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Abstract: A vector–host model of dengue with multiple stages and independent fluctuations is
investigated in this paper. Firstly, the existence and uniqueness of the positive solution are shown by
contradiction. When the death rates of aquatic mosquitoes, adult mosquitoes, and human beings
respectively control the intensities of white noises, and if Rs

0 > 1, then the persistence in the mean for
both infective mosquitoes and infective human beings is derived. When Rs

0 > 1 is valid, the existence
of stationary distribution is derived through constructing several appropriate Lyapunov functions.
If the intensities of white noises are controlled and φ < 0 is valid, then the extinction for both
infective mosquitoes and infective human beings is obtained by applying the comparison theorem
and ergodic theorem. Further, the main findings are verified through numerical simulations by using
the positive preserving truncated Euler–Maruyama method (PPTEM). Moreover, several numerical
simulations on the infection scale of dengue in Fuzhou City were conducted using surveillance data.
The main results indicate that the decrease in the transfer proportion from aquatic mosquitoes to
adult mosquitoes reduces the infection scale of infective human beings with dengue virus, and the
death rates of aquatic mosquitoes and adult mosquitoes affect the value of the critical threshold Rs

0.
Further, the controls of the death rates of mosquitoes are the effective routes by the decision-makers
of the Chinese mainland against the spread of dengue.

Keywords: dengue; stochastic vector–host model; multi stage; stationary distribution; persistence
and extinction; PPTEM method

MSC: 34F05; 92D30

1. Introduction

Vector-borne illnesses constitute more than 17% of all infectious diseases and cause
more than 700,000 fatalities yearly, as stated in the WHO report in 2020 [1]. Dengue,
commonly referred to as break-bone fever, is a vector-borne disease transmitted to human
beings through mosquito bites, with Aedes aegypti and Aedes albopictus acting as the primary
vectors [2]. Meanwhile, dengue acts as the most widespread mosquito-borne disease within
the human population, which involves various virus serotypes from DENV-1 to DENV-4 [3].
When a mosquito carrying the dengue virus bites a human being, the severity of symptom
of the human being ranges from asymptomatic to severe [2]. In fact, the yearly infection
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number of dengue virus is 390 million, of which 96 million infections have symptoms in
the tropical and sub-tropical zones worldwide [4]. Moreover, the incidence of dengue is
closely linked to climatic change and urbanization, with the prediction that an expansion of
the habitat of Aedes albopictus and Aedes aegypti in the future would take place. Despite the
implementation for the mitigation of climate change, the expansion of the Aedes mosquitoes
may not be prevented, which implies that the world still faces the threat of dengue as
claimed in [5]. As a result of climate change, up to 4.7 billion more individuals will be at
risk of dengue globally in 2070 than those in the 1970s–1990s [6].

Mathematical models have increasingly become a powerful tool in the face of the great
threats of infectious diseases. Dengue models and their corresponding analysis can provide
a potential basis for prediction and control measures. To investigate the impacts of insecti-
cide on dengue transmission, Newton and Reiter [7] proposed a dengue model based on
the Ross–Lotka model [8]. Then, with the presence of four serotypes in dengue, Jan et al. [9]
and Xue et al. [10] successively proposed the models for primary and secondary infections
to study the phenomenon of limited cross-immunization among heterologous serotypes. K.
Asamoah et al. [11] introduced a dengue model with partial immunization, and the optimal
controls acting on the susceptible and the infected human beings were considered, the vacci-
nation of the local population was verified effective for dengue transmission. Xue et al. [12]
utilized a multi-strain model to analyze the effectiveness of human vaccination, and they
accounted for the main factors such as waning immunity and vaccine failure. These dengue
model studies mainly examined the virus-oriented models and the host-oriented models, while
the mosquito-oriented models were equally crucial for the exploration of dengue, of which
mosquitoes acted as vectors for dengue transmission. Endosymbiotic bacteria acting as the
novel control method inhibited the replication of dengue within the hosts and caused the steril-
ity in infected male mosquitoes [13]. Consequently, the models with the releasing measures of
sterile mosquitoes was proposed in [14,15]. As a matter of fact, Li et al. [16] studied the fluctua-
tions including temperature and rainfall and found that the fluctuations affected the incidence
of dengue by altering the propagation of mosquitoes. Liu et al. [17] and Abdelrazec et al. [18]
constructed the stage-structure mosquito models to assess the impacts of climate on mosquito
dynamics. To better understand the impacts of vectors on dengue, several vector–host models
incorporating multiple stages were proposed in [19–22], in which [19,21] centered around the
impacts of vertical transmission on dengue outbreaks.

