
1. Introduction

Functionally graded materials (FGM) could be 

considered special composites when properties change 

gradually from one layer to another. They have the potential 

to be designed for a variety of applications, such as 

biomedical engineering, the renewable energy sector and 

aerospace industries (Mahamood and Akinlabi 2017). 

Rahimi et al. (2018) investigated the non-linear free 

vibration of FGM nano-beams using the fractional non-local 

model. Stempin and Sumelka (2021) extended the space-

fractional Timoshenko beam theory to account for non-

locality in the bending of FGM beams. Chan et al. (2022) 

presented FGM sandwich cylindrical panels based on the 

non-local strain gradient theory. Zenkour and Radwan (2020) 

explored how exponential temperature and moisture 

concentration impact the bending and buckling behavior of 

functionally graded plates supported by two-parameter 

elastic foundations, utilizing a four-variable exponential 

shear deformation theory. Also, piezoelectric materials are in 

the spotlight of many researchers because of their properties, 

such as electromechanical coupling, large power generation, 

quick response, vacuum compatibility, and the ability to 

function at low temperatures (Abad et al. 2023). These 

materials are usually attached to the surfaces of plates and 

shells as actuators and sensors to improve their mechanical 

properties. Numerous works have been conducted regarding 
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the FG structures with or without piezoelectric layers by 

employing different solution methods and plate theories 

(Arefi et al. 2019; Guellil et al. 2021; Huang and Tahouneh 

2021; Kouider et al. 2021; Pham et al. 2021). Arefi and 

Soltan Arani (2020) analyzed functionally graded plates with 

two FG piezoelectric layers at the top and bottom subjected 

to an electric field using higher-order shear and normal 

deformation theory. Abbaspour and Arvin (2021) presented 

buckling analyses of FG graphene platelets micro-plates 

bonded with two piezoelectric layers. They generated the 

governing equations using the Kirchhoff plate theory 

assumptions and the modified couple stress theory and 

studied the effect of thermal, electrical and mechanical 

loadings on the buckling of the structure. 

The classical plate theory (CPT) is inappropriate for 

analyzing thick plates, on the other hand, the first-order shear 

deformation theory (FSDT) cannot fulfil the condition of 

zero stress on free surfaces and needs a shear correction 

factor. These limitations led to the development of several 

higher-order shear deformation theories (HSDTs) (Boukhlif 

2019; Zarga 2019; Atmane et al. 2021; Belabed et al. 2021). 

However, due to the complexity of the HSDT formulation, 

researchers have recently developed refined plate theories 

(RPTs) which improve accuracy and computational 

efficiency in analyzing FGMs (Menasria et al. 2020; 

Hachemi et al. 2021). One efficient but straightforward RPTs 

is the four-variable refined plate theory which predicts a 

parabolic variation of transverse shear stresses through the 
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plate thickness while satisfying the zero-traction condition 

on the free surfaces. Several researchers have employed this 

theory for the static and dynamic analysis of FG plate with 

and without piezoelectric layers (Rouzegar and Abad 2015; 

Fourn et al. 2018; Rouzegar et al. 2020). 

The state-space approach is an effective analytical 

method for solving ordinary differential equations. This 

process reduces the higher-order differential equations to a 

collection of first-order differential equations, simplifying 

the solution. Many researchers have used the concept of 

state-space combined with the well-known Levy's solution to 

address the different analyses of plate structures. In order to 

perform buckling, bending, and vibration analysis of thick 

plates, Thai et al. (2013) and Thai and Choi (2013a) used 

Levy's solution method and the state-space methodology 

based on an improved shear deformation plate theory. 

Demirhan and Taskin (2017), (2019) investigated FG plates' 

bending and free vibration using the four-variable refined 

plate theory and a Levy-type state-space technique. Liu et al. 

(2022) proposed the state-space approach for free and forced 

vibration analysis of reinforced concrete beams externally 

strengthened with fiber-reinforced polymer (FRP) with 

various boundary conditions. They studied the effect of 

different parameters and validated their results with those of 

Abaqus software. Razgordanisharahi et al. (2023) developed 

the state-space method for free vibration analysis of 

honeycomb sandwich panels and investigated the effect of 

geometrical parameters on the structure's natural 

frequencies. The state-space method has also been employed 

for various analyses of plate structures integrated with 

piezoelectric elements. To cope with the static analysis of 

simply supported laminated piezoelectric plates exposed to 

sinusoidal mechanical and electrical stresses, Lee and Jiang 

(1996) developed an exact method based on the state-space 

concept. Huang et al. (2020) utilized the state space approach 

for free vibration, buckling and dynamic impulse response 

analysis of a multilayered piezoelectric cylinder. Zhou et al. 

(2020) used the state-space approach for static analysis of the 

laminated curved beam bonded with piezoelectric actuators. 

Also, to prove the effectiveness of the presented method, 

they solve several examples of beams with piezoelectric 

layers. Rouzegar et al. (2022) investigated the FG core and 

two piezoelectric face-sheets with various boundary 

conditions, applying refined plate theory and using the state-

space Levy method. 

A review of the available literature has specified that no 

comprehensive study for bending analysis of FG plates 

integrated with piezoelectric layers is based on Levy's 

solution and the state-space approach. In this study, the 

coupling between the electric potential induced in the 

piezoelectric layer and the other mechanical variables is 

considered, while in many studies, the induced voltage is 

neglected. Hamilton's principle and Maxwell's equation 

generate the linked governing equations based on the four-

variable improved plate theory. A Levy-type solution 

approach is used to solve the partial differential system of 

equations. Such a solution converts partial differential 

equations (PDEs) to ordinary differential equations (ODEs). 

The state-space approach solves coupled higher-order ODEs 

by converting them into a system of first-order ODEs. Since 

the bending analysis of FG plates integrated with two closed-

circuit piezoelectric layers exposed to uniformly distributed 

external loads has not yet been performed, the results are 

compared with those of the commercial Abaqus package. 

The effects of various boundary conditions, the power-law 

index, the aspect ratio, the thickness of the piezoelectric 

layer, and the thickness of the core layer are all examined in 

relation to how the structure bends. 

In this section, an introduction and a review of the most 

significant publications related to the subject have been 

included. The structure of the paper is outlined as follows: 

Section 2 presents the formulation of the governing 

equations and the solution method, using the Levy method in 

conjunction with the state-space approach. Section 3 

illustrates the obtained results, provides corresponding 

discussions, and examines the effects of various boundary 

conditions, the power-law index, the aspect ratio, and the 

thickness through three sets of examples. Section 4 offers 

conclusions and concluding remarks. 

2. Theoretical Formulation

2.1 Problem description and assumptions 

 Fig. 1 shows a schematic view of an FG plate with 

dimensions a, b, and 2h as its length, width, and thickness, 

respectively which is sandwiched between two piezoelectric 

layers with a thickness of hp. It is assumed that the hybrid 

plate has two opposite simply supported edges at x=0 and 

x=a while two other edges have arbitrary boundary 

conditions. The distributed mechanical load q(x,y) is applied 

to the top face of the structure. Since the main aim of this 

paper is to investigate the bending behavior of the plate, the 

loading is considered to be perpendicular to the plate surface. 

Fig. 1 FG plate subjected to an external distributed load 

q(x,y) with two piezoelectric layers attached to the 

top and bottom surfaces. 

Effective properties of the FG core plate change 

according to the rule of mixture 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)(
1

2
−
𝑧

2ℎ
)𝑛 (1) 

𝜌(𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚)(
1

2
−
𝑧

2ℎ
)𝑛 (2) 
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in which E and 𝜌 are the modulus of elasticity and density, 

respectively. Subscripts c and m express ceramic and metal 

materials, respectively, and n represents the power-law 

index. The displacement field is defined as follows using the 

assumptions of the four-variable refined plate theory (Thai 

and Choi 2013a): 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏(𝑥, 𝑦)

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠(𝑥, 𝑦)

𝜕𝑥
(3) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏(𝑥, 𝑦)

𝜕𝑦
− 𝑓(𝑧)

𝜕𝑤𝑠(𝑥, 𝑦)

𝜕𝑦
(4) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) (5) 

where 𝑢0and 𝑣0 stand for the in-plane displacements in the

x and y directions of the middle plane, 𝑤𝑏  and 𝑤𝑠 are the

bending and shear components of transverse displacement. 

The strain-displacement relationships are as follows: 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

{

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }

− 𝑧

{

𝜕2𝑤𝑏
𝜕𝑥2

𝜕2𝑤𝑏
𝜕𝑦2

2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

− 𝑓(𝑧)

{

𝜕2𝑤𝑠
𝜕𝑥2

𝜕2𝑤𝑠
𝜕𝑦2

2𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦 }

 (6) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧)

{

𝜕𝑤𝑠
𝜕𝑦
𝜕𝑤𝑠
𝜕𝑥 }

,           𝜀𝑧 = 0 (7) 

where: 

𝑓(𝑧) = −
𝑧

4
+

5𝑧3

3(2ℎ + 2ℎ𝑝)
2

(8) 

𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
=
5

4
− 5(

𝑧

2ℎ + 2ℎ𝑝
)2 (9) 

The coupled constitutive equations for the piezoelectric 

layer are expressed as (Tiersten 2013): 

σ = Cε − eΞ 
D = e𝑇ε + ηΞ

(10) 

in which C  represents the stress-reduced stiffness 

matrix, D  and Ξ  are vectors demonstrating electrical 

displacement and electric field intensity, respectively, η is 

the dielectric constant matrix, e represents the piezoelectric 

constants matrix, σ  and ε  are stress and strain tensors, 

respectively. For a transversely isotropic piezoelectric layer, 

Eq. (11) holds.  

