [1]. In particular, in the context of radar systems, the
EM algorithm is used to partition clutter returns based upon
their spectral properties [39]. To this end, fictitious hidden
random variables are introduced to represent the clutter type
of each range bin. Interestingly, the classification algorithms
have been devised by accounting for different models of the
clutter covariance matrix. Whereas, in [40], joint detection and
classification architectures have been proposed by extending
the work of [39] to the case where an unknown number of
multiple point-like targets are present in the region of interest.
In [41], the EM algorithm is still used for the target detection
in heterogeneous clutter scenarios.

In this paper, we focus on the design of a suitable pre-
liminary stage that processes data in order to form clusters
from measurements collected by a radar sensor network that
senses a crowded region. As stated above, the aim of this
preliminary stage consists in providing a preliminary solution
of the data association problem that can be used to simplify the
ensuing data processing stages responsible for track formation.
Actually, this issue is getting more and more critical with
the growing number of scenarios in which multiple targets
need to be monitored in crowded spaces [42]. As a matter of
fact, conventional radar scenarios are getting more densely
populated with the arrival of new classes of targets such
as unmanned/autonomous vehicles (either in air, land, or
sea). The same remark also holds for less conventional but
equally challenging radar scenarios such as monitoring space
targets. Therefore, we focus on a radar sensor network whose

monostatic nodes illuminate the same region of interest where
an unknown number of targets are moving. Each node does
not perform any association between the measurements related
to a detection and the detected targets, and sends to the FC
the position estimates corresponding to each detection within
a common observation time window. At the design stage, we
assume that measurements are collected over a time interval
such that the target trajectories can be approximated as straight
lines (with a not necessarily constant velocity). Assuming
a specific distribution for the measurement noise, we ex-
ploit the likelihood function of data to solve the clustering
problem. In this respect, we do not resort to the maximum
likelihood principle, because it requires the evaluation of
the joint likelihood function for each partition of the entire
measurement set and targets’ number. It is clear that such
a task is unacceptable from a computational standpoint and,
more importantly, the maximum likelihood approach would
return estimates corresponding to the maximum allowed model
order since the likelihood function monotonically increases
with the number of unknown parameters [43], [44]. Therefore,
to circumvent the above limitations, we introduce fictitious
and unobserved discrete random variables that represent target
labels associated with the measurements gathered by the
FC. Then, exploiting the joint distribution of measurements
and the hidden labels, we develop an estimation procedure
grounded on the EM algorithm [45] that allows us to obtain
a nondecreasing sequence of likelihood values as well as
closed-form expressions for the updates of the estimates. The
clusters are formed by applying the maximum a posteriori
rule, whereas an estimate of the number of targets is returned
through the Model Order Selection (MOS) rules [43], [44],
[46]–[48].

The performance analysis is carried out over synthetic data
and starts from the case where the number of targets is known
to proceed with the case where the latter is unknown. As terms
of comparison, we consider two conventional data-driven
algorithms. The numerical examples show the superiority of
the proposed approach over the considered competitors in
classifying the collected measurements.

The remainder of this paper is organized as follows. In the
next section, we describe the surveillance system and provide a
formal statement of the problem. In Section III, we devise the
EM-based estimation procedure when the number of targets
is known, whereas in Section IV we extend such a procedure
to the case of an unknown number of targets. The numerical
examples are contained in Section V and, finally, concluding
remarks along with the description of possible future research
lines are confined to Section VI.

A. Notation

In the sequel, vectors are denoted by boldface lower-case.
As to numerical sets, N is the set of natural numbers, R is
the set of real numbers, and RN×M is the Euclidean space of
(N×M)-dimensional real matrices (or vectors if M = 1). The
Cartesian product of two sets A and B is denoted by A×B.
The acronyms PDF and PMF stand for Probability Density
Function and Probability Mass Function, respectively, whereas
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the conditional pdf of a random variable x given another
random variable y is denoted by f(x|y). The probability of
an event A is defined as P{A}, whereas the conditional
probability of A given another event B is P{A|B}. Symbol
b·c represents the highest integer lower than the argument
while |x| is the absolute value of x ∈ R. Finally, we write
x ∼ N (m,σ2) if x is a Gaussian random variable with mean
m and variance σ2 > 0.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider a sensor network of K ∈ N monostatic
radars deployed to illuminate the same region of interest. The
capabilities of such systems are limited to target detection
and rough estimation of its range and azimuth. Assuming that
the region of interest is populated by an unknown number, L
say, of multiple point-like moving targets, the measurements
obtained by each sensor are transmitted to a fusion center
that converts the received polar coordinates into Cartesian
coordinates. Notice that each radar system works in an asyn-
chronous way with respect to the other systems. At a given
time instant t and for the lth target, the fusion center receives
0 ≤ Kl ≤ K measurements from the nodes that have
detected the same target and we denote the corresponding
coordinates by (xl,k,t, yl,k,t) ∈ R × R, l = 1, . . . , L and
k ∈ Ωl ⊆ {1, . . . ,K}, where Ωl is the set of systems that have
detected the lth target and measured the related parameters.
The fusion center collects measurements for a preassigned
time interval without knowing which target is associated with
the received measurements. The first operation performed
by the fusion center consists in clustering data under the
assumption that targets’ motion over short time intervals can
be approximated as a straight line. The motivation behind this
assumption arises from the fact that, for some platforms such
as unmanned/autonomous vehicles, their routes are planned
according to a specific mission or constrained by spatial
obstacles that force the platform to follow a given path. For
suitable time intervals, such trajectories can be approximated
by straight lines. Moreover, since the shortest path between
two spatial points is a straight line (neglecting the space
curvature), the latter is used to reduce fuel/energy consumption
[49, and references therein]. The system geometry and the
considered scenario are depicted in Fig. 1. Thus, in the absence
of disturbance and at a given time instant t, we consider the
following model for the measurements