The epidemic models are usually established by governing ordinary differential equa-
tions (ODEs), fractional-order differential equations (FrDEs), and delay-differential equa-
tions (DDEs), as in [23–27], of which the deterministic models reflect the basic transmission
dynamics among the distinct populations. However, the transmission dynamics is affected
by the highly nonlinear and stochastic systems, in which the transmission processes of
dengue is influenced by many stochastic elements such as climate variations, migration pat-
terns, and changes in human behavior. Therefore, several stochastic models, as discussed
in [28–35], have been put forward and studied in order to investigate the long-term dynam-
ics of dengue. Otero et al. [28] discovered that the arrival date of an infected individual in
the susceptible population significantly impacted the distribution of the population size of
dengue, and that the probability of an early outbreak of dengue was lower. Liu et al. [31]
conducted an analysis on the long-term dynamics of a dengue model by considering saturated
incidence rates. Sun et al. [32] introduced the sufficient conditions for the existence of almost
surely exponential stability of the disease-free equilibrium in a stochastic dengue model with
independent fluctuation. Liu et al. [33] constructed a stochastic dengue model with the stan-
dard incidence rate and studied the effect of information interventions on dengue transmission.
Guo et al. [34] accounted for parameter fluctuations in the dengue model and found that large
fluctuations could suppress dengue transmission. It was worth noticing if weather factors like
rainfall and temperature affected the growth processes of mosquitoes.

Previous contributions have not investigated dengue models with aquatic mosquitoes
and independent fluctuations. We, therefore, in this paper, proposed a multi-stage vector–
host model with independent fluctuations for explanations of dynamical behaviors and
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epidemiological implications of dengue. When fluctuations disappear, we give the expres-
sion for the basic reproduction number of the vector–host model by the next-generation
matrix method in Section 2. Alternatively, we derive the long-term dynamics of the vector–
host model with fluctuations, and prove the existence and uniqueness of the solution. We
also derive the criteria for persistence in the mean, stationary distribution, and stochas-
tic extinction by constructing appropriate Lyapunov functions in Section 3. Finally, we
adopted 2019 surveillance data of dengue from the Fujian Provincial Center for Disease
Control and Prevention (Fujian CDC). The theoretical findings were validated through
numerical simulations by the PPTEM method in Section 4.

2. Model Formulation

As the vector of dengue, mosquitoes undergo four life stages, including egg, larva,
pupa, and adult. Since the first three stages of mosquitoes are aquatic, we classify the egg,
larva, and pupa into one group for simplicity, without losing the main characteristics [36,37].
In this study, we propose a vector–host model among the total population of human beings,
the population of aquatics, and the population of adult mosquitoes for the description
of the transmission mechanism of dengue. Here, the total population of mosquitoes is
separated into three mutually-exclusive compartments: A, Sm, Im, represent the number of
aquatic mosquitoes, susceptible mosquitoes with no dengue infection, and infective mosquitoes,
respectively. Meanwhile, three groups comprise the total human population: Sh, susceptible;
Ih, infective; Rh, recovered. We are motivated by the aforementioned discussions on dengue
models to incorporate the aquatic mosquitoes for the vector–host model:

Ȧ = Γ − δA − µA A,
Ṡm = δA − bβmSm Ih − µmSm,
İm = bβmSm Ih − µm Im,
Ṡh = Λ − bβhSh Im − µhSh,
İh = bβhSh Im − γIh − µh Ih,
Ṙh = γIh − µhRh,

(1)

where Γ and Λ represent the constant recruitment rates of aquatic mosquitoes and hu-
man beings, respectively; µA, µm, and µh are the death rates of aquatic mosquitoes, adult
mosquitoes, and human beings, respectively; δ expresses the maturity proportion of aquatic
mosquitoes; b indicates the biting rate; βm depicts the probability of dengue virus transmit-
ted from infective human beings to susceptible mosquitoes; βh denotes the probability of
dengue virus spread from infective mosquitoes to susceptible human beings; 1/γ means
the average recovery time in the human population. The definitions of the variables and
the parameters in model (1) can be found in Tables 1 and 2.