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧]

=

[

𝐶1̅1 𝐶1̅2 0 0 0

𝐶1̅2 𝐶1̅1 0 0 0

0 0
1

2
(𝐶1̅1 − 𝐶1̅2) 0 0

0 0 0 𝐶55 0
0 0 0 0 𝐶55]

[

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧]

−

[

0 0 𝑒̅31
0 0 𝑒̅31
0 0 0

−𝑒51 0 0
0 −𝑒51 0 ]

[

𝛯𝑥
𝛯𝑦
𝛯𝑧

] 

[

𝐷𝑥
𝐷𝑦
𝐷𝑧

] = [

0 0 0 𝑒51 0
0 0 0 0 𝑒51
𝑒̅31 𝑒̅31 0 0 0

]

[

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧]

+ [

𝜂11 0 0
0 𝜂11 0
0 0 𝜂̅33

] [

𝛯𝑥
𝛯𝑦
𝛯𝑧

] 

(11) 

𝜙(𝑥, 𝑦, 𝑧) =

{

𝜑(𝑥, 𝑦) [1 − (
𝑧 − ℎ −

ℎ𝑝
2

ℎ𝑝/2
)2] ,

𝜑(𝑥, 𝑦) [1 − (
−𝑧 − ℎ −

ℎ𝑝
2

ℎ𝑝/2
)2] ,

ℎ ≤ 𝑧 ≤ ℎ + ℎ𝑝

−ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ
(12) 

Assuming that each piezoelectric layer is closed-circuit, 

a quadratic function can be considered for the variation of 𝜙 

through the plate thickness (Wang et al. 2001). The electric 

field Ξ  and electric potential 𝜙  are thought to have a 

connection that is: 

Ξ = −𝛻𝜙 (13) 

Additionally, the FG core plate's constitutive equations 

are given as follows: 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

=

[

𝑄11 𝑄12 0 0 0
𝑄12 𝑄11 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄66 0
0 0 0 0 𝑄66] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧 ]

(14) 

The matrix components in Eqs. (11) and (14) are given in 

Appendix A. 

3

Bending analysis of smart functionally graded plate using the state-space approach



2.2 Governing equations 

The governing equations can be extracted using the 

virtual work principle. 

𝛿(𝑈 −𝑊) = 0 (15) 

in which 𝑈 is the strain energy and 𝑊 is the work done by 

external work defined as: 

𝑈 = ∫ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉 = ∫(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑦𝑧𝛾𝑦𝑧
𝑉𝑉

 

+𝜎𝑥𝑧𝛾𝑥𝑧)𝑑𝑉
(16) 

𝑊 = ∫𝑞𝑤𝑑𝛺
𝛺

 (17) 

where V is the plate volume and 𝛺 is the surface on which the 

external load is applied. Substituting the Eqs. (16)-(17) into (15) 

yields: 

𝛿𝑈 − 𝛿𝑊 = ∫(𝑁𝑥𝛿(
𝜕𝑢0
𝜕𝑥

) + 𝑁𝑦𝛿(
𝜕𝑣0
𝜕𝑦
) + 𝑁𝑥𝑦𝛿(

𝜕𝑢0
𝜕𝑦𝛺

+
𝜕𝑣0
𝜕𝑥
) − 𝑀𝑥

𝑏𝛿(
𝜕2𝑤𝑏
𝜕𝑥2

)

− 𝑀𝑦
𝑏𝛿(

𝜕2𝑤𝑏
𝜕𝑦2

) − 𝑀𝑥
𝑠𝛿(

𝜕2𝑤𝑠
𝜕𝑥2

)

− 2𝑀𝑥𝑦
𝑏 𝛿(

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

) − 𝑀𝑦
𝑠𝛿(

𝜕2𝑤𝑠
𝜕𝑦2

)

− 2𝑀𝑥𝑦
𝑠 𝛿(

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

) + 𝑆𝑦𝑧𝛿(
𝜕𝑤𝑠
𝜕𝑦

)

+ 𝑆𝑥𝑧𝛿(
𝜕𝑤𝑠
𝜕𝑥

))𝑑𝛺

− ∫𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠)𝑑𝛺 = 0
𝛺

(18) 

in which the stress resultants are defined as: 

{

𝑁𝑖
𝑀𝑖
𝑏

𝑀𝑖
𝑠

} = ∫ 𝜎𝑖 {
1
𝑧
𝑓
} 𝑑𝑧

ℎ+ℎ𝑝

−ℎ−ℎ𝑝

  , (𝑖 = 𝑥, 𝑦, 𝑥𝑦) 

𝑆𝑖 = ∫ 𝑔𝜎𝑖 𝑑𝑧
ℎ+ℎ𝑝

−ℎ−ℎ𝑝

  , (𝑖 = 𝑥𝑧, 𝑦𝑧) 

(19) 

Performing the integration by parts and collecting the factors 

of 𝛿𝑢0 , 𝛿𝑣0 , 𝛿𝑤𝑏   and 𝛿𝑤𝑠  lead to four governing

equations: 

𝛿𝑢0:  
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0 (20a) 

𝛿𝑣0:  
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= 0 (20b) 

𝛿𝑤𝑏:  
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+ 𝑞 = 0 (20c) 

𝛿𝑤𝑠:
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕𝑆𝑦𝑧

𝜕𝑦
+
𝜕𝑆𝑥𝑧
𝜕𝑥

+ 𝑞

= 0 

(20d) 

Substituting Eqs. (6)-(7) and Eq. (10) into Eq. (19) yields: 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻

] {
𝜀
𝜅𝑏

𝜅𝑠
} − [0 𝐾 𝑇]𝜑 

𝑆 = 𝐴𝑠𝛾 + 𝜇3𝛤

(21) 

Eq. (21) components are noted in Appendix A. By putting 

Eq. (21) into Eqs. (20), governing equations of the plate can be 

rewritten as given in Eqs. (22): 

𝐴11
𝜕2𝑢0
𝜕𝑥2

+ 𝐴66
𝜕2𝑢0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

−𝐵11
𝜕3𝑤𝑏
𝜕𝑥3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑦2

−𝐵11
𝑠
𝜕3𝑤𝑠
𝜕𝑥3

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑊𝑆

𝜕𝑥𝜕𝑦2
= 0 

(22a) 

𝐴22
𝜕2𝑣0
𝜕𝑦2

+ 𝐴66
𝜕2𝑣0
𝜕𝑥2

+ (𝐴12 + 𝐴66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

−𝐵22
𝜕3𝑤𝑏
𝜕𝑦3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥2𝜕𝑦

−𝐵22
𝑠
𝜕3𝑤𝑠
𝜕𝑦3

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑤𝑠
𝜕𝑥2𝜕𝑦

= 0 

(22b) 

𝐵11
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ 𝐵22
𝜕3𝑣0
𝜕𝑦3

+(𝐵12 + 2𝐵66)
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− 𝐷11
𝜕4𝑤𝑏
𝜕𝑥4

−(2𝐷12 + 4𝐷66)
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐷22
𝜕4𝑤𝑏
𝜕𝑦4

−𝐷11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

− (2𝐷12
𝑠 + 4𝐷66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

−𝐷22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4

− 𝜇1(
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
) + 𝑞 = 0 

(22c) 

𝐵11
𝑠
𝜕3𝑢0
𝜕𝑥3

+ 𝐵22
𝑠
𝜕3𝑣0
𝜕𝑦3

+ (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+(𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− 𝐷11
𝑠
𝜕4𝑤𝑏
𝜕𝑥4

−(2𝐷12
𝑠 + 4𝐷66

𝑠 )
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐷22
𝑠
𝜕4𝑤𝑏
𝜕𝑦4

−𝐻11
𝜕4𝑤𝑠
𝜕𝑥4

− (2𝐻12 + 4𝐻66)
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

−𝐻22
𝜕4𝑤𝑠
𝜕𝑦4

+ 𝐴11
𝑠 (

𝜕2𝑤𝑠
𝜕𝑥2

+
𝜕2𝑤𝑠
𝜕𝑦2

) 

+(𝜇3 − 𝜇2)(
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
) + 𝑞 = 0 

(22d) 
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where A indicates in-plane stiffness, 𝐀𝒔 describes in-plane

shear stiffness, B represents the coupling between in-plane 

forces and bending moments, and 𝐁𝒔 denotes shear coupling.

D represents bending stiffness, 𝐃𝒔  illustrates shear bending

stiffness, and H represents higher-order stiffnesses and 

coupling. The parameters 𝜇𝑖  represent the interaction effects

between piezoelectric influences and mechanical responses. 

These parameters are determined by integrating material 

properties across the plate’s thickness and are detailed in 

Appendix A. 

Maxwell's equation should be satisfied in piezoelectric 

layers by the following relation: 

∫ 𝛻⃗ 
ℎ+ℎ𝑝

ℎ

.   𝒅⃗⃗ 𝑑𝑧 + ∫ 𝛻⃗ 
−ℎ

−ℎ−ℎ𝑝

.   𝒅⃗⃗ 𝑑𝑧 = 0 (23) 

Substituting the second Eq. of (10) into (23) yields: 

ϒ1𝛻
2𝑤𝑠 − ϒ2𝛻

2𝜑 − ϒ3𝛻
2𝑤𝑏 + ϒ4𝜑 = 0 (24) 

where the ϒ𝑖  coefficients describe the interaction between

mechanical and electrical fields in piezoelectric materials 

and are provided in Appendix A. Eqs. (22) and Eq. (24) are five 

differential equations with five unknown variables (𝑢0, 𝑣0, 𝑤𝑏 ,
𝑤𝑠, and 𝜑).

In the subsequent examples presented in Section 3, various 

materials are employed. Table 1 summarizes the properties of the 

materials used in these numerical examples. 

