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Abstract

Constrained by the AC voltage amplitude modulated by a modular multilevel convertet-
based static synchronous compensator (MMC-STATCOM), its reactive power output
may be subject to oscillations under grid contingencies, posing a threat to the grid stable
operation. To solve this problem, this paper proposes a variable DC voltage (VDCV)-
based reactive power enhancement scheme for MMC-STATCOM. In this scheme, a
novel variable DC voltage control is designed, which can increase the DC voltage in a
transient state for relaxing the constraint of the AC voltage amplitude modulated by
MMC-STATCOM and improving its reactive power output capability (RPC). At the same
time, to make full use of the improved RPC of MMC-STATCOM, a VDCV scheme also
proposes an optimisation algorithm of its reactive current-AC voltage droop coefficient
using the established reactive power model of the MMC-STATCOM. Based on small
sighal modelling and analysis, the key parameters of the proposed VDCV scheme ate
optimised. The performance and reactive power enhancement of the VDCV scheme is
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1 | INTRODUCTION

The modular multilevel converter-based static synchronous
compensator (MMC-STATCOM) possesses the advantages of
fast reactive power regulation speed, wide operation range and
low harmonic content [1-4], being proven to be one of the
important technologies to guarantee the grid voltage dynamic
stability. Especially in the case of grid voltage sags, MMC-
STATCOM can provide a certain level of short-term over-
load capability, output additional reactive power and improve
the support effect for the grid voltage in transient states [5, 0].
According to STATCOM design standards and engineering
application examples [7, 8], the ovetload operation time for a
STATCOM is allowed in maximum 2s at 1.5 times of its rated
current. stability of MMC-
STATCOM (e.g., modulation index, submodule capacitor and
voltage ripple) may restrict its additional reactive power output.

However, the constraints

Among them, the modulation index constraint limits the

evaluated through the hardware-in-the-loop experiment under grid disturbances.

overvoltage, power system stability, reactive power control, voltage-source convertors

MMC-STATCOM reactive power output to the greatest extent
[9-12]. As the MMC-STATCOM enters the overmodulation
region, the voltage at the point of common coupling (PCC) can
be subject to the high total harmonic distortion (THD) for its
distorted modulated AC voltage waveform [13, 14], which may
not fulfil the grid-connection codes and other requirements
[15-17] (e.g., IEEE Standard 519 recommends that the THD
of the PCC voltage should not be more than 3%).

To ensure grid voltage stability, it is necessary to improve
the reactive power output capability (RPC) of MMC-
STATCOM. The
increasing the modulation index to expand the amplitude of
the modulated AC voltage [18-22]. Directly increasing the
modulation index may lead to the overmodulation of the MMC

existing research studies focus on

converter station. Moreover, when a modulation index limiter
is added to avoid overmodulation [18], the control system may
be saturated at its limit, causing the reactive power oscillations
of MMC-STATCOM. The modulation strategy of MMC based
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on third-order harmonic voltage injection can effectively
expand the modulation index range to increase the amplitude
of the modulated AC voltage [19, 20], but its improvement
effect can be sensitively affected by the circulating current
suppression control [21], and also, the calculation of the third-
order harmonic voltage amplitude additionally takes up
controller computation resources [22]. In fact, the amplitude of
the modulated AC voltage is not only subject to the modula-
tion index but also influenced by its DC voltage [14]. Ac-
cording to the insulation tequitements of the MMC-
STATCOM DC system, DC voltage can vary within a small
range (such as £10%) around its rated value [10]. Therefore,
increasing the DC voltage within an allowable range to increase
the modulated AC voltage amplitude can also be an effective
manner to improve the RPC of MMC-STATCOM. In this
regard, rare relevant work is reported.

The reactive current-AC voltage droop coefficient of MMC-
STATCOM is determined by the ratio of the allowable variation
range of PCC voltage to the maximum reactive current output
[23, 24]. The limited RPC of MMC-STATCOM constrains its
maximum reactive current output, resulting in a large droop
coefficient and consequently an underutilised regulation on grid
voltage. Therefore, with an improved RPC of MMC-
STATCOM, its droop coefficient can be further optimised to
enhance its regulation effect on the grid voltage. However, the
existing literature on improving the RPC of MMC-STATCOM
rarely involves the droop coefficient optimisation.