Table 1. Descriptions of the variables to model (1).

Variable Definition

A Number of aquatic mosquitoes
Sm Number of susceptible mosquitoes with no dengue infection
Im Number of infective mosquitoes
Sh Number of susceptible human beings
Ih Number of infective human beings
Rh Number of recovered human beings

Table 2. Descriptions and source of the parameters to model (1).

Parameter Unit Definition Range Source

Γ dimensionless Constant recruitment rates of aquatic mosquitoes [0, ∞) /
Λ dimensionless Constant recruitment rates of human beings [0, ∞) /
µA day−1 Death rate of aquatic mosquitoes [0.01, 0.47] [21]
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Table 2. Cont.

Parameter Unit Definition Range Source

δ day−1 Maturity proportion of aquatic mosquitoes [0.1, 0.5] [26]
µm day−1 Death rate of adult mosquitoes (0, 0.3] [22]
1/γ day Average recovery time in human population [4, 8] [21]
b day−1individual−1 Average biting rate [0, 1) /
βm dimensionless Probability of dengue virus transmitted from Ih to Sm [0.3, 0.75] [22]
βh dimensionless Probability of dengue virus spread from Im to Sh [0.1, 0.75] [22]
µh day−1 Death rate of human beings [ 1

81×365 , 1
50×365 ] [10,38]

For model (1), we derive the positive invariant set using the comparison theorems
as follows:

D =
{
(A, Sm, Im, Sh, Ih, Rh) ∈ R6

+ : 0 ⩽ A ⩽
Γ

δ + µA
,

0 ⩽ Sm + Im ⩽
δΓ

µm(δ + µA)
, 0 ⩽ Sh + Ih + Rh ⩽

Λ
µh

}
,

and

D0 =
{
(A, Sm, Im, Sh, Ih, Rh) ∈ R6

+ : Im = 0, Ih = 0, Rh = 0
}

.

We investigate model (1) mainly within the invariant set D. Let the initial values satisfy
(A(0), Sm(0), Im(0), Sh(0), Ih(0), Rh(0)) ∈ D. It is easy to check that

P0 = (A0, Sm0, Im0, Sh0, Ih0, Rh0)
T =

(
Γ

δ + µA
,

δΓ
µm(δ + µA)

, 0,
Λ
µh

, 0, 0
)T

serves as the infection-free equilibrium point. Additionally, we derive the endemic equilib-
rium point

P∗ = (A∗, S∗
m, I∗m, S∗

h , I∗h , R∗
h)

T

under the condition δb2βmβhΛΓ − µhµ2
m(δ + µA)(γ + µh) > 0, where

A∗ =
Γ

δ + µA
, S∗

m =
δΓ

bβm(δ + µA)I∗h + µm
, S∗

h =
Λ

bβh I∗m + µh
, R∗

h =
γ

µh
I∗h ,

I∗m =
δb2βmβhΛΓ − µhµ2

m(δ + µA)(γ + µh)

bβhµ2
m(δ + µA)(γ + µh) + b2βmβhµmΛ(δ + µA)

,

I∗h =
δb2βmβhΛΓ − µhµ2

m(δ + µA)(γ + µh)

δb2βmβhΓ(γ + µh) + bβmµhµm(δ + µA)(γ + µh)
.