Table 1 Material properties (Abad and Rouzegar 2017). 

Property 
Core plate Piezoelectric layer 

Al Al2O3 PZT-4 

𝐸(GPa) 70 380 - 

𝜐 0.3 0.3 - 

𝐶11(GPa) - - 132 

𝐶12(GPa) - - 71 

𝐶33(GPa) - - 115 

𝐶13(GPa) - - 73 

𝐶55(GPa) - - 26 

𝑒31(cm-2) - - -4.1

𝑒33(cm-2) - - 14.1 

𝑒15(cm-2) - - 10.5 

𝜂11(nFm-1) - - 7.124 

𝜂33(nFm-1) - - 5.841 

𝜌(kgm-3) 2707 3800 7500 

2.3 Levy's solution and State-Space approach 

The plate is electrically insulated at four edges and has 

simply supported boundary conditions at x=0 and x=a, which 

results in the following: 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥 = 𝑀𝑥
𝑏 = 𝑀𝑥

𝑠 = φ = 0 (25) 

while edges y=b/2 and y=-b/2 may be arbitrarily chosen as simply 

supported, clamped or free (introduced in Appendix B). 

Considering Levy's solution procedure, the components of 

displacement and electrostatic potential satisfying simply 

supported conditions at x=0 and x=a are expressed as follows: 

{

𝑢0(𝑥, 𝑦)

𝑣0(𝑥, 𝑦)
𝑤𝑏(𝑥, 𝑦)

𝑤𝑠(𝑥, 𝑦)

𝜑(𝑥, 𝑦) }

= ∑

{

𝑈𝑚(𝑦) 𝑐𝑜𝑠( 𝛼𝑥)

𝑉𝑚(𝑦) 𝑠𝑖𝑛( 𝛼𝑥)
𝑊𝑏𝑚(𝑦) 𝑠𝑖𝑛( 𝛼𝑥)

𝑊𝑠𝑚(𝑦) 𝑠𝑖𝑛( 𝛼𝑥)

𝜑𝑚(𝑦) 𝑠𝑖𝑛( 𝛼𝑥) }

∞

𝑚=1

(26) 

where 𝛼 =
𝑚𝜋

𝑎
  and 𝑈𝑚(𝑦), 𝑉𝑚(𝑦), 𝑊𝑏𝑚(𝑦), 𝑊𝑠𝑚(𝑦) and

𝜑𝑚(𝑦) are unknown functions. The single form of the Fourier

series is used to extend the transverse external load applied on the 

plate as follows: 

𝑞(𝑥, 𝑦) = ∑ 𝑄𝑚(𝑦)  𝑠𝑖𝑛(𝛼 𝑥)

∞

𝑚=1

(27) 

𝑄𝑚(𝑦) =
2

𝑎
∫ 𝑞(𝑥, 𝑦) 𝑠𝑖𝑛(𝛼 𝑥)𝑑𝑥
𝑎

0

 (28) 

in which the coefficient 𝑄𝑚(𝑦) is determined as follows for the

case of uniformly distributed load 𝑞0:

𝑄𝑚(𝑦) =
4𝑞0
𝑚𝜋

(29) 

Substituting Eq. (26) into Eqs. (22) and Eq. (24) results in an 

ordinary differential system of equations: 

𝑈𝑚
″ = 𝑐1𝑈𝑚 + 𝑐2𝑉𝑚

′ + 𝑐3𝑊𝑏𝑚 + 𝑐4𝑊𝑏𝑚
″ + 𝑐3𝑠𝑊𝑠𝑚

+𝑐4𝑠𝑊𝑠𝑚
″ (30a) 

𝑉𝑚
″ = 𝑐5𝑈𝑚

′ + 𝑐6𝑉𝑚 + 𝑐7𝑊𝑏𝑚
′ + 𝑐8𝑊𝑏𝑚

‴ + 𝑐7𝑠𝑊𝑠𝑚
′

+𝑐8𝑠𝑊𝑠𝑚
‴ (30b) 

𝑊𝑏𝑚
″′′ = 𝑐9𝑈𝑚 + 𝑐10𝑉𝑚

′ + 𝑐11𝑊𝑏𝑚 + 𝑐12𝑊𝑏𝑚
″

+𝑐13𝑊𝑠𝑚 + 𝑐14𝑊𝑠𝑚
″ + 𝑐16𝜑𝑚 + 𝑐15𝑄𝑚

(30c) 

𝑊𝑠𝑚
″′′ = 𝑐9𝑠𝑈𝑚 + 𝑐10𝑠𝑉𝑚

′ + 𝑐11𝑠𝑊𝑏𝑚 + 𝑐12𝑠𝑊𝑏𝑚
″

+𝑐13𝑠𝑊𝑠𝑚 + 𝑐14𝑠𝑊𝑠𝑚
″ + 𝑐16𝑠𝜑𝑚 + 𝑐15𝑠𝑄𝑚

(30d) 

𝜑𝑚
″ = 𝑐11𝑚𝑊𝑏𝑚 + 𝑐12𝑚𝑊𝑏𝑚

″ + 𝑐13𝑚𝑊𝑠𝑚
+𝑐14𝑚𝑊𝑠𝑚

″ + 𝑐16𝑚𝜑𝑚
(30e) 

where ()′ =
𝑑

𝑑𝑦
 and coefficients 𝑐𝑖𝑗  are given in Appendix B.

Also, the boundary conditions at y=b/2 and y=-b/2 are written in 

terms of (𝑈𝑚(𝑦), 𝑉𝑚(𝑦), 𝑊𝑏𝑚(𝑦), 𝑊𝑠𝑚(𝑦) and 𝜑𝑚(𝑦)) and

given in Appendix B. The state-space concept deals with coupled 

fourth-order differential equations defined by Eqs. (30), which 

can be rewritten as follows: 

𝐗′(𝑦) = 𝐆𝐗(𝑦) + 𝐅 (31) 

in which 𝐗(𝑦), 𝐆 and 𝐅 are the state vector, transfer matrix 

and force vector, respectively, which are defined as: 

{𝐗(𝑦)} = {𝑈𝑚 𝑈𝑚
′ 𝑉𝑚 𝑉𝑚

′ 𝜑𝑚 𝜑𝑚
′ 𝑊𝑏𝑚  𝑊𝑏𝑚

′ 𝑊𝑏𝑚
′′ 𝑊𝑏𝑚

′′′ 𝑊𝑠𝑚 𝑊𝑠𝑚
′ 𝑊𝑠𝑚

′′ 𝑊𝑠𝑚
′′′}𝑇 (32)
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{𝐅} = {0 0 0 0 0 0 0 0 0 𝑐15𝑄𝑚 0 0 0 𝑐15𝑠𝑄𝑚}
𝑇 (33) 

𝐆 =

[

0 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑐1 0 0 𝑐2 0 0 𝑐3 0 𝑐4 0 𝑐3𝑠 0 𝑐4𝑠 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 𝑐5 𝑐6 0 0 0 0 𝑐7 0 𝑐8 0 𝑐7𝑠 0 𝑐8𝑠
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 𝑐16𝑚 0 𝑐11𝑚 0 𝑐12𝑚 0 𝑐13𝑚 0 𝑐14𝑚 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
𝑐9 0 0 𝑐10 𝑐16 0 𝑐11 0 𝑐12 0 𝑐13 0 𝑐14 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝑐9𝑠 0 0 𝑐10𝑠 𝑐16𝑠 0 𝑐11𝑠 0 𝑐12𝑠 0 𝑐13𝑠 0 𝑐14𝑠 0 ]

(34) 

The solution for the state-space Eq. (31) can be expressed as 

(Franklin 2012): 

𝐗(𝑦) = 𝑒𝐆𝑦𝐤 + 𝑒𝐆𝑦 ∫ 𝑒−𝐆𝜁
𝑦

0

𝐅𝑑𝜁 (35) 

where 𝐤 is a constant vector identified by applying conditions of 

y=b/2 and y=-b/2. 𝑒𝑮𝑦is determined as:

𝑒𝐆𝑦 = 𝐑 [
𝑒𝜆1𝑦 ⬚ 0
⬚ ⋱ ⬚
0 ⬚ 𝑒𝜆14𝑦

] 𝐑−𝟏 (36) 

where 𝜆𝑖  and 𝐑  stand for the distinct eigenvalues and the

eigenvector of 𝐆 , respectively. To avoid the problems of ill-

conditioning, Eq. (35) is rewritten as below: 

𝐗(𝑦) = 𝐑 [
𝑒𝜆1𝑦 ⬚ 0
⬚ ⋱ ⬚
0 ⬚ 𝑒𝜆14𝑦

] 𝐏 + 𝑒𝐆𝑦∫ 𝑒−𝐆𝜁
𝑦

0

𝐅𝑑𝜁 (37) 

where 

𝐏 = 𝐑−𝟏𝐤 (38) 

Boundary conditions at y=b/2 and y=-b/2 should be expressed 

in terms of the state vector to determine the constant vector P. 

3. Results and discussion

Several examples are solved to demonstrate the accuracy and 

effectiveness of the suggested approach for forecasting the 

bending behavior of rectangular plate constructions. The upper 

surface of the structure is subjected to a uniformly distributed load 

in the transverse direction. For simplicity, the plate boundary 

condition is expressed as SXSY, in which S stands for simply 

supported conditions at x=0 and x=a. The arbitrary circumstances 

at 𝑦=b/2 and y=-b/2 are denoted simultaneously by X and Y, 

respectively. 