yl,k,t = alxl,k,t + bl, (1)

where al ∈ R and bl ∈ R are unknown coefficients
associated with the motion of the lth target and they are
assumed stationary over the considered time interval. In what
follows, we neglect the temporal dimension represented by
t since the proposed approach works in asynchronous way
with respect to the time of arrival of the measurements.
Therefore, measurements are indexed by a generic integer
n. It is important to observe that, in principle, the above
clustering problem could be solved by using the maximum
likelihood approach. However, the solution would experience
a combinatorial computational complexity due to the fact

Fig. 1: System geometry and coordinates.

that the likelihood function is computed over all the possible
associations and number of targets. In addition, the maximum
likelihood approach would always select the maximum num-
ber of targets since the likelihood function is monotonically
increasing with the number of parameters [44]. To overcome
the above drawbacks, we resort to the following approaches:

• the Latent Variable Model [1], [39]–[41], [50] that allows
us to reduce the computational complexity related to each
possible association;

• the MOS rules [43], [44], [46]–[48] that mitigate the over-
fitting inclination of the maximum likelihood approach
for the estimation of the target number.

Starting from the first item, let us assume for the moment
that the number of targets is known and denote by N the
entire number of measurements, yn say, collected by the fusion
center. Then, we reformulate the problem at hand by introduc-
ing N independent and identically distributed hidden discrete
random variables, cn say, taking on values in A = {1, . . . , L},
such that for the generic nth measurement we have that

yn|cn = l ∼ N (alxn + bl, σ
2
l ), n = 1, . . . , N, (2)

where the measurement noise related to the lth target is
modeled as a Gaussian random variable with unknown vari-
ance σ2

l > 0. Notice that random variables cn represent
target identifiers associated with each measurement and, as
described below, can be used to suitably cluster measurements.
Assuming that the measurements are statistically independent
and that the PMF of cn is denoted by πl = P{cn = l}, l ∈ A,
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the joint PDF of y1, . . . , yN can be written as:

f(y1, . . . , yN ;θ, π1, . . . , πL)

=
N∏
n=1

f(yn;θ, π1, . . . , πL)

=
N∏
n=1

∑
l∈A

f(yn, cn = l;θ, π1, . . . , πL)

=
N∏
n=1

∑
l∈A

f(yn|cn = l;θ)πl,

(3)

where θ = [a1, . . . , aL, b1, . . . , bL, σ
2
1 , . . . , σ

2
L]T ∈ R3L×1.

Finally, we exploit the above PDF to obtain the estimates
of the unknown parameters that will be used to build up a
maximum a posteriori rule allowing for measurement associ-
ation and, hence, target clustering. Specifically, the unknown
parameters are estimated by solving

max
θ

π1,...,πL

N∏
n=1

∑
l∈A

f(yn|cn = l;θ)πl (4)

or equivalently

max
θ

π1,...,πL

N∑
n=1

log

[∑
l∈A

f(yn|cn = l;θ)πl

]
. (5)

Denoting by θ̂ and π̂l, l ∈ A, the estimates of θ and πl,
l ∈ A, respectively, we associate measurement yn with the
target identifier l̂ exhibiting the highest a posteriori probability,
namely

l̂ = arg max
l∈A

P
{
cn = l|yn; θ̂, π̂l

}
. (6)

In the next section, we design an estimation procedure to solve
problem (5) and, as a byproduct, (6), grounded on the EM-
algorithm. Then, in Section IV, we address the case where L
is unknown.