Therefore, this paper proposes a variable DC voltage
(VDCV)-based reactive power enhancement scheme for
MMC-STATCOM. The main features of the proposed VDCV
scheme are summarised as follows:

(1) VDCV scheme designs a novel variable DC voltage con-
trol, which can extend the operating range of the modu-
lated AC voltage and improve the RPC of MMC-
STATCOM by temporarily raising the DC voltage.
Different from third-order harmonic voltage injection
schemes in Refs. [19, 20], the VDCV scheme does not
require complex calculations, and it also avoid the adverse
control impact for improving RPC.

(2) VDCV scheme designs a droop coefficient optimisation
algorithm based on an established MMC-STATCOM
reactive power model, effectively lowering the droop co-
efficient and improving its grid voltage regulation effect.

The rest of the paper is as follows: Section 2 introduces the
topology and traditional control of MMC-STATCOM. Sec-
tion 3 establishes the reactive power model of MMC-
STATCOM and analyses the limiting factors and potential
improvement manners of the MMC-STATCOM RPC. Sec-
tion 4 proposes the specific VDCV design, including variable
DC voltage control and droop coefficient optimizsation. Sec-
tion 5 optimises the key parameters of the VDCV scheme
based on small signal analysis. Section 6 verifies the effec-
tiveness of the VDCV scheme via hardware-in-the-loop ex-
periments. Section 7 summarises the full text.

2 | MMC-STATCOM TOPOLOGY AND
TRADITIONAL CONTROL

This section introduces the topology and traditional control of
MMC-STATCOM, which provides a theoretical basis to
analyse the RPC of MMC-STATCOM and design the novel
control.

21 | MMC-STATCOM topology

The topology of a three-phase MMC-STATCOM is shown in
Figure 1. Each phase of MMC contains the upper and lower
arms, and each arm includes an arm inductor (Ly) and N
cascaded half-bridge sub-modules (SMs). Each sub-module
consists of a DC side capacitor (C) and four semiconductor
switching devices (Dy, Dy, §i, and S,). The coupling point of
the upper and lower arms is connected to PCC via a three-
phase transformer (L,). In Figure 1, #,, and i are the
voltage and current at the PCC, respectively; #,, is the MMC
modulated AC voltage; and Uy, is the DC voltage. MMC-
STATCOM maintains DC voltage stability and realises the
modulated voltage output by adjusting the switching state of
submodules.

2.2 | MMC-STATCOM traditional control

The MMC-STATCOM traditional control is presented in
Figure 2. The outer controller employs constant DC voltage
control and reactive current-AC voltage droop control to
ensure the stable operation of DC voltage and the PCC
voltage, respectively. The inner current controller generates
modulation signals for MMC according to the current refer-
ence values generated by the outer controller, and adopts a
modulation index limiter to avoid MMC from overmodulation.
The control system of MMC-STATCOM also includes
capacitor voltage balancing control (VBC) and circulating
current suppression control (CCSC), which are reported in Ref.

25].

3 | MMC-STATCOM REACTIVE POWER
MODEL AND RPC ANALYSIS

This section establishes the MMC-STATCOM reactive power
model, analyses its reactive power output constraints and dis-
cusses the feasible improvement methods of its RPC.

3.1 | MMC-STATCOM reactive power
model and constraints

The equivalent AC circuit of MMC is shown in the grey box of
Figute 1. The reactive power flow Q between the MMC and
the AC system can be written as:
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FIGURE 1 MMC-STATCOM topology. *
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[Jpcc(Uv cos 6 — []pcc) N %cc(tlu - L]pcc)
X+X/2 T X,

Q= (1)

where U, and U, are the RMS value of #,, and u,,
respectively; X, and X, are the reactances of the transformer
and the arm inductor, respectively; X, is the equivalent reac-
tance between #,c. and #,; and § is the phase angle difference
between #y,.. and #,, (6 & 0 as MMC-STATCOM has no active
power interaction). To simplify the analysis, all variables in this
paper adopt per unit values.

The droop control of MMC-STATCOM characterises the
relationship between the PCC voltage reference value Uy *
and the reactive current reference value 7,* [23]:

l]pcc* = []pcc() + kdiq* (2)

Inner current controller

where U,y is the rated value of U, and kg is the droop
coefficient. In a practical system, the PCC voltage is allowed to
fluctuate in a certain range, and the reactive power compen-
sation device can participate in the regulation of the PCC
voltage by using a simple reactive current-AC voltage droop
control. Meanwhile, some grid connection regulations specify
the range of the droop coefficient value for the reactive
current-AC voltage droop control [17]. In order to ensure the
studied system is consistent with an actual system, this paper
adopts reactive current-AC voltage droop control to regulate
the PCC voltage. The droop coefficient can be determined by
the following equation:

ky= - (3)
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whete AU, is the maximum variable range of the PCC

voltage, which is generally 0.02-0.07 pu depending on specific

gtid codes [17]; and L.y is the maximum reactive cutrent.
The reactive current iq is given as follows:

. Uv_ Ucc
lq:‘qu (4)

Via proportional-integral (PI) control, the actual values of
the aforementioned variables are equal to their reference values
in a steady state, thus Uy = U, * and 1, = 1;*. The relationship
between Uy and U, can be obtained by combining (2) and (4):

AX;qU;)ccO - kde
Upee = 42X 200 5
P Xy —ky )

Furthermore, by combining (1) and (5), Q can be written
asfollows:

_ _/eall]v2 + ()Qq + kd) U;ch U, - )Qq[]pccoz
(‘X;q - kd)z

Q (6)

According to (6), Q is mainly restricted by U, when the
system parameters X,,, U, and Ry are given, and Q increases
with the increase of U,,. The modulated AC voltage limit Uy
is determined by the modulation index limit 72.,,, and DC

voltage limit Uy

Mmax Udcmax
Uumax k’v 5 \/E (7)
where &, is a constant given by Uyeo/ Uy, where Uy and Uy
are the rated values of DC voltage and the modulated AC
voltage, respectively.
Substituting (7) into (6), the maximum reactive power
output of MMC-STATCOM under the modulated AC voltage
constraint Qum. can be obtained as follows:

1
2 [_kd (kvmmax L]dcmax)z

vaax =, 2
8(&4 - kd)

+ 2V2 Upeeo (Xeg + Fa) Borenas Uperna—8%eg UMZ}
(8)
Substituting (7) into (5), the maximum reactive power

output of MMC-STATCOM under the overload current
constraint Q;.. can be obtained as follows:

Q, _ 2\/— ZAX;q L/:gcco - kdkvmmax Z]dcmax
imax Zﬁ(&q_kd)

Imax (9)

where I, is the MMC overload current limit.

Considering the two comprehensive RPC constraints of
the modulated AC voltage and the overload current limit
above, the maximum reactive power output of MMC-

STATCOM Q.. is eventually constrained by the smaller
value in (8) and (9) as follows:

Qmax = mln{ Q’uma)u Qimax} (10)

3.2 | RPC analysis of MMC-STATCOM

Based on the established reactive power model of MMC-
STATCOM, this sub-section analyses the RPC of MMC-
STATCOM and its possible improvement methods.

The selected parameters ky, k,, Xegs Upeco, and I (1.5
times the rated current is adopted in this paper) in (8) and (9)
are presented in Table Al. Under the traditional control,
Uljemay 1s normally fixed at 1pu and m,,,, fixed at 1. Figure 3
shows the three-dimensional relationships of Qumax 0f Qjmaxs
Mpax A0d Uyemax. It can be observed that Q. is far lower
than Qjma. indicating that the modulated AC voltage
constraint is the main impact factor limiting the RPC of MMC-
STATCOM and resulting in the underutilisation of MMC-
STATCOM overload capability.

In order to break through the modulated AC voltage
constraint and improve the RPC of MMC-STATCOM, it can
be seen from Figure 3 and (8) that Qumax can be significantly
improved by increasing 72, 0f Ujemax. The traditional third-
order harmonic voltage injection strategy of increasing 72,
has complex calculations and is subject to the influence of the
circulating current suppression control [19-22], so the VDCV
scheme which improves the RPC by increasing the DC voltage
is introduced in the following section.

4 | VDCV SCHEME FOR ENHANCING
REACTIVE POWER OF MMC-STATCOM

This section proposes a VDCV scheme which includes variable
DC voltage control and droop coefficient optimisation. Vari-
able DC voltage control improves the RPC of MMC-

0.5

Reactive power limit Oymaxs Qimax (PU)

e
20,1075
105 N
g 1025

« 1 ~ =
’0 0.975 0.95 0.975

2
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STATCOM by flexibly adjusting the DC voltage, while droop
coefficient optimisation reduces the droop coefficient in (3) for
a better grid voltage support effect.