The number of required terms in Levy's series solution to 

achieve converged results is different for various cases and 

boundary conditions. In this research, the convergence 

criterion is considered as: (|(𝑋𝑚+1 − 𝑋𝑚) 𝑋𝑚+1⁄ | < 10−4). 
The convergence of deflection and stresses are checked, so 

𝑿𝒎  and 𝑿𝒎+𝟏  in the above relation ate two consecutive 
deflections or stresses. According to the above-mentioned 

criterion, the number of terms necessary to achieve 

converged results are 23, 27, 25, 23, 21, and 19 terms for the 

SSSS, SCSC, SSSC, SFSC, SSSF, and SFSF smart FG 

plates, respectively; and are 25, 27, 25, 23, 21 and 19 terms 

for the SSSS, SCSC, SSSC, SFSC, SSSF, and SFSF smart 

transversely isotropic plate, respectively. The number of 

terms required for convergence and the corresponding 

computational costs are illustrated in a bar chart in Fig. 2 for 

different boundary conditions. This research and its findings 

were conducted using a system with an Intel(R) Core (TM) 

i7-1065G7 CPU @ 1.30GHz. 

Since no significant results exist for the bending analysis 

of plates sandwiched between two closed-circuit 

piezoelectric layers exposed to uniformly distributed loads, 

the commercial Abaqus package is used to validate the 

bending results. For this purpose, different layers of the 

hybrid structure are initially modelled and assembled, and 

proper material properties are defined. Following this, the tie 

contact is considered between layers (it is assumed that 

piezoelectric layers are fully bonded to the base plate). 

Afterwards, loadings and boundary conditions are implied on 

the surfaces and edges of the structure. Since the Abaqus 

package does not include a shell element for the piezoelectric 

layer, the whole structure is modeled by solid elements. 

C3D8E and C3D8R elements are employed to discretize the 

piezoelectric layers and the base plate, respectively. A 

convergence study is performed to ensure the independence 

of the results from the mesh structure. The number of 

elements via the thickness of the core plate and each 

piezoelectric layer for the smart transversely isotropic plate 

is 8 and 1, respectively, and a total of 400000 elements are 

taken into account for the mesh structure. For the smart FG 

plate analysis, the number of elements through the thickness 

of the core plate is 16, while it is 2 for each piezoelectric 

layer, and 120 elements are considered along the plate length 

and width. Unless otherwise mentioned, non-dimensional 

parameters are expressed as given in Eq. (39): 

Example 1. In the first example, the bending behavior of a 

square FG plate made of Al/Al2O3 with different power- law 
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𝑊 =
10ℎ3𝐸𝑐
𝑞0𝑎

4
𝑤(
𝑎

2
, 0,0), 𝜀𝑥̄ = 𝜀𝑥(

𝑎

2
, 0,
ℎ

2
),

𝜎̄𝑥 =
ℎ

𝑞0𝑎
𝜎𝑥(

𝑎

2
, 0,
ℎ

2
), 𝜏̄𝑥𝑧 =

ℎ

𝑞0𝑎
𝜏𝑥𝑧(

𝑎

4
,
𝑏

4
, −
ℎ

4
)

(39) 

indices subjected to uniformly distributed load 𝑞0  is

investigated. The non-dimensional parameters are expressed 

as: 

𝑊 =
10ℎ3𝐸𝑐
𝑞0𝑎

4
𝑤 (

𝑎

2
,
𝑏

2
, 0) ,  𝜎̄𝑥 =

ℎ

𝑞0𝑎
𝜎𝑥 (

𝑎

2
,
𝑏

2
,
ℎ

3
) 

𝜎̄𝑥𝑦 =
ℎ

𝑞0𝑎
𝜎𝑥𝑦 (0,0, −

ℎ

3
) , 𝜎̄𝑥𝑧 =

ℎ

𝑞0𝑎
𝜎𝑥𝑧 (0,

𝑏

2
,
ℎ

6
) 

𝜎̄𝑦𝑧 =
ℎ

𝑞0𝑎
𝜎𝑦𝑧(

𝑎

2
, 0,0) 

(40) 

Table 2 compares the non-dimensional values of stresses 

and deflection of a fully simply supported plate with a/h=10 

obtained by the current method and the results reported by 

SSDT (Zenkour 2006) and HSDT (Thai and Choi 2013b). 

The present results based on the four-variable RPT match 

well with other methods, particularly with the HSDT results, 

which prove the precision and accuracy of the proposed 

approach. It should be mentioned that the utilized plate 

theory, with only four unknown variables, is less complex 

than the HSDT. 

Table 2 Non-dimensional deflection and stresses of a square 

FG plate with SSSS boundary conditions (a/h=10). 

n Theory 𝑊̄ 𝜎̄𝑥 𝜎̄𝑥𝑦 𝜎̄𝑥𝑧 𝜎̄𝑦𝑧

0 Present 0.4666 1.9106 1.2848 0.4424 0.4977 

SSDT1 0.4665 1.9103 1.2850 0.4429 0.5114 

HSDT2 0.4666 1.9106 1.2856 0.4409 0.4949 

1 Present 0.9288 2.1697 1.1141 0.5440 0.4977 

SSDT 0.9287 2.1692 1.1143 0.5446 0.5114 

HSDT 0.9288 2.1696 1.1146 0.5422 0.4949 

2 Present 1.1940 2.0345 0.9907 0.5702 0.4554 

SSDT 1.1940 2.0338 0.9907 0.5734 0.4700 

HSDT 1.1940 2.0345 0.9912 0.5682 0.4528 

8 Present 1.5337 1.3841 1.0630 0.4340 0.4235 

SSDT 1.5343 1.3829 1.0628 0.4392 0.4399 

HSDT 1.5336 1.3841 1.0637b 0.4324 0.4210 

10 Present 1.5872 1.2831 1.0696 0.4188 0.4394 

SSDT 1.5876 1.2820 1.0694 0.4227 0.4552 

HSDT 1.5872 1.2830 1.0703 0.4174 0.4369 

1 (Zenkour 2006); 2 (Thai and Choi 2013b) 

The non-dimensional central deflection of the FG square 

plate with different boundary conditions is listed in Table 3. 

A comparison between the FE results reported by Thai and 

Choi (2013c) and those obtained by the proposed approach 

verifies the accuracy of the current procedure. As expected, 

the plate deflection increases by decreasing the constraints 

from SCSC to SFSF boundary condition. Additionally, as the 

power-law index rises and the plate transitions from pure 

ceramic (Al2O3) to pure metal (Al), the deflection rises 

because of the elastic modulus and accordingly, the stiffness 

of the Al2O3 plate is higher than that of Al. 

Example 2. A hybrid rectangular plate with a 

transversely isotropic core having two PZT-4 layers at the 

upper and lower surfaces is considered. The core plate is 

made of Al2O3 with the following properties (Abad and 

Rouzegar 2019): 

 𝐶11 = 460.2 GPa,     𝐶12 = 174.7 GPa, 
 𝐶33 = 509.5 GPa,     𝐶13 = 127.4 GPa, 
𝐶55 = 126.9 GPa,   𝜌 = 4000 kg/𝑚3

(41) 

The non-dimensional deflection in this example is 

defined as below: 

𝑊 =
10ℎ3𝐶̄11
𝑞0𝑎

4
𝑤(
𝑎

2
, 0,0) (42) 

Since there is no existing result in the literature for the 

prescribed problem, the obtained results by the proposed 

approach are compared with the FE simulation using the 

Abaqus package. Table 4 demonstrates the obtained results 

for the smart plate with hp/2h=0.1 having various boundary 

conditions and thickness-to-side ratios. The satisfactory 

agreement between the results shows that the proposed 

Levy's solution and the state-space approach are accurate and 

effective. Also, As can be seen, the non-dimensional 

deflection increases by increasing the thickness-to-side ratio, 

(a) 

(b) 
Fig. 2 Number of terms for convergence and computational 

cost for: a) smart FG plate; b) smart transversely isotr

opic plate. 

7

Bending analysis of smart functionally graded plate using the state-space approach



which is related to the definition 𝑊 in Eq. (42). 

Table 3 Non-dimensional central deflection of the square FG 

plate with different boundary conditions. 

a/h n Method 
Boundary conditions 

SCSC SSSC SSSS SFSC SFSS SFSF 

5 0 Present 0.2990 0.3949 0.5354 0.7386 0.9871 1.5857 

FEM1 0.3090 0.4020 0.5381 0.7579 0.9986 1.6153 

0.5 Present 0.4443 0.5920 0.8085 1.1168 1.4997 2.4165 

FEM 0.4577 0.6015 0.8120 1.1431 1.5153 2.4570 

5 Present 0.9711 1.2642 1.6929 2.3299 3.0871 4.9318 

FEM 0.9896 1.2770 1.6973 2.3685 3.1091 4.9908 

10 Present 1.1121 1.4346 1.9060 2.6195 3.4517 5.4949 

FEM 1.1365 1.4518 1.9125 2.6697 3.4814 5.5730 

10 0 Present 0.2321 0.3270 0.4666 0.6490 0.8963 1.4688 

FEM 0.2424 0.3343 0.4693 0.6684 0.9079 1.4985 

0.5 Present 0.3537 0.5001 0.7154 0.9954 1.3770 2.2584 

FEM 0.3676 0.5099 0.7190 1.0221 1.3925 2.2990 

5 Present 0.7215 1.0104 1.4349 1.9945 2.7467 4.4934 

FEM 0.7406 1.0235 1.4393 2.0335 2.7687 4.5524 

10 Present 0.8038 1.1211 1.5872 2.2052 3.0312 4.9533 

FEM 0.8297 1.1391 1.5937 2.2564 3.0609 5.0316 

20 0 Present 0.2151 0.3099 0.4493 0.6264 0.8736 1.4396 

FEM 0.2256 0.3173 0.4521 0.646 0.8851 1.4692 

0.5 Present 0.3307 0.4770 0.6921 0.9649 1.3462 2.2189 

FEM 0.3449 0.4869 0.6956 0.9917 1.3618 2.2594 

5 Present 0.6579 0.9463 1.3703 1.9098 2.6615 4.3837 

FEM 0.6776 0.9597 1.3747 1.9493 2.6835 4.4427 

10 Present 0.7252 1.0418 1.5073 2.1006 2.9259 4.8177 

FEM 0.7521 1.0604 1.5138 2.1525 2.9557 4.8958 

1 ( Thai and Choi 2013c) 

Fig. 3 illustrates the non-dimensional normal stress (𝜎̄𝑥)

across the plate thickness, considering different values of 

thickness-to-side ratios. The plot indicates that the maximum 

stress occurs at the interface between the core and 

piezoelectric layers, while it remains zero at the centre of the 

core plate, as anticipated. Notably, a sudden change in stress 

is evident at the interfaces, which can be attributed to the 

different material properties of the core plate and 

piezoelectric layers. Also, the data demonstrates that the non-

dimensional normal stress gradually decreases as the 

thickness-to-side ratio increases. This can be explained by 

the fact that thicker plates experience lower stress compared 

to thinner plates. The results of this analysis can be valuable 

in optimizing the design of similar structures to minimize 

stress concentrations and enhance their performance. 