III. ESTIMATION PROCEDURE FOR KNOWN NUMBER OF
TARGETS

From a mathematical point of view, the plain maximization
in (5) is a difficult task at least to the best of the authors’
knowledge. For this reason, we resort to the EM-algorithm
that is an iterative procedure with closed-form updates for the
estimates of interest and provides at least a local maximum
[1], [45], [51]. The EM-algorithm repeats two steps called E-
step and M-step until a stopping criterion is not satisfied. The
former consists in updating the a posteriori probability of the
event cn = l given the nth measurement yn whereas in the
latter step, the log-likelihood function is maximized to obtain
updated parameter estimates.

Thus, let us start form the E-step and denote by θ̂
(h−1)

and
π̂

(h−1)
l , l ∈ A, the estimates of θ and πl, l ∈ A, at the (h−1)th

iteration, respectively. The E-step leads to the computation of

p(h−1)
n (l) = P

{
cn = l|yn; θ̂

(h−1)
, π̂

(h−1)
l

}

=

f

(
yn|cn = l; θ̂

(h−1)
)
π̂

(h−1)
l∑̄

l∈A
f

(
yn|cn = l̄; θ̂

(h−1)
)
π̂

(h−1)

l̄

(7)

for l ∈ A and n = 1, . . . , N . As for the M-step, after applying
the Jensen inequality to the argument of (5), we come up with
the following optimization problem

max
θ

πl,l∈A

N∑
n=1

∑
l∈A

p(h−1)
n (l) log

(
f(yn|cn = l;θ)πl

p
(h−1)
n (l)

)
, (8)

where

f(yn|cn = l;θ) =
exp

[
− 1

2σ2
l

(yn − alxn − bl)2
]

√
2πσl

. (9)

Problem (8) is tantamount to

max
θ

πl,l∈A

N∑
n=1

∑
l∈A

[
p(h−1)
n (l) log[f(yn|cn = l;θ)]

+ p(h−1)
n (l) log(πl)

]
. (10)

Thus, the maximization over πl, l ∈ A, can be accomplished
by solving 

max
πl,l∈A

N∑
n=1

∑
l∈A

p(h−1)
n (l) log(πl),

subject to
∑
l∈A

πl = 1.

(11)

According to the method of Lagrange multipliers, we set to
zero the first derivative with respect to the unknowns of the
Langrangian function whose expression is

N∑
n=1

∑
l∈A

p(h−1)
n (l) log(πl)− λ

(∑
l∈A

πl − 1

)
, (12)

where λ is the Lagrange multiplier. Proceeding in this way,
we obtain that

N∑
n=1

p(h−1)
n (l)

1

πl
− λ = 0

=⇒ πl =
1

λ

N∑
n=1

p(h−1)
n (l), l ∈ A.

(13)

Considering the constraint leads to

1

λ

∑
l∈A

N∑
n=1

p(h−1)
n (l) = 1

=⇒ λ =

N∑
n=1

∑
l∈A

p(h−1)
n (l) = N

(14)
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and, hence,

π
(h)
l =

1

N

N∑
n=1

p(h−1)
n (l), l ∈ A. (15)

It still remains to maximize the objective function with re-
spect to the other parameters. Thus, neglecting the irrelevant
constants, the optimization problem to be solved can be
formulated as

max
θ

g(θ), (16)

where

g(θ) =
N∑
n=1

∑
l∈A

p(h−1)
n (l)

×
[
−1

2
log(2πσ2

l )− 1

2σ2
l

(yn − alxn − bl)2

]
. (17)

Focusing on σ2
l , l ∈ A, we firstly notice that ∀l ∈ A

lim
σ2
l→+∞

g(θ) = −∞ and lim
σ2
l→0

g(θ) = −∞. (18)

Thus, the maximum over σ2
l can be found by setting to zero

the first derivative of g(θ) with respect to σ2
l , namely

N∑
n=1

p(h−1)
n (l)

[
− 1

2σ2
l

+
1

2(σ2
l )2

(yn − alxn − bl)2

]
= 0

(19)
and solving with respect to σ2

l we obtain

σ̃2
l =

N∑
n=1

(yn − alxn − bl)2p
(h−1)
n (l)

N∑
n=1

p
(h−1)
n (l)

, l ∈ A (20)

Moreover, when σ2
l < (σ̃2

l )(h), the derivative is positive
(increasing function), whereas for σ2

l > (σ̃2
l )(h), the deriva-

tive is negative (decreasing function). Replacing (20) in (17)
and neglecting the terms that do not enter the optimization
problem, the latter is equivalent to

min
al,bl
l∈A

∑
l∈A

g(al, bl), (21)

where

g(al, bl) =

(
N∑
n=1

p(h−1)
n (l)

)

× log

[
N∑
n=1

(yn − alxn − bl)2p(h−1)
n (l)

]
. (22)