4.1 | Variable DC voltage control

To expand the adjustable range of the modulated AC voltage
and improve the RPC of MMC-STATCOM, variable DC
voltage control adds a modulation index control to adjust the
DC voltage reference value U,* when modulation index m
exceeds its limit 72,,,, which can be expressed as follows:

[Jalc>k = []dc() =+ A[]dc

AUy = (kp + é) (m = Mua), 0 < AUje < AUjgma
S
(11)

where AUy is the correction value of Uy*; kB, and k; are the
proportional coefficient and integral coefficient of the

modulation index control, tespectively; and AU g, is the
uppet limit of AUy, which is set as 0.1pu in this paper. The
lower limit of AUy, is set at 0 to prevent the modulation index
control being active when unnecessary. The control loop of
variable DC voltage control is shown in the red line in
Figure 4, and CPS-SPWM generates switching signals to con-
trol the switching of sub-modules according to the modulated
AC voltage reference signal (the number of MMC-STATCOM
sub-modules in this paper is moderate, so CPS-SPWM can be
adopted without causing significant loss increase).

4.2 | RPC improvement effect analysis of
variable DC voltage control

To evaluate the RPC improvement effect of variable DC
voltage control, this section sets up an MMC-STATCOM
connected system, as illustrated in Figure 5, and establishes
its mathematical model to quantify the RPC of MMC-
STATCOM under the proposed control.

The power exchange between the MMC-STATCOM and
its connected system is as follows:

FIGURE 4 Variable DC voltage control.

- = = = = = = === = = == -

Droop |
control !

0 Modulation index

|_

FIGURE 5 Diagram of the MMC-STATCOM
connected system.
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UUpee sin 6
X

[]pcc(U; COS 9 - []pcc) + []pcc(Uu - %cc)
X Xeq

Py =P, =

QL :QS+Q:
(12)

whete U, is the AC gird voltage; 0 is the phase angle difference
between Us and U,,; X is the equivalent reactance of the AC
system; Py + jQy is the active and reactive load power; and
P; + jQ, is the active and reactive power from the AC system.

By combining (5) and (12), the modulated AC voltage U,
can be obtained under specific U; and P; + jQ;. Then
substituting U, into (6), the reactive power Q can be obtained
accordingly. It is worth stressing that U, should not exceed its
limit Uy, duting the substitution to get the cortect reactive
power output of MMC-STATCOM.

Figure 6 shows the three-dimensional relationship of Q, U
and Q7. When U is decreased or Q) is increased within region
1, the reactive power output from the MMC-STATCOM Q will
be increased with the proposed control, the same as the per-
formances with traditional control. When U, further decreases
or Qg further increases to Region II, under the traditional
control, the reactive power output from the MMC-STATCOM
Q reaches its limit and cannot increase as wanted. However,
under the proposed vatiable DC voltage control, Q can further
increase since it effectively breaks through the constraint of the
modulated AC voltage by increasing the MMC-STATCOM
DC voltage.

4.3 | Droop coefficient optimization of
MMC-STATCOM

After improving the RPC of MMC-STATCOM by the
proposed variable DC voltage control, the optimisation of
the droop coefficient k; in (3) makes it possible to further

|
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e Variable DC voltage control :
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é’eQ 08 05 ().75. \oaﬂ?owe: (0)3
®@ = Reactwe

FIGURE 6 Relationship between Q and Qy, U..

enhance the voltage regulation effect of MMC-STATCOM.
Cutve @ in Figure 7 shows the reactive current regulation of
MMC-STATCOM under traditional control. The reactive
current is regulated following line AB during the change of
Upcc and is limited at the maximum reactive current lom,y as
in line BC. With the analysis in Section 3, it can be found
that [, is smaller than the rated reactive current, resulting
in a large droop coefficient ky and weak voltage regulation
effect. On the other hand, under variable DC voltage con-
trol, the maximum reactive current can be increased to
Imax' as in line @ according to Section 3, so ky can be
correspondingly reduced to fully utilise the improved RPC
and enhance the grid voltage regulation effect. Therefore, in
this section, the droop coefficient ky is optimised to identify
the slope of line @.

According to (4), (5), (7), the maximum reactive current
I, can be derived as follows:

I r_ kvmmax []deax (de - X;q) _ U;ch (13>
o Zﬁ&q (qu —kq ) (X;q —kq )

It can be observed from (3) and (13) that £y and Iy are
mutually effected. Therefore, an iterative method is adopted in
this paper to finalise droop coefficient k,. The optimisation
flow chart is presented in Figure 8, and the specific optimisa-
tion steps are as follows:

Step 1 Obtain the parameters related to the calculation of
droop coefficient ky, including AUy in (3), £oy Mimaxo Udemao
Xeg and Upeeo in (13).