Fig. 4 represents the effect of piezoelectric layer 

thickness (hp/2h) on the variations of non-dimensional 

transverse shear stress (𝜏̄𝑥𝑧) across the thickness of the smart

transversely isotropic plate. The transverse shear stress 

follows a parabolic distribution through the plate thickness, 

Table 4 Non-dimensional deflection and normal stress of a 

transversely isotropic plate with piezoelectric layers (hp/2h 

=0.1). 

B.Cs. 2h/a Method 𝑊̄ 𝜎̄𝑥
SSSF 0.05 Present 0.1055 

[0.66] * 

2.1080 

[0.50] 

Abaqus 0.1062 2.1187 

0.1 Present 0.1090 

[0.37] 

1.0506 

[0.43] 

Abaqus 0.1094 1.0551 

SSSS 0.05 Present 0.0540 

[0.37] 

1.2843 

[0.53] 

Abaqus 0.0542 1.2911 

0.1 Present 0.0567 

[0.35] 

0.6394 

[0.47] 

Abaqus 0.0565 0.6424 

SCSC 0.05 Present 0.0260 

[1.51] 

0.6617 

[2.37] 

Abaqus 0.0264 0.6778 

0.1 Present 0.0290 

[2.68] 

0.3381 

[4.52] 

Abaqus 0.0298 0.3541 

SFSF 0.05 Present 0.1738 

[0.63] 

3.2019 

[0.42] 

Abaqus 0.1749 3.2155 

0.1 Present 0.1782 

[0.33] 

1.5968 

[0.26] 

Abaqus 0.1788 1.6009 

SFSC 0.05 Present 0.0758 

[1.30] 

1.4864 

[1.43] 

Abaqus 0.0768 1.5079 

0.1 Present 0.0792 

[2.58] 

0.6199 

[3.98] 

Abaqus 0.0813 0.6456 

SSSC 0.05 Present 0.0373 

[1.06] 

0.9134 

[1.50] 

Abaqus 0.0377 0.9273 

0.1 Present 0.0399 

[2.20] 

0.4589 

[3.06] 

Abaqus 0.0408 0.4734 

%𝐸𝑟𝑟𝑜𝑟 = |
𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡−𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡

𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡
| × 100 

with its maximum value occurring at the middle plane, 

following the utilized plate theory. Furthermore, the results 

demonstrate that increasing the piezoelectric layer thickness 

leads to a decrease in stress values, indicating that thicker 

piezoelectric layers can effectively reduce stresses in the 

structure. Moreover, the study suggests that thicker 

piezoelectric layers can enhance the electromechanical 

coupling effect, leading to reduced deflection and stress. 

Example 3. We explore a square FG plate (Al/Al2O3) 

with two PZT-4 layers on the upper and lower surfaces. The 

non-dimensional deflection, normal stress, and normal strain 

values are listed in Tables 5-6 for two thickness-to-side ratios 

of 2h/a=0.05 and 2h/a=0.1, respectively. To verify the 

efficiency of the current method, results are compared with 

those obtained from Abaqus simulations. It is evident that the 

theory and method employed in this study yield highly 

accurate results. 
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Table 5 Non-dimensional deflection, normal stress, and normal strain in a square FG plate with piezoelectric layers 

(2h/a=0.05). 

B.Cs. n Method 

ℎ𝑝/2ℎ = 0.1 ℎ𝑝/2ℎ = 0.2

𝑊̄ 𝜎̄𝑥 𝜀𝑥̄ ∗ 10
10 𝑊̄ 𝜎̄𝑥 𝜀𝑥̄ ∗ 10

10

SFSC Al2O3 Present 0.0681 

[0.00] 

1.4674 

[0.24] 

1.3141 

[0.22] 

0.0577 

[0.87] 

1.2412 

[0.62] 

1.1114 

[0.60] 

Abaqus 0.0681 1.4710 1.3170 0.0572 1.2335 1.1047 

0.5 Present 0.0978 1.6011 2.4213 0.0774 1.2517 1.8924 

5 Present 0.1612 0.9814 4.7487 0.1120 0.6545 3.1656 

Al Present 0.2358 

[1.72] 

0.9295 

[1.26] 

4.5169 

[1.28] 

0.1458 

[2.60] 

0.5704 

[1.91] 

2.7714 

[2.10] 

Abaqus 0.2318 0.9179 4.4596 0.1421 0.5597 2.7142 

SSSF Al2O3 Present 0.0950 

[0.52] 

2.0820 

[0.54] 

1.8704 

[0.64] 

0.0804 

[1.25] 

1.7611 

[1.47] 

1.5820 

[1.55] 

Abaqus 0.0945 2.0708 1.8585 0.0794 1.7355 1.5578 

0.5 Present 0.1364 2.2716 3.4462 0.1080 1.7760 2.6939 

5 Present 0.2244 1.3929 6.7617 0.1557 0.9291 4.5090 

Al Present 0.3283 

[2.43] 

1.3194 

[2.45] 

6.4327 

[2.57] 

0.2027 

[3.62] 

0.8100 

[3.60] 

3.9488 

[3.91] 

Abaqus 0.3205 1.2878 6.2710 0.1956 0.7818 3.8001 

SFSF Al2O3 Present 0.1566 

[0.57] 

3.1957 

[0.63] 

3.1404 

[0.60] 

0.1325 

[1.37] 

2.7034 

[1.60] 

2.6563 

[1.50] 

Abaqus 0.1557 3.1754 3.1216 0.1307 2.6608 2.6170 

0.5 Present 0.2247 3.4867 5.7860 0.1779 2.7263 4.5231 

5 Present 0.3695 2.1383 11.3534 0.2562 1.4265 7.5716 

Al Present 0.5405 

[2.52] 

2.0259 

[2.70] 

10.8032 

[2.58] 

0.3333 

[3.73] 

1.2442 

[3.97] 

6.6334 

[3.88] 

Abaqus 0.5272 1.9726 10.5311 0.3213 1.1966 6.3852 

SSSC Al2O3 Present 0.0337 

[0.29] 

0.8829 

[0.40] 

0.6069 

[0.31] 

0.0286 

[1.06] 

0.7469 

[0.52] 

0.5134 

[1.42] 

Abaqus 0.0336 0.8865 0.6050 0.0283 0.7430 0.5062 

0.5 Present 0.0484 0.9635 1.1187 0.0384 0.7533 0.8746 

5 Present 0.0801 0.5906 2.1943 0.0558 0.3938 1.4631 

Al Present 0.1172 

[2.26] 

0.5591 

[1.02] 

2.0864 

[2.20] 

0.0728 

[3.40] 

0.3430 

[1.57] 

1.2796 

[3.50] 

Abaqus 0.1146 0.5534 2.0414 0.0704 0.3377 1.2363 

SCSC Al2O3 Present 0.0234 

[0.00] 

0.6350 

[1.21] 

0.3949 

[0.40] 

0.0199 

[1.01] 

0.5371 

[0.33] 

0.3340 

[0.76] 

Abaqus 0.0234 0.6428 0.3965 0.0197 0.5389 0.331473 

0.5 Present 0.0336 0.6931 0.7280 0.0267 0.5418 0.5690 

5 Present 0.0558 0.4246 1.4269 0.0390 0.2830 0.9508 

Al Present 0.0816 

[1.61] 

0.4018 

[0.19] 

1.3558 

[1.05] 

0.0509 

[2.41] 

0.2463 

[0.16] 

0.8306 

[2.06] 

Abaqus 0.0803 0.4026 1.3416 0.0497 0.2467 0.8138 

SSSS Al2O3 Present 0.0489 

[0.82] 

1.2483 

[0.46] 

0.9198 

[1.18] 

0.0414 

[1.71] 

1.0560 

[1.46] 

0.7781 

[2.30] 

Abaqus 0.0485 1.2425 0.9090 0.0407 1.0408 0.7606 

0.5 Present 0.0702 1.3622 1.6952 0.0556 1.0651 1.3254 

5 Present 0.1158 0.8352 3.3266 0.0805 0.5571 2.2188 

Al Present 0.1694 

[2.97] 

0.7910 

[2.34] 

3.1641 

[3.47] 

0.1039 

[3.49] 

0.4855 

[3.44] 

1.9301 

[4.60] 

Abaqus 0.1645 0.7729 3.0578 0.1004 0.4693 1.8452 

*[%𝐸𝑟𝑟𝑜𝑟] = |
𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡−𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡

𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡
| × 100 
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Table 6 Non-dimensional deflection, normal stress, and normal strain of a square smart FG plate (2h/a=0.1). 