In the set D, we investigate the dynamical behaviors of model (1). The following
is the approach by which the basic reproduction number of model (1) can be obtained
from [39,40]:

R0 =

√
b2βmβhδΓΛ

µ2
mµh(δ + µA)(γ + µh)

=
√
Rmh

0 Rhm
0 ,

where

Rmh
0 =

bβhΛ
µmµh

, Rhm
0 =

bβmδΓ
µm(δ + µA)(γ + µh)

represent the average number of one infective mosquito within its lifespan effectively
transmitting virus to human beings, and the average number of one infective human being
before the recoverey effectively producing the infective mosquitoes, respectively.
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Compared with the deterministic counterpart model (1), the fluctuations in the epi-
demic models offer additional insights including survival analysis [41]. In reality, the ran-
domness of human–mosquito contacts and the randomness of human behaviors are mainly
influenced from minor and independent fluctuations, such as slight variations in tempera-
ture, precipitation, wind speed, and so forth. These randomness types are usually described
by the independent fluctuations when the dengue transmission is formulated. Therefore,
it is necessary that the independent fluctuations are incorporated into the dengue model,
which makes for more comprehensive and more accurate dengue dynamics. Moreover,
stochastic dengue models assess the risks and uncertainties when different scenarios occur,
and they also help the policymakers to modify control strategies. Accounting for these
variations, we modify model (1) by incorporating Gaussian white noises ξi(t) = dBi(t)/dt
into the dengue model, where dBi(t) = Bi(t + ∆t)− Bi(t) represents Brownian increments
with zero mean and variance ∆t. Motivated by recent studies such as [31–33], we let the
Gaussian white noises proportional to the variables A, Sm, Im, Sh, Ih, and Rh, and we take
the fluctuations into account; the stochastic dengue model (2) is described with bilinear
incidence rates by the following form:

dA(t) = [Γ − δA − µA A]dt + σ1 AdB1(t),
dSm(t) = [δA − bβmSm Ih − µmSm]dt + σ2SmdB2(t),
dIm(t) = [bβmSm Ih − µm Im]dt + σ3 ImdB3(t),
dSh(t) = [Λ − bβhSh Im − µhSh]dt + σ4ShdB4(t),
dIh(t) = [bβhSh Im − γIh − µh Ih]dt + σ5 IhdB5(t),
dRh(t) = [γIh − µhRh]dt + σ6RhdB6(t).

(2)

Here, the parameters σi reflect the fluctuations intensities. The independent vari-
ables Bi(t) are six standard Wiener processes specified on (Ω,F , {Ft}t⩾0,P). In de-
tail, {Ft}t⩾0 denotes a filtration that, for any 0 ⩽ s < t, fulfills Fs ⊂ Ft, and when
Bi(0) = 0, F0 includes all P-null sets. Moreover, we exclude the sixth equation of model
(2) and focus on the equivalent stochastic epidemic following, noting that the equations
of A, Sm, Im, Sh, and Ih in model (2) are irrespective of Rh. Meanwhile, we note that
U(t) = (A(t), Sm(t), Im(t), Sh(t), Ih(t)).

dA(t) = [Γ − δA − µA A]dt + σ1 AdB1(t),
dSm(t) = [δA − bβmSm Ih − µmSm]dt + σ2SmdB2(t),
dIm(t) = [bβmSm Ih − µm Im]dt + σ3 ImdB3(t),
dSh(t) = [Λ − bβhSh Im − µhSh]dt + σ4ShdB4(t),
dIh(t) = [bβhSh Im − γIh − µh Ih]dt + σ5 IhdB5(t).

(3)

Next, we discuss the survival investigation of model (3) from the fitness of the global
positive solution, persistence in the mean, and stationary distribution to the extinction.

3. Survival Analysis of Infective Mosquitoes and Infective Human Beings
3.1. Fitness

We primarily ensure that model (3) is well-proposed before investigating the long-term
properties. That is, we show that the solution of model (3) does not blow up in Theorem 1
within the finite time by the similar method in [42,43].

Theorem 1. For t ⩾ 0, model (3) has a unique positive solution U(t) initiated with U(0) ∈ R5
+.