Step 2 Solve the optimised droop coefficient through iteration.
Firstly, given an initial droop coefficient kg, obtain Ipmay

through (13). Then, substitute [y, into (3) to obtain the
optimised droop coefficient k. Finally, determine whether the

AUpec
UpccO

Umax

< E' C

l q I vmax

O

1 vmax

FIGURE 7 Compatison of the MMC-STATCOM droop coefficient
before and after optimisation.
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absolute value of the difference between kg, and k; meets the
accuracy requirements.

Figure 9 shows the three-dimensional relationship of kg,
AU o and U jemay. It can be seen from Figure 9 that the droop
coefficient k, under variable DC voltage control (that is, when
Udemax > 1) is lower than that under traditional control (i.e.,
when U = 1). In addition, as seen in Figure 9, with the
increase of Uyemay, the droop coefficient correspondingly de-
creases as the RPC of MMC-STATCOM is improved, thereby
reducing the drop of the grid voltage.

5 | SMALL SIGNAL ANALYSIS AND
PARAMETERS OPTIMIZATION OF VDCV
SCHEME

To optimise the key control parameters of the VDCV scheme, a
small signal model (SSM) of the MMC-STATCOM connected
system as shown in Figure 5 is established in this section. The
47.5 MVar-rated MMC-STATCOM is connected to the AC grid
(SCR = 4) through a 32 kV/230 kV step-up transformer. The
fixed staticload L11is Spy = P4 + jQr1 = 28.5 MW + j47.5M Var.
The switchable load 12 is §;5 = jQr2 = j16.63MVar and is

Input parameters AUpcen Xegn Upecon

Mmaxs Udemax~ Kdgo~ €ITOr €

error>¢g?
No
Yes

Using (13) to calculate Zymayx

v

Using (3) to calculate &,

Y

error =k -k o

v

> Output &,

v
End

FIGURE 8 The flow chart of droop coefficient optimisation.

switched out in the initial state. The state space equations and
specific parameters of the system can be seen in Tables Al
and A2 and Appendix B.

Linearising the state space equations using the linear
analysis tool in the Matlab/Simulink platform [26]. The SSM
obtained by the linearisation can be expressed as follows:

d
J,AX = AAX + BAU (14)

where A is the small disturbance variation; X is the state col-
umn vector; A is the state matrix; B is the input matrix; and U
is the input column vector.

To verify the accuracy of SSM, its dynamic responses are
compared with those of its time-domain electromagnetic
transient (EMT) model in Figure 10. At ¢ = 0.1s, the reactive
load step increases by 16.63MVar, and the responses of SSM
are accurately aligned with those from the EMT model, which
verifies the correctness of SSM.

The eigenvalues of the MMC-STATCOM connected sys-
tem are listed in Table C1 in which modes A; g and Ay 1, with
low damping ratio are identified as the dominant modes to be
focused.

The parameters k, and k; of the modulation index
control are optimised in this paper. When /ep increases from
0 to 10, as shown in Figure 11a, A;g move away from the
imaginary axis, which indicates the increase of the damping
ratio and the improvement of the system stability. Aiq 12
firstly move away from the imaginary axis and then
approach it with the increase of /ep and enter the right half
plane after /ep exceeds 2.5, which indicates the unstable of
the system. Considering the comprehensive influence of &,
on A7g and Aqq 1, the optimal /ep = 0.5 is selected, for the
damping ratio of Ay, is the largest and A;g is far away
from the imaginary axis. With the optimal k,, the oscillation
and overshoot of the modulation index response can be
significantly suppressed under the step increase of reactive
load power, as shown in Figure 11b.

The optimized droop coefficient &,

FIGURE 9 Relationship between by and AUpa, Uemas-

85USD | SUOLULLOD BATID et idde 8y Aq pausenob 82 saoie VO ‘8sn JO'Sa|nJ 10} A#eiq1 T 8UIIUO A8|IM UO (SUORIPUD-PLE-SWLe}/WI0D" A3 1M AReJq1[Bu|UO//SANY) SUORIPUOD pue SWid L 8U1 885 *[7202/80/92] U0 ARiqIaulluo AB|IM ‘90140 EAueD yBinquipa ‘S3N pUe(i0dS 104 Uoleonp3 SHN AQ LKTZT Z6/670T 0T/I0pW00"A8| M ALeq 1 BUIIUO Yo essaIR 1//SANY WO pepeo|umoq ‘v ‘720 ‘Lv62STSe