B.Cs. n Method 

ℎ𝑝/2ℎ = 0.1 ℎ𝑝/2ℎ = 0.2

𝑊̄ 𝜎̄𝑥 𝜀𝑥̄ ∗ 10
10 𝑊̄ 𝜎̄𝑥 𝜀𝑥̄ ∗ 10

10

SFSC Al2O3 Present 0.0708 

[0.97] 

0.7308 

[2.78] 

0.3273 

[1.97] 

0.0601 

[0.33] 

0.6180 

[1.87] 

0.2767 

[1.00] 

Abaqus 0.0715 0.7517 0.3339 0.0603 0.6298 0.2795 

0.5 Present 0.1013 0.7981 0.6035 0.0806 0.6233 0.4712 

5 Present 0.1700 0.4878 1.1804 0.1194 0.3244 0.7850 

Al Present 0.2483 

[0.08] 

0.4608 

[2.94] 

1.1201 

[1.57] 

0.1566 

[0.57] 

0.2845 

[2.90] 

0.6843 

[1.41] 

Abaqus 0.2481 0.4748 1.1380 0.1557 0.2930 0.6941 

SSSF Al2O3 Present 0.0977 

[0.82] 

1.0381 

[0.38] 

0.4663 

[1.30] 

0.0828 

[1.71] 

0.8780 

[1.59] 

0.3944 

[2.60] 

Abaqus 0.0969 1.0341 0.4603 0.0814 0.8642 0.3844 

0.5 Present 0.1399 1.1333 0.8597 0.1111 0.8854 0.6716 

5 Present 0.2333 0.6935 1.6836 0.1632 0.4617 1.1208 

Al Present 0.3410 

[2.58] 

0.6558 

[1.56] 

1.5990 

[3.09] 

0.2135 

[3.84] 

0.4013 

[2.24] 

0.9685 

[3.78] 

Abaqus 0.3324 0.6457 1.5510 0.2056 0.3925 0.9332 

SFSF Al2O3 Present 0.1600 

[0.88] 

1.5943 

[0.69] 

0.7834 

[1.05] 

0.1356 

[1.80] 

1.3485 

[1.88] 

0.6625 

[2.20] 

Abaqus 0.1586 1.5833 0.7752 0.1332 1.3236 0.6482 

0.5 Present 0.2292 1.7403 1.4440 0.1819 1.3600 1.1282 

5 Present 0.3809 1.0655 2.8290 0.2657 0.7098 1.8841 

Al Present 0.5568 

[2.67] 

1.0081 

[2.19] 

2.6883 

[2.83] 

0.3471 

[3.85] 

0.6175 

[3.17] 

1.6465 

[4.34] 

Abaqus 0.5423 0.9864 2.6143 0.3342 0.5985 1.5779 

SSSC Al2O3 Present 0.0357 

[0.83] 

0.4391 

[3.47] 

0.1509 

[0.59] 

0.0304 

[0.33] 

0.3714 

[2.41] 

0.1276 

[1.10] 

Abaqus 0.0360 0.4549 0.1518 0.0303 0.3806 0.1262 

0.5 Present 0.0510 0.4798 0.2784 0.0408 0.3746 0.2174 

5 Present 0.0868 0.2929 0.5439 0.0614 0.1947 0.3613 

Al Present 0.1267 

[0.63] 

0.2764 

[4.12] 

0.5153 

[0.31] 

0.0810 

[1.37] 

0.1698 

[4.87] 

0.3140 

[1.78] 

Abaqus 0.1259 0.2883 0.5137 0.0799 0.1785 0.3085 

SCSC Al2O3 Present 0.0254 

[2.30] 

0.3152 

[6.60] 

0.0979 

[3.73] 

0.0217 

[1.80] 

0.2665 

[5.70] 

0.0827 

[1.89] 

Abaqus 0.0260 0.3375 0.1017 0.0221 0.2826 0.0843 

0.5 Present 0.0362 0.3445 0.1808 0.0290 0.2688 0.1410 

5 Present 0.0625 0.2100 0.3521 0.0446 0.1393 0.2333 

Al Present 0.0911 

[1.61] 

0.2020 

[6.70] 

0.3328 

[4.20] 

0.0590 

[1.66] 

0.1269 

[6.62] 

0.2018 

[3.67] 

Abaqus 0.0926 0.2165 0.3474 0.0600 0.1359 0.2095 

SSSS Al2O3 Present 0.0509 

[1.39] 

0.6218 

[0.01] 

0.2291 

[2.96] 

0.0433 

[2.85] 

0.5259 

[1.34] 

0.1937 

[4.81] 

Abaqus 0.0502 0.6217 0.2225 0.0421 0.5189 0.1848 

0.5 Present 0.0728 0.6791 0.4225 0.0580 0.5305 0.3301 

5 Present 0.1225 0.4152 0.8269 0.0862 0.2763 0.5502 

Al Present 0.1790 

[3.46] 

0.3923 

[0.82] 

0.7847 

[5.41] 

0.1132 

[5.10] 

0.2397 

[1.09] 

0.4795 

[6.08] 

Abaqus 0.1730 0.3891 0.7444 0.1077 0.2371 0.4520 

*[%𝐸𝑟𝑟𝑜𝑟] = |
𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡−𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡

𝐴𝑏𝑎𝑞𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡
| × 100 
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Figs. 5-6 are plotted to show the validation of the non-

dimensional deflection with the results reported by 

Mohammadimehr et al. (2015). In this reference, the bending 

analysis of a fully simply supported smart FG plate under 

short-circuited conditions was investigated using the third-

order shear deformation theory and Navier's solution. As 

seen, there is a good agreement between the results. Fig. 5 

depicts the effect of the power-law index on the distribution 

of non-dimensional deflection across the length of a smart 

FG plate. The plot demonstrates that an increase in the 

power-law index leads to a corresponding increase in 

transverse deflection, primarily due to the lower elastic 

modulus of Al in comparison to Al2O3. The results also reveal 

that increasing the power-law index reduces the stiffness of 

the core plate due to the higher volume fraction of Al. Fig. 6 

presents the influence of piezoelectric layer thickness on the 

non-dimensional deflection, considering different power-law 

indices. The plot shows that deflection values decrease as the 

thickness of the piezoelectric layers increases. This trend can 

be attributed to the higher plate stiffness and more substantial 

electromechanical coupling effects of thicker piezoelectric 

layers. Additionally, the study finds that the deflection values 

increase as the power-law  index increases and the plate 

stiffness decreases due to the lower elastic modulus of Al 

compared to Al2O3. 

Fig. 7 shows the non-dimensional normal stress 

distribution over the plate thickness under different boundary 

conditions. There are slight differences between the 

simulation results and the present study's outcomes. For all 

boundary conditions, the non-dimensional normal stress has 

its highest value at the interface between the core and 

piezoelectric layers, and plates with SFSF and SCSC 

boundary conditions have the largest and smallest normal 

stresses, respectively. 

Fig. 8 displays the distribution of non-dimensional 

transverse deflection (𝑊̄) through the width of the smart FG

plate with different boundary conditions. As observed, the 

maximum deflection occurs at different y coordinates 

depending on the boundary condition. 

Fig. 3 Variation of non-dimensional normal stress (𝜎̄𝑥)

through the smart transversely isotropic plate thickness 

with different thickness-to-side ratios 

(BCs: SSSS, hp/2h =0.1). 

Fig. 4 Variation of non-dimensional transverse shear stress 

(𝜏̄𝑥𝑧) through the smart transversely isotropic plate

thickness with different piezoelectric thickness ratios 

(BCs: SSSC, a/b =1, 2h/a =0.1). 

Fig. 5 Comparison of non-dimensional deflection (𝑊) of 

smart FG plate considering different power-law 

indices (BCs.: SSSS, a=b=400mm, h=2.5 mm, hp=1, 

q0=100 N/m2). 

Fig. 6 Comparison of non-dimensional deflection (𝑊) of 

smart FG plate considering different power-law 

indices (BCs: SSSS, a=b=400mm, h=2.5 mm, q0=100 

N/m2). 
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A plot of the thickness-to-side ratio (2h/a) vs the center 

transverse deflection of the smart FG plate under various 

boundary circumstances is shown in Fig. 9. As expected, for 

all boundary conditions increasing the thickness-to-side ratio 

leads to a reduction in deflection due to a higher amount of 

stiffness of thicker plates. Additionally, plates with SCSC 

and SFSF boundary conditions have the highest and lowest 

stiffness values, respectively, for a given value of the 

thickness-to-side ratio. Consequently, they have the lowest 

and highest value for deflection, respectively.  

5. Conclusions

The current study offers an analytical solution for the 

bending problem involving a rectangular FG plate 

sandwiched between two piezoelectric layers and exposed to 

a uniformly distributed external force. This analytical 

solution is based on the four-variable refined plate theory. 

The plate has two simply supported edges opposite to one 

another, while two other edges may be arbitrarily exposed to 

supported, free, and clamped boundary conditions. Levy's 

solution and the state-space concept are employed to solve 

the structure's underlying equations. Comparing this article's 

results with the available data and the results from the 

Abaqus simulations confirms that the plate theory used, and 

the accompanying solution approach are highly accurate and 

efficient. Additionally, the influence of various parameters 

on the outcomes has been looked at, and the following 

findings have been drawn: 

• As a capability of the refined plate theory, a

parabolic variation was estimated for transverse shear 

stresses across the plate thickness. 

• As the thickness of the core layer increases due to

higher amounts of plate stiffness, the corresponding 

deflection, normal stress, and shear stress values will 

decrease. 