Let us study the behavior of g(al, bl) at the endpoints of its
domain. To this end, it is not difficult to show that

lim
|al|→+∞
|bl|→+∞

g(al, bl) = +∞, l ∈ A. (23)

Therefore, we set to zero the first derivative over al of g(al, bl)
to obtain

(
N∑
n=1

p(h−1)
n (l)

)
1

N∑
n=1

(yn − alxn − bl)2p
(h−1)
n (l)

×

[
N∑
n=1

p(h−1)
n (l)2(yn − alxn − bl)(−xn)

]
= 0 (24)

and, hence,

ãl =

N∑
n=1

p
(h−1)
n (l)(yn − bl)xn
N∑
n=1

p
(h−1)
n (l)x2

n

, l ∈ A. (25)

Replacing (25) into (22) and neglecting the irrelevant con-
stants, we can consider

min
bl

log g1(bl), (26)

where

g1(bl) =

N∑
n=1

 p
(h−1)
n (l)(
B

(h−1)
l

)2

[
ynB

(h−1)
l

− xn
N∑
n̄=1

p
(h−1)
n̄ (l)yn̄xn̄

+bl

(
xnA

(h−1)
l −B(h−1)

l

)]2}
, (27)

with

A
(h−1)
l =

N∑
n̄=1

p
(h−1)
n̄ (l)xn̄,

B
(h−1)
l =

N∑
n̄=1

p(h−1)
n̄

(l)x2
n̄.

(28)

Now, setting to zero the first derivative of log g1(bl) with
respect to bl leads to

1

g1(bl)

N∑
n=1

2p
(h−1)
n (l)

B
(h−1)
l

[
ynB

(h−1)
l

− xn
N∑
n̄=1

p
(h−1)
n̄ (l)yn̄xn̄ + bl

(
xnA

(h−1)
l −B(h−1)

l

)]

×

(
xnA

(h−1)
l −B(h−1)

l

B
(h−1)
l

)
= 0, (29)
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and, as a consequence, the estimate update for bl is given by

b̂
(h)
l =

1
N∑
n=1

p
(h−1)
n (l)

(
xnA

(h−1)
l −B(h−1)

l

)2

×

{
N∑
n=1

[
p(h−1)
n (l)xn

(
xnA

(h−1)
l −B(h−1)

l

)
×

N∑
n̄=1

p
(h−1)
n̄ (l)yn̄xn̄

]
−

N∑
n=1

[
p(h−1)
n (l)yn

×
(
xnA

(h−1)
l −B(h−1)

l

) N∑
n̄=1

p(h−1)
n̄

(l)x2
n̄

]}
. (30)

Finally, the updates for the estimates of al and σ2
l can be

written as

â
(h)
l =

N∑
n=1

p
(h−1)
n (l)

(
yn − b(h)

l

)
xn

N∑
n=1

p
(h−1)
n (l)x2

n

, l ∈ A. (31)

and

(σ̂2
l )(h) =

N∑
n=1

(
yn − a(h)

l xn − b(h)
l

)2

p
(h−1)
n (l)

N∑
n=1

p
(h−1)
n (l)

, l ∈ A,

(32)
respectively.

Summarizing, the E-step given by (7) and the above up-
dates obtained from the M-step are repeated until a stopping
criterion is not satisfied. Specifically, the iterations end when

∆L(h) =

∣∣∣∣[L(y1, . . . , yN ; θ̂
(h)
, π̂

(h)
1 , . . . , π̂

(h)
L

)
−L

(
y1, . . . , yN ; θ̂

(h−1)
, π̂

(h−1)
l , . . . , π̂

(h−1)
L

)]∣∣∣∣
/

∣∣∣∣L(y1, . . . , yN ; θ̂
(h)
, π̂

(h)
1 , . . . , π̂

(h)
L

)∣∣∣∣ < ε, (33)

where ε > 0 and

L

(
y1, . . . , yN ; θ̂

(h)
, π̂

(h)
1 , . . . , π̂

(h)
L

)
=

N∑
n=1

log

[∑
l∈A

f

(
yn|cn = l; θ̂

(h)
)
π

(h)
l

]
, (34)

or after a maximum number of iterations denoted by hmax.
In the next section, we show how to incorporate the esti-

mates obtained through the EM-algorithm into the MOS rules
to determine the number of targets L.