434 | YU ET AL.
= 1.1 8 1.02 FIGURE 10 Step response comparison between
=y o — EMT model the EMT model and SSM model: (2) DC voltage Uy,
\;: é — = SSM model and (b) Modulation index 2.
~ 1.06 = 1.01
2 g
= =
S 1.02 — EMT model ..g 1
@) - = SSM model =
2 0.98 =
0 01 02 03 04 0 01 02 03 04
(@) (b)
3
<10
@ 2F mmexcx x| % = 1.03 -- 1.03 -
— >< | Y
S Q L .M DY,
.9 1 | }\/7 k;_ "g 1.02 i LYY L
>< p_O o 5 }\/1 1 o — I : v
< ﬁ—’ (e 1 .01 |
Ot m .............. x . :: o i 0.09 0.1 0.11 0.12
z\ X Bx = | :
2] A . & 1 1§ 1
g 1t 2:]1 73 e ky
o0 A 2 ().99F - --- k,=0.5
& s euvrrr £=0.01
é _2 XX X . x . 2 O 98
-300 -200  -100 0 '
Real Axis (1/s)
%102 (a)
~ 2 v v v Y
L x : S
— Xx . S
~ 1 X XX X X X00NMINK | ©
o' kl':40 11 . S
O ] S
2 U kx x 8
< . ~
= Ay G =
Bh - 1t x X X XX x»oz ] —g
g x: . O
=22 . . . : >
-80 -60 40 -20 O
Real Axis (1/s)
(©)
FIGURE 11 Dominant eigenvalue loci and modulation index response under different k, and k;: (a) k, varies from 0 to 10, (b) Modulation index response,

(c) k; varies from 0 to 400, (d) Modulation index response.

When k; increases from 0 to 400, as shown in Figure 11c,
M2 firstly move away from the imaginary axis and then
approach it, resulting in a continuous decrease in a damping
ratio. Ayq 12 cross the imaginary axis when k; increases to 320,
leading to system instability. The optimal k; = 40 is selected as
its damping ratio is the largest. With the optimal k;, the
modulation index oscillation can be effectively suppressed, and
the response speed can be ensured under the step increase of
reactive load power, as shown in Figure 11d.

6 | HARDWARE-IN-THE-LOOP
EXPERIMENTAL RESULTS

To verify the effectiveness of the VDCV scheme, a hardware-
in-the-loop experimental platform of the MMC-STATCOM
connected system as shown in Figure 12 is set up in this sec-
tion. The experimental platform consists of a dSPACE SCA-
LAXIO processing system for MMC-STATCOM control and
an RT-LAB OP5600 simulator for the real-time simulation of
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FIGURE 12 MMC-STATCOM connected system and controller-hardware-in-the-loop experimental platform.

the MMC-STATCOM connected system. The performances
of the following three schemes on the grid voltage support is
compared and analysed under the scenatios of the reactive load
step and AC grid three-phase ground fault. The three schemes
consist of

1) Traditional control scheme 1 (TC1): The traditional control
introduced in Section 2, which has the modulation index
limiter and &, is set as 0.045;

2) Traditional control scheme 2 (TC2): The traditional control
without the modulation index limiter and kg is set as 0.045;

3) Proposed VDCV scheme, and &y is set as 0.032 according
to the optimisation algorithm in Section 4.

6.1 | Scenario 1: reactive load step

Reactive load 1.2 (as seen in Figure 12) is switched in at
t = 0.1s, and the system response is illustrated in Figure 13.
The increase of the reactive load causes the PCC voltage to
decrease, as shown in Figure 13a. It can be observed from
Figure 13b that TC1 limits the modulation index at its limit
through the modulation index limiter, thus triggering the
oscillation of the DC voltage, as shown in Figure 13c. The
modulation index limiter of TC1 also causes the low-frequency
oscillation and even divergence of the reactive power and the
instability of the PCC voltage, as shown in Figures 13a,f. The
modulation index exceeds its limit in TC2, and MMC-
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STATCOM enters the overmodulation region, as shown in
Figure 13b. The overmodulation results in the oscillation of
DC voltage and the distortion of the modulated AC voltage, as
shown in Figures 13c,d, thus dramatically increasing the THD
of the PCC voltage, as shown in Figure 13e. In addition, the
overmodulation causes the high-frequency oscillation of the
reactive power and the PCC voltage, as shown in Figures 13a,f.