• Increasing the piezoelectric layer thickness causes

the values of normal and shear stresses to decrease due to the 

higher amount of plate stiffness and stronger 

electromechanical coupling effects of thicker piezoelectric 

layers. 

• Having more constraints at the plate boundaries

increases the structure stiffness resulting in a reduction in 

deflection, normal stress, and shear stress values. 

• Since Al has a lower modulus of elasticity than

Al2O3, lowering the power-law index results in a lower value 

for plate stiffness. Consequently, the deflection's value will 

rise. 
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Fig. 7 Comparison of non-dimensional normal stress 

(𝜎̄𝑥) distribution with Abaqus results considering different

boundary conditions (n=0, 2h/a=0.05, a/b =1, hp/2h=0.1). 

Fig. 8 Distribution of non-dimensional deflection 

(𝑊̄(𝑎/2, 𝑦, 0)) of smart FG plate through the plate width

considering different boundary conditions (n=2, 2h/a=0.1, 

a/b =1, hp/2h =0.1). 

Fig. 9. Central deflection of the smart FG plate versus 

thickness-to-side ratio considering different boundary 

conditions (a=b=1m, q0=1N, n=2, hp/2h =0.1). 
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Appendix A: 

The matrix components of a transversely isotropic 

piezoelectric layer and for an FG core plate are defined as: 

𝐶̄11 = 𝐶11 −
𝐶13
2

𝐶33
,  𝐶̄12 = 𝐶12 −

𝐶13
2

𝐶33
, 

𝑒̄31 = 𝑒31 −
𝐶13
𝐶33

𝑒33, 𝜂̄33 = 𝜂33 +
𝑒33
2

𝐶33

𝑄11 =
𝐸(𝑧)

1 − 𝜐2
,  𝑄12 =

𝜐𝐸(𝑧)

(1 − 𝜐2)
,  𝑄66 =

𝐸(𝑧)

2(1 + 𝜐)

(A1) 

The matrix components of Eq. (21) are defined as: 

𝑵 = {𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦}
𝑇
,   𝑴𝑏 = {𝑀𝑥

𝑏 , 𝑀𝑦
𝑏 , 𝑀𝑥𝑦

𝑏 }
𝑇

𝑴𝑠 = {𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠 }

𝑇
, 0 = {0,0,0}𝑇 ,

𝑲 = {𝜇1, 𝜇1, 0}
𝑇 ,  𝑻 = {𝜇2, 𝜇2, 0}

𝑇 , 𝑺 = {𝑆𝑦𝑧 , 𝑆𝑥𝑧}
𝑇

𝜺 = {
𝜕𝑢0
𝜕𝑥

,
𝜕𝑣0
𝜕𝑦

,
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
}
𝑇

, 

(A2) 

𝜿𝑏 = {−
𝜕2𝑤𝑏
𝜕𝑥2

, −
𝜕2𝑤𝑏
𝜕𝑦2

, −2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

}

𝑇

𝜿𝑠 = {−
𝜕2𝑤𝑠
𝜕𝑥2

, −
𝜕2𝑤𝑠
𝜕𝑦2

, −
2𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

}

𝑇

, 

𝜸 = {
𝜕𝑤𝑠
𝜕𝑦

,
𝜕𝑤𝑠
𝜕𝑥

}
𝑇

,  𝜞 = {
𝜕𝜑

𝜕𝑦
,
𝜕𝜑

𝜕𝑥
}
𝑇

(A2) 

And 

𝑨 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] ,  𝑩 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] , 

𝑫 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] , 𝑯 = [

𝐻11 𝐻12 0
𝐻12 𝐻22 0
0 0 𝐻66

] , 

𝑩𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
],  𝑫𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
] , 

 𝑨𝑠 = [
𝐴11
𝑠 0

0 𝐴11
𝑠 ]

(A3) 

in which Aij, Bij, etc. are the rigidity matrix components, 

defined by: 

{

𝐴1𝑖
𝐵1𝑖
𝐵1𝑖
𝑠

𝐷1𝑖
𝐷1𝑖
𝑠

𝐻1𝑖}

= ∫ 𝐶̄1𝑖

−ℎ

−ℎ−ℎ𝑝

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

𝑑𝑧 + ∫ 𝑄
ℎ

−ℎ 1𝑖

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

𝑑𝑧 +∫ 𝐶̄1𝑖

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

ℎ+ℎ𝑝

ℎ

𝑑𝑧 , 𝑖 = 1,2 

{

𝐴66
𝐵66
𝐵66
𝑠

𝐷66
𝐷66
𝑠

𝐻66}

= ∫
1

2
(𝐶̄11

−ℎ

−ℎ−ℎ𝑝

− 𝐶̄12)

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

𝑑𝑧 +∫ 𝑄
ℎ

−ℎ 66

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

𝑑𝑧 + ∫
1

2
(𝐶̄11

ℎ+ℎ𝑝

ℎ

− 𝐶̄12)

{

1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}

𝑑𝑧 

(𝐴22, 𝐵22, 𝐵22
𝑠 , 𝐷22, 𝐷22

𝑠 , 𝐻22) = (𝐴11, 𝐵11, 𝐵11
𝑠 , 𝐷11, 𝐷11

𝑠 , 𝐻11)

𝐴11
𝑠 = ∫ 𝐶55𝑔

2
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 +∫ 𝑄
ℎ

−ℎ 66

𝑔2𝑑𝑧 + ∫ 𝐶55𝑔
2

ℎ+ℎ𝑝

ℎ

𝑑𝑧 

(A4) 

The coefficients 𝜇𝑖 of Eqs. (22) are defined as:

𝜇1 =
4

3
𝑒31ℎ𝑝,  𝜇2 =

1

6

ℎ𝑝(8ℎ
2 + 6ℎℎ𝑝 + ℎ𝑝

2)

(ℎ + ℎ𝑝)
2

𝑒31,            𝜇3 = −
1

6

ℎ𝑝
2(10ℎ + 7ℎ𝑝)

(ℎ + ℎ𝑝)
2

𝑒51 (A5)

The coefficients ϒ𝑖  of Eq. (24) are defined as:

ϒ1 = −
(
𝑒31 − 5𝑒51

3
) ℎ𝑝

3 −
ℎ(5𝑒51 − 3𝑒31)ℎ𝑝

2

2
+ 2𝑒31ℎ

2ℎ𝑝

(ℎ + ℎ𝑝)
2

, ϒ2 =
4

3
𝜂11ℎ𝑝, ϒ3 = 2𝑒31ℎ𝑝, ϒ4 =

16𝜂33
ℎ𝑝

(A6) 
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Appendix B: 

Boundary conditions at y=b/2 and y=-b/2 for simply 

supported, clamped or free are taken as follows: 

- Simply supported

𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦 = 𝑀𝑦
𝑏 = 𝑀𝑦

𝑠 = 𝜑 = 0 (B1)

- Clamped

𝑢0 = 𝑣0 = 𝑤𝑏 = 𝑤𝑠 =
𝜕𝑤𝑏
𝜕𝑦

=
𝜕𝑤𝑠
𝜕𝑦

= 𝜑 = 0 (B2) 

- Free

𝑁𝑦 = 𝑁𝑥𝑦 = 𝑀𝑦
𝑏 = 𝑀𝑦

𝑠 = 𝜑 =
𝜕𝑀𝑦

𝑏

𝜕𝑦
+
2𝜕𝑀𝑥𝑦

𝑏

𝜕𝑥

=
𝜕𝑀𝑦

𝑠

𝜕𝑦
+ 2

𝜕𝑀𝑥𝑦
𝑠

𝜕𝑥
+ 𝑆𝑦𝑧 = 0

(B3) 

𝑐𝑖, 𝑐𝑖𝑗  and 𝑐𝑖𝑗𝑚constants in Eqs. (30) are described as:

𝑐1 =
𝐴11𝛼

2

𝐴66
, 𝑐2 =

−(𝐴12 + 𝐴66)𝛼

𝐴66
, 𝑐3 =

−𝐵11𝛼
3

𝐴66
, 𝑐3𝑠 =

−𝐵11
𝑠 𝛼3

𝐴66
, 𝑐4 =

(𝐵12 + 2𝐵66)𝛼

𝐴66
, 𝑐4𝑠 =

(𝐵12
𝑠 + 2𝐵66

𝑠 )𝛼

𝐴66
, 

𝑐5 =
(𝐴12 + 𝐴66)𝛼

𝐴22
, 𝑐6 =

(𝐴66𝛼
2)

𝐴22
, 𝑐7 =

−(𝐵12 + 2𝐵66)𝛼
2

𝐴22
, 𝑐7𝑠 =

−(𝐵12
𝑠 + 2𝐵66

𝑠 )𝛼2

𝐴22
, 𝑐8 =

𝐵22
𝐴22

, 𝑐8𝑠 =
𝐵22
𝑠

𝐴22

𝑐11𝑚 =
ϒ3𝛼

2

ϒ2
, 𝑐12𝑚 =

−ϒ3
ϒ2

, 𝑐13𝑚 =
−ϒ1𝛼

2

ϒ2
, 𝑐14𝑚 =

ϒ1
ϒ2
, 𝑐16𝑚 =

(ϒ2𝛼
2 + ϒ4)

ϒ2
, 𝑐9𝑠 =

(𝐵11
𝑠 𝛼3 + 𝑐1𝛿 + 𝑝1ℏ)

ƛ

𝑐15𝑠 =
(1 + 𝑝8ℏ)

ƛ
, 𝑐16𝑠 =

((𝑐17𝑚 − 𝛼
2)(𝜇3 − 𝜇2) + 𝑝7ℏ)