IV. ESTIMATION PROCEDURE FOR UNKNOWN NUMBER OF
TARGETS

The estimation of the number of targets relies on the MOS
rules since the hypotheses corresponding to scenarios with
different numbers of targets are nested. As stated in Section
I, the maximum likelihood approach experiences an overesti-
mation of the parameter space size [44], [52] and, hence, a

penalty term is required to balance the corresponding growth
of the likelihood function. In what follows, we consider the
Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), and the Generalized Information Criterion
(GIC) [44], whose general structure is

L̂ = arg min
L∈{1,...,Lmax}

{
− 2L

(
y1, . . . , yN ; θ̂

(hL)
,

π̂
(hL)
1 , . . . , π̂

(hL)
L

)
+ p(L)

}
, (35)

where hL is the number of iterations used by the EM-based
estimation procedure introduced in Section III assuming L
targets and p(L) is a penalty term defined as follows

p(L) =


2np(L), AIC,

(1 + ρ)np(L), ρ ≥ 1, GIC,

np(L) log(N), BIC,

(36)

with np(L) = 4L being the number of unknown parameters
in the presence of L targets.

Once L̂ is computed through (35), we can define Â =
{1, . . . , L̂} and the association rule (6) becomes

l̂ = arg max
l∈Â

P

{
cn = l|yn; θ̂

(hL̂)
, π̂

(hL̂)

l

}
, (37)

where θ̂
(hL̂)

and π̂(hL̂)

l , l ∈ Â, are the estimates corresponding
to the case L = L̂.

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide illustrative examples aimed
at assessing the classification/clustering performance of the
proposed approach by resorting to Monte Carlo (MC) counting
techniques. Specifically, we start the analysis by assuming
that L is known and consider two operating scenarios with
L = 5 and L = 10 targets. Then, we focus on the estimation
capabilities for the number of targets by setting Lmax = 10
and the actual value of L equal to 3 and 7.1

In each scenario, we directly generate the trajectories of
multiple targets in Cartesian coordinates with the number of
measurements for the lth target, Nl say, l ∈ A,2 being a
uniformly distributed random variable in [60, 90]. In addition,
trajectory intersections are included in the considered scenar-
ios making the classification task more challenging.

For comparison purposes, we compare the proposed ap-
proach with two classical machine learning clustering tech-
niques, namely the K-Nearest-Neighbor (KNN) and K-means
[1], [53], [54]. The former is a supervised method, whereas
the latter is unsupervised. In the ensuing examples, we assume
that the ratio between the quantity of training and validation

1A guideline for the choice of Lmax should account for both computational
load and target number underestimation. Specifically, Lmax should be large
enough to account for all the targets moving in the region of interest and, at
the same time, to guarantee a reasonable computation time.

2Notice that the constraint
L∑

l=1
Nl = N holds.

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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Algorithm 1: Initialization of al and bl.
Input: L, yn, xn, n = 1, . . . , N
Output: al, bl, l ∈ A

Initialization: set N ′1 = N , yn′
1

= yn, xn′
1

= xn,
n′1 = n = 1, . . . , N

for l = 1, . . . , L do
1. compute al and bl of the linear regression by

al =

(
N ′
l∑

n′
l=1

(xn′
l
− x̄)(yn′

l
− ȳ)

)
/

N ′
l∑

n′
l=1

(xn′
l
− x̄)2

and bl = ȳ − alx̄ using N ′l measurements with x̄
and ȳ the mean value of xn′

l
and yn′

l
, respectively;

2. compute the standard deviation of (xn′
l
, yn′

l
)

with respect to the fitted line, namely,
dl(n

′
l) = |yn′

l
− alxn′

l
− bl|/

√
a2
l + b2l ,

n′l = 1, . . . , N ′l ;
3. set l = l + 1;
4. select the bN/Lc measurements with the
minimum dl(n

′
l) and discard them, we have

N ′l = N ′l−1 − bN/Lc;
5. go to step 1 using the remaining measurements
until the loop ends.

end

data for the KNN is 4/6 and the number of nearest neighbors
is 50. Moreover, we set the GIC parameter3 ρ = 2.

As for the initialization of the EM-based procedure, it is
important to observe that it plays a role of primary impor-
tance. As a matter of fact, an unreliable initialization might
significantly impair the estimation performance of iterative
procedures and, more importantly, it should tightly account for
the design assumptions of the iterative estimation procedures.
For this reason, we derive an ad hoc initialization strategy,
summarized in Algorithm 1, that finds initial labels for the
unknown coefficients associated with the motion of each target
exploiting the a priori information about trajectory (i.e., its
approximation to a straight line over the observation interval).
Finally, the initial values for the PMF of cn are πl = 1/L,
l ∈ A. Possible initial values the noise variances are

σ2
l =

N ′
l∑

n′
l=1

(yn′
l
− alxn′

l
− bl)2/N ′l , l ∈ A, (38)

where N ′l denotes the number of measurements used to
compute the initial trajectory coefficients of the lth target in
Algorithm 1.

In each scenario, if not explicitly specified, the measure-
ments are affected by an uncertainty with variance σ2

l = 50,
l ∈ A that lead to a significant “mix” of the targets’
measurements. Finally, we anticipate here that, in order to
achieve a satisfactory compromise between convergence and
computational load, ε is set to 10−5 and hmax is set to 150
and 250 for L = 5 and L = 10, respectively, as corroborated
by the subsequent convergence analysis.