Compared with TC1 and TC2, the VDCV scheme effectively
avoids DC voltage oscillation and overmodulation by raising
the DC voltage, as shown in Figures 13b,c, thus ensuring the
stability of the reactive power and PCC voltage and signifi-
cantly improving the reactive power output and reducing the
PCC voltage drop based on the optimised droop coefficient, as
shown in Figures 13a,f.
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6.2 |
fault

Scenario 2: AC grid three phase ground

A temporary 300 ms three-phase fault occurs at the AC grid
bus at ¢ = 0.1s, which results in a 5% voltage drop of the PCC
voltage, as shown in Figure 14a. Compared with TC1 and TC2,
VDCV controls the modulation index at its limit by increasing

the DC voltage, avoids the overmodulation and the triggering
of the modulation index limiter and ensures the stability of the
modulation index and DC voltage, as shown in Figures 14b,c.
Figures 14d,e show that VDCV expands the adjustable range
of the modulated AC voltage, which avoids the distortion of
the PCC voltage and reduces its THD to around 0. As seen in
Figures 14a,f, VDCV ensures the stability of the reactive power
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output and the PCC voltage, and with the optimised droop
coefficient, the reactive power output and the PCC voltage
performance are significantly improved.

7 | CONCLUSION

Considering the constraint of the modulated AC voltage, the
reactive power output of MMC-STATCOM is potentially un-
stable under grid contingencies. This paper proposes a variable
DC voltage (VDCV)-based reactive power enhancement
scheme for MMC-STATCOM. With the designed variable DC
voltage control, the DC voltage is effectively increased in a
transient state to diminish the constraint of the modulated AC
voltage amplitude, providing the of RPC
improvement and overmodulation avoidance. The optimisa-

advantages

tion algorithm adjusts the reactive current-AC voltage droop
coefficient, enabling the MMC-STATCOM to make full use of
its improved RPC. Small signal analysis conducted obtains the
suitable parameters for the proposed VDCV scheme. The
theoretical analysis and hardware-in-the-loop results verify the
effectiveness of the proposed VDCV scheme in improving the
RPC and the voltage support of MMC-STATCOM.
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APPENDIX B

MMC-STATCOM STATE SPACE EQUATIONS

The small signal modelling of MMC-STATCOM mainly in-
cludes four parts: MMC main circuit, MMC control system,
transformer and coordinate transformation. The state-space
equations of each part is as follows:

1) State space equations of MMC main circuit:

@ Sub-module capacitor voltage fluctuation dynamic
DC component:

dI/TC My iq Uydly Ucirg icirq Ucirdlcird

APPENDIX A

T B1
dt ~ 4CU,, ' 4CU, ' 2CU, ' 2CU, (B1)

where % is the DC component of capacitor voltage; #.,4, is

SIMULATION AND CONTROL SYSTEM
PARAMETERS
See Tables Al and A2.
TABLE Al Simulation system parameters.
Module Item Value
MMC-STATCOM SM number per arm N 32
SM capacitance C 4.95 mF
Arm inductance L 20 mH
Carrier frequency f; 1.05 kHz
Rated dc voltage Uy 64 kV
Rated output ac voltage U 32 kV
Rated PCC voltage Upco 230 kV
Transformer ratio 32/230 kV
Transformer inductance L, 10 mH
Rated Apparent power § 47.5 MVar
Maximum ac current [, 1286 A
Droop coefficient ky 0.045
AC grid system AC grid voltage 230 kV
AC equivalent inductance L 250 mH
SCR 4
TABLE A2 Control system parameters.
Parameter Value
DC voltage outer controller loop (/ep1, k1) (8, 400)
Droop controller loop (Ry2, ki2) (1, 100)
Inner current controller loop (ky3, ;) (0.5, 50)
Circulating current suppression controller loop (kps, R;s) (0.5, 50)
PLL (kps, kis) (60, 1400)
Modulation index controller loop (kp, k) (0.5, 40)

the modulated AC voltage in dg-axis; idq is the PCC current
in dg-axis; #cqy is the output voltage of the circulating
current suppression controller in dg-axis; imdq is the
circulating current in dg-axis.

Fundamental component:

du;_i4 _ ld  Muglarg  Uodleird

-4 4C T 2CU,  2CU,

”cirqiq _ Ueirdld
4CU,,.  4CU,,
(B2)
@ o iq Uyd icirq quicird _

e M Tac T acy, T acy;,

Ucirg id Ucird iq
ACU;.  4ACUy

where #, 144 is the fundamental frequency component of
capacitor voltage in dg-axis.
Second harmonic component:

du, oy lird Mgl Uygly
_ — _ Zwu + cra q°q Ul
dt < 2C T 4CU, ' 4CU,
(B3)
duc_», oy + lirg  Uydly Uyl

2C ' 4CU,, ' aCU,

where #. 54, is the second harmonic component of
capacitor voltage in dg-axis.
Third harmonic component:
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d%c,Sx — 3ou _ Leirgod _ icird%'vq _
dr ¥ 2CU.  2CU
”cirdiq _ %cirqid
4CU,.  4CUy
(B4)
du. 5 Leirath Lot
-2 crq?vg cird%ud
= —3wu, -
dt T 500, ~ 2CU,
%cirqiq _ Ucirdly
4CU,.  4CUy,,

where #, 3, is the third harmonic component of capacitor
voltage in dq—axis.