Proof of Theorem 1. According to Theorem 1 in [43], let G be a positive constant; we build
up a C2-function Lyapunov function V1 such that LV1 ⩽ G. Here,

V1 = A− 1− ln A+ Sm − θ1 − θ1 ln
Sm

θ1
+ Im − 1− ln Im + Sh − θ2 − θ2 ln

Sh
θ2

+ Ih − 1− ln Ih.
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Since V1 is non-negative, employing the generalized Itô’s formula [44], we obtain

dV1 = LV1dt + (A − 1)σ1dB1(t) + (Sm − θ1)σ2dB2(t)

+ (Im − 1)σ3dB3(t) + (Sh − θ2)σ4dB4(t) + (Ih − 1)σ5dB5(t),

where

LV1 =

(
1 − 1

A

)
[Γ − δA − µA A] +

(
1 − θ1

Sm

)
[δA − bβmSm Ih − µmSm]

+

(
1 − 1

Im

)
[bβmSm Ih − µm Im] +

(
1 − θ2

Sh

)
[Λ − bβhSh Im − µhSh]

+

(
1 − 1

Ih

)
[bβhSh Im − γIh − µh Ih] +

1
2
(σ2

1 + θ1σ2
2 + σ2

3 + θ2σ2
4 + σ2

5 ).

The appropriate simplification yields

LV1 ⩽ Γ + Λ + δ + µA + θ1µm + µm + µh + θ2µh + γ

+ (θ1bβm − µh)Ih + (θ2bβh − µm)Im +
1
2
(σ2

1 + θ1σ2
2 + σ2

3 + θ2σ2
4 + σ2

5 ).

We let θ1 = µh
bβm

, θ2 = µm
bβh

; then, we have

LV1 ⩽ Γ + Λ + δ + µA +
µmµh
bβm

+ µm + µh +
µmµh
bβh

+ γ

+
1
2
(σ2

1 +
µh

bβm
σ2

2 + σ2
3 +

µm

bβh
σ2

4 + σ2
5 ) := G > 0.

This proof can then be easily completed by contradiction.

3.2. Persistence in the Mean

Denote ⟨A(t)⟩ = 1
t
∫ t

0 A(s)ds. Lemma 1 is obtained from the study in [41,45] without
proof here.

Lemma 1. For U(0) ∈ R5
+, the unique solution of model (3) has the following properties:

lim
t→∞

A(t)
t

= 0, lim
t→∞

Sm(t)
t

= 0, lim
t→∞

Im(t)
t

= 0, lim
t→∞

Sh(t)
t

= 0, lim
t→∞

Ih(t)
t

= 0 a.s..

If 2 min{µA, µm} > max
{

σ2
1 , σ2

2 , σ2
3
}

and 2µh > max
{

σ2
4 , σ2

5
}

, then

lim
t→∞

1
t

∫ t

0
A(s)dB1(s) = 0, lim

t→∞

1
t

∫ t

0
Sm(s)dB2(s) = 0, lim

t→∞

1
t

∫ t

0
Im(s)dB3(s) = 0,

lim
t→∞

1
t

∫ t

0
Sh(s)dB4(s) = 0, lim

t→∞

1
t

∫ t

0
Ih(s)dB5(s) = 0 a.s..

(4)

Persistence is an important behavior in many systems, which indicates how long the
system remains in a certain state before it transits to another state. By using the approach
in [35,46], we subsequently provide the sufficient conditions of persistence in the mean for
infective mosquitoes and infective human beings of model (3). Let

Rs
0 = Rsmh

0 Rshm
0 ,

where
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Rsmh
0 =

bβhΛ(
µm +

σ2
3

2

)(
µh +

σ2
4

2

) ,Rshm
0 =

bβmδΓ(
δ + µA +

σ2
1

2

)(
µm +

σ2
2

2

)(
γ + µh +

σ2
5

2

) .

Particularly, if σi = 0 (i = 1, 2, 3, 4, 5), we then obtain Rsmh
0 = Rmh

0 , Rshm
0 = Rhm

0 .