3Notice that typical values for ρ are within the interval [1, 5] [44] and
ρ = 2, for this specific application, represents a reasonable compromise to
limit the overestimation of the number of targets L [40], [55].

Fig. 2: Clean target trajectories without measurement noise
(first scenario).

Fig. 3: ∆L(h) versus h for the EM-based procedure (first
scenario).

A. First Operating Scenario for Known Number of Targets
L = 5

In this scenario, we consider five targets whose measure-
ments are generated as follows

• Target 1: yn1
|cn1

= 1 ∼ N (−1.5xn1
+ 671, σ2

1), n1 =
1, . . . , N1;

• Target 2: yn2 |cn2 = 2 ∼ N (−0.8xn2 + 310, σ2
2), n2 =

1, . . . , N2;
• Target 3: yn3

|cn3
= 3 ∼ N (0.6xn3

− 434, σ2
3), n3 =

1, . . . , N3;
• Target 4: yn4

|cn4
= 4 ∼ N (xn4

− 110, σ2
4), n4 =

1, . . . , N4;
• Target 5: yn5 |cn5 = 5 ∼ N (1.8xn5 + 430, σ2

5), n5 =
1, . . . , N5;

where xnl , l ∈ A, are generated by randomly selecting
integers from 1 to N . The above target trajectories without
measurement noise are shown in Fig. 2.

In Fig. 3, we plot the curves of ∆L(h) averaged over 1000
independent trials to select a suitable value for hmax. It can be
seen that the relative variation of the log-likelihood function

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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(a) (b)

(c) (d)

Fig. 4: Cartesian coordinates diagrams for each target over a single MC trial (first scenario): (a) true measurement association;
(b) classification (scatter points) results and trajectory fitting (straight lines) for the proposed architecture; (c) classification
results for the KNN; (d) classification results for the K-means.

is lower than 10−5 after 150 iterations and, hence, for this
scenario, we set hmax = 150.

The classification capabilities of the proposed architecture
in comparison with the two considered competitors are in-
vestigated in Figs. 4-6. Specifically, the true clusters and the
classification results over a single MC trial are shown in
Fig. 4. The inspection of this figure clearly points out the
superiority of the proposed method in measurement labeling
over the counterparts. As a matter of fact, from a qualitative
point of view, both KNN and K-means experience evident
misclassification errors due to the association of measurements
to wrong targets. As a consequence, the trajectory of a given
target appears divided into segments corresponding to different
targets. This kind of segmentation is more evident in Subfigure
4(d) that reports the classification results of K-means. More-
over, Subfigure 4(b) contains the target trajectories, obtained
through the estimates of al and bl, l ∈ A, that4 perfectly fit
with the measurements (at least for the considered parameter
setting).

Fig. 5 shows the mean classification consistency (%), which
is defined as the ratio between the number of correct classi-

4Observe that analogous curves are not reported in the other subfigures
since the KNN and K-means cannot provide such estimates.

Fig. 5: Average classification consistency (%) over 1000
independent trials for the considered classifiers (first scenario).

fications over the true target categories averaged over 1000
independent trials. It turns out that the proposed EM-based
classifier achieves a classification gain of approximately 12.6%
and 59% with respect to the KNN and K-means, respectively.
Fig. 6 shows the mean classification error (%) averaged over

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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Fig. 6: Average classification error (%) of each target over
1000 independent trials for the considered classifiers (first
scenario).

1000 MC trials, namely the ratio between the number of
misclassified measurements for a given class (target) and the
true quantity for that category. Again, the advantage of the
proposed method over the considered competitors is quite
evident.

Finally, to assess the estimation accuracy for the estimates
of al and bl at the nmcth MC trial, which are generally denoted
by âl(nmc) and b̂l(nmc), l ∈ A, respectively, in Table I we
evaluate the Percentage Root Mean Square Error (PRMSE)
relative to the true values that is defined as

PRMSEal =

√√√√√ Nmc∑
nmc=1

min
l′∈A

(al − âl′)2

Nmc
× 100

|al|
,

PRMSEbl =

√√√√√ Nmc∑
nmc=1

min
l′∈A

(
bl − b̂l′

)2

Nmc
× 100

|bl|

(39)

with Nmc = 1000 being the number of MC trials. The table
highlights that for targets 3 and 4 the estimate of al gives rise
to errors greater than 20% due to the fact that the trajectories of
these targets are characterized by intersections with other lines
whose angular coefficient is considerably different. The same
remark also holds for what concerns the errors related to the
estimate of bl. Otherwise stated, even though the percentage
of correct classification is high, when an error occurs, its
value can be high due to line intersections. Nevertheless, such
errors can be mitigated by filtering the estimates over several
consecutive processed batches of measurements.