® DC voltage dynamic:

N”cq”c,lq Nucqute 14 +

U, = Nu; —
‘ ‘ Use Use
(B5)
N”cirq”c_Zq + N”cird”c_Zd
Udc U;if

® AC current dynamic:

did o @ N Uc_1d 2uciyq + Upghc_2q + Uydlc_2q

A _ N
dt Ly, 2L, 2L Uy,
N”cirq%c_lq + Ugirathe_1d T Ue_3xMeirg T Ue_3ylcird —wi
2Le Upe !
% o @ N”c_lq _ Nzu_c”vq + Updhc_2q — Uopghe_2d +
dt L, 2L, 2L, Uy,
N”cirq%c_ld — Ucird¥c_1q + Ue_s3xleivd — Uc_3yUcirg + a)id
ZLeq Uy
(B6)

@ Circulating current dynamic:

dicird — — Dwi — Nz’lc_Zd _ N”_C”cird
= cir TR
dt 1 2L grm Lairm Udc
Nuygtte_14 — Nu’vquc_lq + N”c_ququ + N%C_Byuvd
2L 1o Uy
dicirq — @i — N”c_Zq _ Nu_c”cirq
dr cird ZLarm Lm’m Udc

Nuygtic 14+ Nttggite 14 + Note_sothg + Nute_3 1,
ZLarm l]dC

(B7)

The small signal model of MMC uses #4,, ®, Ucirdy as its
input variables, which provides interface for inner current
controller loop, PLL controller and circulating current sup-
pression controller loop respectively; #y,, provides the inter-
face with AC system; Uy, provides the interface with DC
system.

2) State space equations of MMC control system:

® Outer controller loop

- ki *
lg= (/epl +51> (Ut = Uy)

kiz

o= </ep2 T S) (Upe = Upe) (B8)

[]pcc*:l + kdl;

where i4,* is the PCC current reference in dg-axis.
® Inner current controller loop
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kiz\ . . .
Upy = (/ep3 + T) (zd - zd) — @Legty + tpeey

(B9)
N |
Uog = | Rps + UL + @Legiy + tpeeq
whete #,4,* is the modulated AC voltage reference in dq—

axis. Upcedg™ i the PCC voltage reference in dq-axis.
® Circulating current suppression controller loop

icird* = 07icirq* =0
Ucird = —(/€P4 + ki4/s) (lcird* - lcird) - ZwLOZCi”] (BlO)
Ucirg = (kp4 + ki4/ S) (Zcirq* — Lirg ) + ZwLOZCird

where icirdq* is the circulating current reference in dq-axis;
Ucirdg® is the output voltage reference of the circulating
current suppression controller in dg-axis.

@ PLL controller

[0)
0=—
s
(B11)
_ k kiS
@ = | Rps + . Upceq
3) State space equations of the transformer:
@ — wi, — &id U — Uyid
dt 1, L,
(B12)
di R Uy — 1
q - t- tq tlg
— ==l — g+ —————
dt L, 1 L,

whete L, and R, are the equivalent inductance and resistance of
the transformer, respectively; #;4, and #;14, are the voltage on
both sides of the transformer in dq-axis.

APPENDIX C

MAIN EIGENVALUES OF MMC-STATCOM
CONNECTED SYSTEM

See Table C1.

TABLE C1 Main eigenvalues of the MMC-STATCOM connected
system.

A Eigenvalue Damping ratio Frequency (Hz)
M —185,840 1 0

Ao -17,670 1 0

A4 —156204£j632.89 0.9992 100.7280
As6 —875.024j2341.8 0.35 372.7135
Mg —209.784j1919.3 0.1087 305.4703
9,10 —275.46%j122.03 0.9143 19.421
M1z —31.7404j115.58 0.2648 18.3950
M3i4 —26.62+£j20.83 0.7877 3.3146
Ms16 —35.954£j6.9 0.9821 1.0988
M7 —64.05 1 0

Ms.10 —119.194j24.4 0.9797 3.8841
Ao —127.21 1 0

Ao -96.7 1 0

Ao —103.24 1 0
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