ƛ
, 𝑐10𝑠 =

(𝐵22
𝑠 𝑐6 + 𝑐2𝛿 − (𝐵12

𝑠 + 2𝐵66
𝑠 )𝛼2 + 𝑝2ℏ)

ƛ

𝑐11𝑠 =
(𝑐3𝛿 − 𝐷11

𝑠 𝛼4 + 𝑐11𝑚(𝜇3 − 𝜇2) + 𝑝3ℏ)

ƛ
, 𝑐9 = (𝑝1 + 𝑐9𝑠𝑝9), 𝑐10 = (𝑝2 + 𝑐10𝑠𝑝9), 𝑐11 = (𝑝3 + 𝑐11𝑠𝑝9)

𝑐12 = (𝑝4 + 𝑐12𝑠𝑝9), 𝑐13 = (𝑝5 + 𝑐13𝑠𝑝9), 𝑐14 = (𝑝6 + 𝑐14𝑠𝑝9), 𝑐15 = (𝑝8 + 𝑐15𝑠𝑝9), 𝑐16 = (𝑝7 + 𝑐16𝑠𝑝9)

𝑐12𝑠 =
(𝐵22

𝑠 𝑐7 + 𝑐4𝛿 + 2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝛼2 + 𝑐12𝑚(𝜇3 − 𝜇2) + 𝑝4ℏ)

ƛ

𝑐13𝑠 =
(𝑐3𝑠𝛿 − 𝐻11𝛼

4 − 𝐴11
𝑠 𝛼2 + 𝑐13𝑚(𝜇3 − 𝜇2) + 𝑝5ℏ)

ƛ

𝑐14𝑠 =
(𝐵22

𝑠 𝑐7𝑠 + 𝑐4𝑠𝛿 + 2(𝐻12 + 2𝐻66)𝛼
2 + 𝐴11

𝑠 + 𝑐14𝑚(𝜇3 − 𝜇2) + 𝑝6ℏ)

ƛ

(B4) 

and 

𝑝1 =
(𝐵11𝛼

3 + 𝑐1𝜓)

𝜒
, 𝑝2 =

(𝐵22𝑐6 + 𝑐2𝜓 − (𝐵12 + 2𝐵66)𝛼
2)

𝜒
, 𝑝3 =

(𝑐3𝜓 − 𝐷11𝛼
4 − 𝜇1𝑐11𝑚)

𝜒

𝑝4 =
(𝐵22𝑐7 + 𝑐4𝜓 + 2(𝐷12 + 2𝐷66)𝛼

2 − 𝜇1𝑐12𝑚)

𝜒
, 𝑝5 =

(𝑐3𝑠𝜓 − 𝐷11
𝑠 𝛼4 − 𝜇1𝑐13𝑚)

𝜒

𝑝6 =
(𝐵22𝑐7𝑠 + 𝑐4𝑠𝜓 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝛼2 − 𝜇1𝑐14𝑚)

𝜒
, 𝑝7 =

(𝜇1𝛼
2 − 𝜇1𝑐16𝑚)

𝜒
, 𝑝8 =

1

𝜒

𝑝9 =
(𝑐8𝑠𝐵22 − 𝐷22

𝑠 )

𝜒
, 𝛿 = (𝐵22

𝑠 𝑐5 − (𝐵12
𝑠 + 2𝐵66

𝑠 )𝛼), ƛ = 𝐻22 − 𝐵22
𝑠 𝑐8𝑠 − 𝑝9(𝐵22

𝑠 𝑐8 − 𝐷22
𝑠 )

ℏ = 𝐵22
𝑠 𝑐8 − 𝐷22

𝑠 , 𝜓 = (𝐵22𝑐5 − (𝐵12 + 2𝐵66)𝛼), 𝜒 = 𝐷22 − 𝑐8𝐵22

(B5) 

Also, different boundary conditions can be written in terms of (𝑈𝑚(𝑦), 𝑉𝑚(𝑦), 𝑊𝑏𝑚(𝑦), 𝑊𝑠𝑚(𝑦) and 𝜑𝑚(𝑦)) as follows:

- Simply supported:
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𝑈𝑚(𝑦) = 𝑊𝑏𝑚(𝑦) = 𝑊𝑠𝑚(𝑦) = 𝜑𝑚(𝑦) = 0 

−𝐴12𝛼𝑈𝑚(𝑦) + 𝐵12𝛼
2𝑊𝑏𝑚(𝑦) + 𝐵12

𝑠 𝛼2𝑊𝑠𝑚(𝑦) + 𝐴22𝑉𝑚
′ (𝑦) − 𝐵22𝑊𝑏𝑚

″ (𝑦) − 𝐵22
𝑠 𝑊𝑠𝑚

″ (𝑦) = 0

−𝐵12𝛼𝑈𝑚(𝑦) + 𝐷12𝛼
2𝑊𝑏𝑚(𝑦) + 𝐷12

𝑠 𝛼2𝑊𝑠𝑚(𝑦) + 𝐵22𝑉𝑚
′ (𝑦) − 𝐷22𝑊𝑏𝑚

″ (𝑦) − 𝐷22
𝑠 𝑊𝑠𝑚

″ (𝑦) − 𝜇1𝜑𝑚(𝑦) = 0

−𝐵12
𝑠 𝛼𝑈𝑚(𝑦) + 𝐷12

𝑠 𝛼2𝑊𝑏𝑚(𝑦) + 𝐻12𝛼
2𝑊𝑠𝑚(𝑦) + 𝐵22

𝑠 𝑉𝑚
′ (𝑦) − 𝐷22

𝑠 𝑊𝑏𝑚
″ (𝑦) − 𝐻22𝑊𝑠𝑚

″ (𝑦) − 𝜇2𝜑𝑚(𝑦) = 0

(B6) 

- Clamped:

𝑈𝑚(𝑦) = 𝑉𝑚(𝑦) = 𝑊𝑏𝑚(𝑦) = 𝑊𝑠𝑚(𝑦) = 𝑊𝑏𝑚
′ (𝑦) = 𝑊𝑠𝑚

′ (𝑦) = 𝜑𝑚(𝑦) = 0 (B7) 

- Free:

𝜑𝑚 = 0

−𝐴12𝛼𝑈𝑚(𝑦) + 𝐵12𝛼
2𝑊𝑏𝑚(𝑦) + 𝐵12

𝑠 𝛼2𝑊𝑠𝑚(𝑦) + 𝐴22𝑉𝑚
′ (𝑦) − 𝐵22𝑊𝑏𝑚

″ (𝑦) − 𝐵22
𝑠 𝑊𝑠𝑚

″ (𝑦) = 0

𝐴66(𝑈𝑚
′ (𝑦) + 𝛼𝑉𝑚(𝑦)) − 2𝐵66𝛼𝑊𝑏𝑚

′ (𝑦) − 2𝐵66
𝑠 𝛼𝑊𝑠𝑚

′ (𝑦) = 0

−𝐵12𝛼𝑈𝑚(𝑦) + 𝐷12𝛼
2𝑊𝑏𝑚(𝑦) + 𝐷12

𝑠 𝛼2𝑊𝑠𝑚(𝑦) + 𝐵22𝑉𝑚
′ (𝑦) − 𝐷22𝑊𝑏𝑚

″ (𝑦) − 𝐷22
𝑠 𝑊𝑠𝑚

″ (𝑦) − 𝜇1𝜑𝑚(𝑦) = 0

−𝐵12
𝑠 𝛼𝑈𝑚(𝑦) + 𝐷12

𝑠 𝛼2𝑊𝑏𝑚(𝑦) + 𝐻12𝛼
2𝑊𝑠𝑚(𝑦) + 𝐵22

𝑠 𝑉𝑚
′ (𝑦) − 𝐷22

𝑠 𝑊𝑏𝑚
″ (𝑦) − 𝐻22𝑊𝑠𝑚

″ (𝑦) = 0

(𝐵22𝑐5 − 𝐵12𝛼 − 2𝐵66𝛼)𝑈𝑚
′ (𝑦) + (𝐵22𝑐6 − 2𝐵66𝛼

2)𝑉𝑚(𝑦) + (𝐵22𝑐7 + 𝐷12𝛼
2 + 4𝐷66𝛼

2)𝑊𝑏𝑚
′ (𝑦) + (𝐵22𝑐7𝑠

+ 𝐷12
𝑠 𝛼2 + 4𝐷66

𝑠 𝛼2)𝑊𝑠𝑚
′ (𝑦) + (𝐵22𝑐8 − 𝐷22)𝑊𝑏𝑚

‴ (𝑦) + (𝐵22𝑐8𝑠 − 𝐷22
𝑠 )𝑊𝑠𝑚

‴ (𝑦) − 𝜇1𝜑𝑚
′ (𝑦) = 0

(𝐵22
𝑠 𝑐5 − 𝐵12

𝑠 𝛼 − 2𝐵66
𝑠 𝛼)𝑈𝑚

′ (𝑦) + (𝐵22
𝑠 𝑐6 − 2𝐵66

𝑠 𝛼2)𝑉𝑚(𝑦) + (𝐵22
𝑠 𝑐7 + 𝐷12

𝑠 𝛼2 + 4𝐷66
𝑠 𝛼2)𝑊𝑏𝑚

′ (𝑦) + (𝐵22
𝑠 𝑐7𝑠

+ 𝐻12𝛼
2 + 4𝐻66𝛼

2 + 𝐴11
𝑠 )𝑊𝑠𝑚

′ (𝑦) + (𝐵22
𝑠 𝑐8 − 𝐷22

𝑠 )𝑊𝑏𝑚
‴ (𝑦) + (𝐵22

𝑠 𝑐8𝑠 −𝐻22)𝑊𝑠𝑚
‴ (𝑦)

+ 𝜇3𝜑𝑚
′ (𝑦) = 0

(B8) 
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