Before assessing the performance when the number of tar-
gets grows, we investigate here the behavior of the considered
classifiers when the measurement noise variance increases to
σ2
l = 80, l = 1, . . . , L. The analysis is analogous to that

for σ2
l = 50. Specifically, Figs. 7-10 and Table II show that

although the performance of the EM-based approach is slightly
worse (as expected) with respect to the case σ2

l = 50, l ∈ A,
the proposed scheme still maintains more reliable capabilities

TABLE I: PRMSE values (%) for al and bl , l = 1, . . . , L,
over 1000 independent trials (first scenario).

l = 1 l = 2 l = 3 l = 4 l = 5
al 5.4 17.5 58.5 36.8 1.9
bl 4.7 25.8 13.3 45.2 3.2

Fig. 7: ∆L(h) versus h for the EM-based procedure (first
scenario with σ2

l = 80, l ∈ A).

in terms of measurements classification then the considered
competitors.

B. Second Operating Scenario for Known Number of Targets
L = 10

Now, we consider a more challenging scenario where
L = 10 targets are present with different trajectories and
intersections. As for the previous case, the KNN and K-means
classifiers are taken into account as natural competitors. Target
measurements are generated as follows
• Target 1: yn1 |cn1 = 1 ∼ N (−4xn1 − 4897, σ2

1), n1 =
1, . . . , N1;

• Target 2: yn2
|cn2

= 2 ∼ N (14.3xn2
−6230, σ2

2), n2 =
1, . . . , N2;

• Target 3: yn3 |cn3 = 3 ∼ N (0.1xn3 − 2936, σ2
3), n3 =

1, . . . , N3;
• Target 4: yn4

|cn4
= 4 ∼ N (−1.9xn4

−1774, σ2
4), n4 =

1, . . . , N4;
• Target 5: yn5

|cn5
= 5 ∼ N (1.1xn5

+ 330, σ2
5), n5 =

1, . . . , N5;
• Target 6: yn6 |cn6 = 6 ∼ N (−0.7xn6 +1997, σ2

6), n6 =
1, . . . , N6;

• Target 7: yn7
|cn7

= 7 ∼ N (0.4xn7
+ 3245, σ2

7), n7 =
1, . . . , N7;

• Target 8: yn8
|cn8

= 8 ∼ N (0.5xn8
+ 4588, σ2

8), n8 =
1, . . . , N8;

• Target 9: yn9 |cn9 = 9 ∼ N (2.6xn9 + 5846, σ2
9), n9 =

1, . . . , N9;

TABLE II: PRMSE values (%) for al and bl , l ∈ A, over
1000 independent trials (first scenario with σ2

l = 80, l ∈ A).

l = 1 l = 2 l = 3 l = 4 l = 5
al 8.7 26.3 61.2 30.3 3.4
bl 6.7 34.9 14.3 58.0 5.8

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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(a) (b)

(c) (d)

Fig. 8: Cartesian coordinates diagrams for each target over a single MC trial (first scenario with σ2
l = 80, l ∈ A): (a)

true measurement association; (b) classification (scatter points) results and trajectory fitting (straight lines) for the proposed
architecture; (c) classification results for the KNN; (d) classification results for the K-means.

Fig. 9: Average classification consistency (%) over 1000
independent trials for the considered classifiers (first scenario
with σ2

l = 80, l ∈ A).

• Target 10: yn10
|cn10

= 10 ∼ N (−2.4xn10
+6706, σ2

10),
n10 = 1, . . . , N10.

The number of measurements for each target is generated
as in the previous case and the clean trajectories are shown
in Fig. 11. The classification performances of the proposed

Fig. 10: Average classification error (%) of each target over
1000 independent trials (first scenario with σ2

l = 80, l ∈ A).

architecture are investigated assuming hmax = 250. Such a
value is selected from Fig. 12 where the relative variation of
the log-likelihood is below 10−5 for h = 250.

In Figs. 13-15, we provide a qualitative and quantitative
assessment of the classification performance for the three
algorithms. As observed for the case L = 5, the EM-based
classifier is less inclined to partition the measurement set
corresponding to a given target into subsets associated to other
targets. This behavior is evident in Fig. 13 where the K-
means experiences the worst performance corroborating what

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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TABLE III: PRMSE values (%) for al and bl , l ∈ A, over 1000 independent trials (second scenario).

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10
al 5.1 1.7 39.4 53.9 23.3 16.7 23.5 21.8 11.5 53.6
bl 0.9 0.2 17.5 28.9 79.0 11.6 10.4 10.4 1.0 5.7

Fig. 11: Clean target trajectories without measurement noise
(second scenario).