Theorem 2. If

5
√
Rs

0 > 1, 2 min{µA, µm} > max
{

σ2
1 , σ2

2 , σ2
3

}
, 2µh > max

{
σ2

4 , σ2
5

}
,

then populations of infective mosquitoes and infective human beings to model (3) are persistent in
the mean

lim inf
t→∞

B⟨Im + Ih⟩ ⩾ 5
(

δ + µA +
1
2

σ2
1

)
(Rs

0 − 1) > 0 a.s.,

where B = max{c2bβm, c4bβh}; the values of c2 and c4 are given in (5). In other words, when
Rs

0 > 1 holds, the lower boundaries of infective mosquitoes and infective human beings exist, which
indicates the prevalence of dengue.

Proof of Theorem 2. We build a C2-function

V2 = ln A + c2 ln Sm + c3 ln Im + c4 ln Sh + c5 ln Ih,

in which positive constants ci (i = 2, 3, 4, 5) are to be chosen later. The Itô’s formula
reveals that

dV2 = LV2dt + σ1dB1(t) + c2σ2dB2(t) + c3σ3dB3(t) + c4σ4dB4(t) + c5σ5dB5(t),

where

LV2 =

(
Γ
A

− δ − µA −
σ2

1
2

)
+ c2

(
δA
Sm

− bβm Ih − µm −
σ2

2
2

)
+ c3

(
bβmSm Ih

Im
− µm −

σ2
3

2

)

+ c4

(
Λ
Sh

− bβh Im − µh −
σ2

4
2

)
+ c5

(
bβhSh Im

Ih
− γ − µh −

σ2
5

2

)

=
Γ
A

+ c2
δA
Sm

+ c3
bβmSm Ih

Im
+ c4

Λ
Sh

+ c5
bβhSh Im

Ih
− c2bβm Ih − c4bβh Im − δ − µA −

σ2
1

2

− c2

(
µm +

σ2
2

2

)
− c3

(
µm +

σ2
3

2

)
− c4

(
µh +

σ2
4

2

)
− c5

(
γ + µh +

σ2
5

2

)
.

By applying the mean value theorem, it then follows that

LV2 ⩾ 5 5
√

c2c3c4c5ΓΛδb2βmβh − (c2bβm Ih + c4bβh Im)−
(

δ + µA +
σ2

1
2

)

− c2

(
µm +

σ2
2

2

)
− c3

(
µm +

σ2
3

2

)
− c4

(
µh +

σ2
4

2

)
− c5

(
γ + µh +

σ2
5

2

)
.
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We choose

c2 =
δ + µA +

1
2

σ2
1

µm +
1
2

σ2
2

, c3 =
δ + µA +

1
2

σ2
1

µm +
1
2

σ2
3

, c4 =
δ + µA +

1
2

σ2
1

µh +
1
2

σ2
4

, c5 =
δ + µA +

1
2

σ2
1

γ + µh +
1
2

σ2
5

, (5)

then,

LV2 ⩾ 5
(

δ + µA +
1
2

σ2
1

)(
5
√
Rs

0 − 1
)
− (c2bβm Ih + c4bβh Im)

⩾ 5
(

δ + µA +
1
2

σ2
1

)(
5
√
Rs

0 − 1
)
− max{c2bβm, c4bβh}(Ih + Im)

:= λ − B(Ih + Im).

Further, it follows that

dV2 ⩾ [λ − B(Ih + Im)]dt + σ1dB1(t) +
5

∑
i=2

ciσidBi(t). (6)

Integrating the two sides of (6) implies that

1
t
[V2(t)− V2(0)] ⩾ λ − B⟨Im + Ih⟩+

ψ(t)
t

,

with

ψ(t) = σ1

∫ t

0
dB1(s) +

5

∑
i=2

ciσi

∫ t

0
dBi(s).

Lemma 1 and the strong law of large numbers demonstrate that

lim sup
t→∞

V2(t)
t

= 0, lim sup
t→∞

ψ(t)
t

= 0.

It then follows that

lim inf
t→∞

B⟨Im + Ih⟩ ⩾ λ > 0 a.s..

Therefore, since 5
√
Rs

0 > 1 holds, the infective mosquitoes and infective human beings
admit lower boundaries, which causes the dengue to prevail for a considerable amount
of time.