Fig. 12: ∆L versus h for the EM-based procedure (second
scenario).

indicated by Fig. 5. Figs. 14-15 point out the EM-based
method provides an overall performance that is superior with
respect to that of the considered competitors, even though
for some targets the KNN (that is a supervised method) can
return lower classification errors with respect ot the EM-based
classifier (that is an unsupervised method).

Finally, in Table III, we report the PRMSE for the estimates
of al and bl, l = 1, . . . , 10. In this case, the errors related to bl
are small except for target 5 whose trajectory intersects that
of target 6 maintaining a low separation. As for the errors
related to al, the highest values are returned for targets 3, 4,
and 10. In fact, the lines corresponding to these targets share an
intersection with the line associated to target 2 whose angular
coefficient is significantly different from the other.

TABLE IV: PRMSE values (%) for al and bl , l ∈ A, using
AIC, BIC, and GIC over 1000 independent trials (L = 3).

l = 1 l = 2 l = 3

AIC-based
al 4.2 30.1 8.6

bl 1.9 3.8 12.0

BIC-based
al 3.8 27.1 7.5

bl 1.7 3.2 10.1

GIC-based
al 3.9 27.4 7.8

bl 1.7 3.3 10.5

C. Operating Scenario where Number of Targets is Unknown

In this section, the classification and estimation performance
is assessed when the number of targets is unknown under
the constraint Lmax = 10. The scenario considered in what
follows comprises L = 3 targets whose trajectories are
• Target 1: yn1 |cn1 = 1 ∼ N (−1.8807xn1 + 771, σ2

1),
n1 = 1, . . . , N1;

• Target 2: yn2
|cn2

= 2 ∼ N (−0.2679xn2
+ 410, σ2

2),
n2 = 1, . . . , N2;

• Target 3: yn3
|cn3

= 3 ∼ N (xn3
− 129, σ2

3), n3 =
1, . . . , N3,

More specifically, true clusters with measurement noise vari-
ance σ2

l = 50 and the clean trajectories are shown in Fig.
16. Before presenting the estimation results, the convergence
rate of the EM procedure over 1000 independent trials using
AIC, BIC, and GIC is depicted in Fig. 17. The results confirm
that hmax = 50 returns a relative variation of ∆L lower than
10−4. The estimation performance related to al, bl, and L is
investigated using the metrics defined in (39) and

RMSEL =

√√√√ Nmc∑
nmc=1

(
L̂(nmc)− L

)2

/Nmc (40)

with Nmc = 1000. Table IV contains the PRMSE values for
what concerns the estimation of the trajectory parameters and
points out that the BIC-based clustering architectures provide
better results than the classifiers based upon the AIC and GIC.
In Fig. 18, the RMSE values associated with the estimation
of L confirm the superiority of the BIC-based classifier that
returns an error lower than 0.5 at least for the considered
parameters.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed a solution for clustering data
generated by the nodes of a radar network where each node has
limited processing capabilities. In fact, we have assumed that
the fusion center collects (2-dimensional) position measure-
ments without any side information that can be used to create
clusters associated with the targets in the region of interest.

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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(a) (b)

(c) (d)

Fig. 13: Scatter diagrams for each target over one trial (second scenario): (a) true measurement association; (b) classification
(scatter points) results and trajectory fitting (straight lines) for the proposed architecture; (c) classification results for the KNN;
(d) classification results for the K-means.

Fig. 14: Average classification consistency (%) over 1000
independent trials (second scenario).

Fig. 15: Average classification error (%) of each target over
1000 independent trials (second scenario).

To this end, we have used fictitious unobservable random
variables that represent the label of each measurement. Then,
we have estimated the posterior probability that a label takes
on a specific value given the corresponding measurement by
resorting to the EM-algorithm. The clustering is performed by

EM-based algorithm for unsupervised clustering of measurements from a radar sensor network
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Fig. 16: True clusters and clean trajectories (L = 3).

Fig. 17: ∆L versus h of the EM procedure for the classifiers
based on AIC, BIC, and GIC (L = 3).

Fig. 18: RMSE values for L for the classifiers based upon the
AIC, BIC, and GIC over 1000 independent trials (L = 3).

selecting the label that returns the highest posterior probability.
This method is clearly less time demanding than the plain max-
imum likelihood approach whose computational load depends
on the total number of data partitions as well as the number
of targets. The performance assessment has been conducted
by using synthetic data and in comparison with well-known
data-driven clustering algorithms such as the KNN and K-
means. Different challenging scenarios have been considered
and for each of them, the proposed algorithm is capable of
outperforming the considered competitors for what concerns
the clustering and estimation capabilities.

Future research tracks might encompass the extension of
the proposed approach to the case where the measurements
contain information related to a third-dimension or the target
Doppler frequency. The validation of the proposed approach
with real recorded data from a radar network is part of the
current research activity.
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