3.3. Existence of a Unique Stationary Distribution

We prove that model (3) has a stationary distribution by constructing some Lyapunov
functions, together with Hasminskii’s theory and the relative approaches in [47], where the
stationary distribution reflects the statistical properties of sample paths in a long time from
epidemiological to dynamical perspectives.

Theorem 3. Model (3) has a unique ergodic stationary distribution v(·) if Rs
0 > 1.

Proof of Theorem 3. We establish that mosquitoes bite human beings randomly and are
memoryless. In a word, the solution of model (3) is a Markov process because the future
state of model (3) depends merely on the present state and has no connections with the
past state. Consequently, we construct a non-negative C2- function W as well as bounded
sets to fulfill conditions in Lemma 3.1 of [46]. Two steps are given to prove Theorem 3.

Step 1. Firstly, we define

Dl =

{
U ∈ R5

+ :
1
l
⩽ A ⩽ l,

1
l
⩽ Sm ⩽ l,

1
l
⩽ Im ⩽ l,

1
l
⩽ Sh ⩽ l,

1
l
⩽ Ih ⩽ l

}
,
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here, l > 1 is a sufficiently large integer, and the diffusion matrix of model (3) with a
positive definition is

Ã = diag
{

σ2
1 A2, σ2

2 S2
m, σ2

3 I2
m, σ2

4 S2
h, σ2

5 I2
h

}
= (aij)5×5,

for any U ∈ Dl and ζ = (ζ1, ζ2, ζ3, ζ4, ζ5) ∈ R5
+. We then have

5

∑
i,j=1

aijζiζ j = (ζ1, ζ2, ζ3, ζ4, ζ5)Ã(ζ1, ζ2, ζ3, ζ4, ζ5)
T

= (σ1 A)2ζ2
1 + (σ2Sm)

2ζ2
2 + (σ3 Im)

2ζ2
3 + (σ4Sh)

2ζ2
4 + (σ5 Ih)

2ζ2
5

⩾ η|ζ|2,

with

η = min
(A,Sm ,Im ,Sh ,Ih)∈Dl

{
σ2

1 A2, σ2
2 S2

m, σ2
3 I2

m, σ2
4 S2

h, σ2
5 I2

h

}
> 0.

Therefore, the first condition of Lemma 3.1 in [46] is satisfied.
Step 2. We construct

Ṽ = M(V3 + r2V4) + V4 + V5 + V6,

where

V3 = −r1 ln A − r2 ln Sm − r3 ln Im − r4 ln Sh − r5 ln Ih,

here, ri (i = 1, 2, 3, 4, 5) are positive and are defined later.

V4 =
bβm

µh + γ
Ih, V5 = − ln A − ln Sm − ln Sh − ln Ih, V6 =

1
θ + 2

(A + Sm + Im + Sh + Ih)
θ+2,

where a small-enough positive constant, θ, is used so that

κ := min{µA, µm, µh} −
θ + 1

2
max{σ2

1 , σ2
2 , σ2

3 , σ2
4 , σ2

5} > 0,

and M > 0 is a large enough constant, which satisfies

−M

(
δ + µA +

σ2
1

2

)
(Rs

0 − 1) + F < −2, (7)

with
F := δ + µA + µm + 2µh + γ +

1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 ) + J + K + L, (8)

J := sup
U∈R5

+

{
(Γ + Λ)(A + Sh + Im + Sh + Ih)

θ+1 − κ

2
(A + Sm + Im + Sh + Ih)

θ+2
}
< ∞, (9)

K := sup
Sh∈R+

{
−κ

4
Sθ+2

h +
2b4β2

mβ2
h

(µh + γ)2 S2
h

}
< ∞, (10)

L := sup
Im∈R+

{
−κ

4
Iθ+2
m +

1 + M2r2
2

4
I2
m + (1 + Mr4)bβh Im

}
< ∞. (11)

We then define a non-negative C2-function:

W = M(V3 + r2V4) + V4 + V5 + V6 − Ṽ(Ā, S̄h, Īm, S̄h, Īh).
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It is obvious that Ṽ(A, Sm, Im, Sh, Ih) is continuous and attains its minimum at the
point (Ā, S̄h, Īm, S̄h, Īh). Applying Itô’s formula to V3, we have

LV3 = r1

(
− Γ

A
+ δ + µA +

σ2
1

2

)
+ r2

(
− δA

Sm
+ bβm Ih + µm +

σ2
2

2

)

+ r3

(
− bβmSm Ih

Im
+ µm +

σ2
3

2

)
+ r4

(
− Λ

Sh
+ bβh Im + µh +

σ2
4

2

)

+ r5

(
− bβhSh Im

Ih
+ γ + µh +

σ2
5

2

)

⩽− 5 5
√

r1r2r3r4r5ΓΛδb2βmβh + (r2bβm Ih + r4bβh Im) + r1

(
δ + µA +

σ2
1

2

)

+ r2

(
µm +

σ2
2

2

)
+ r3

(
µm +

σ2
3

2

)
+ r4

(
µh +

σ2
4

2

)
+ r5

(
γ + µh +

σ2
5

2

)
.

We denote

r =
ΓΛδb2βmβh(

µm + 1
2 σ2

2

)(
µm + 1

2 σ2
3

)(
µh +

1
2 σ2

4

)(
γ + µh +

1
2 σ2

5

) ,

let

r1 = 1, r2 =
r

µm + 1
2 σ2

2
, r3 =

r
µm + 1

2 σ2
3

, r4 =
r

µh +
1
2 σ2

4
, r5 =

r
γ + µh +

1
2 σ2

5
,

then

LV3 ⩽ −
(

δ + µA +
σ2

1
2

)
(Rs

0 − 1) + (r2bβm Ih + r4bβh Im).

Similarly, one obtains that

LV4 =
bβm

γ + µh
(bβhSh Im − γIh − µh Ih) =

b2βmβh
γ + µh

Sh Im − bβm Ih,

it then shows that

L(V3 + r2V4) ⩽ −
(

δ + µA +
σ2

1
2

)
(Rs

0 − 1) +
r2b2βmβh

γ + µh
Sh Im + r4bβh Im. (12)

Further, we obtain

LV5 =

(
− Γ

A
+ δ + µA +

σ2
1

2

)
+

(
− δA

Sm
+ bβm Ih + µm +

σ2
2

2

)

+

(
− Λ

Sh
+ bβh Im + µh +

σ2
4

2

)
+

(
− bβhSh Im

Ih
+ γ + µh +

σ2
5

2

)

= − Γ
A

− δA
Sm

− Λ
Sh

− bβhSh Im

Ih
+ bβm Ih + bβh Im

+ δ + µA + µm + γ + 2µh +
1
2

(
σ2

1 + σ2
2 + σ2

4 + σ2
5

)
.
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By using 2ab ⩽ a2 + b2 for any positive a, b, we obtain

L(V4 + V5) =− Γ
A

− δA
Sm

− Λ
Sh

− bβhSh Im

Ih
+

b2βmβhSh Im

γ + µh
+ bβh Im

+ δ + µA + µm + γ + 2µh +
1
2

(
σ2

1 + σ2
2 + σ2

4 + σ2
5

)
⩽− Γ

A
− δA

Sm
− Λ

Sh
− bβhSh Im

Ih
+

b4β2
mβ2

h
(γ + µh)2 S2

h +
1
4

I2
m + bβh Im

+ δ + µA + µm + γ + 2µh +
1
2

(
σ2

1 + σ2
2 + σ2

4 + σ2
5

)
.

(13)

Similarly,

LV6 = (A + Sm + Im + Sh + Ih)
θ+1(Γ − µA A − µmSm − µm Im + Λ − µhSh − µh Ih)

+
θ + 1

2
(A + Sm + Im + Sh + Ih)

θ(σ2
1 A2 + σ2

2 S2
m + σ2

3 I2
m + σ2

4 S2
h + σ2

5 I2
h)

⩽ (A + Sm + Im + Sh + Ih)
θ+1[Γ + Λ − min{µA, µm, µh}(A + Sm + Im + Sh + Ih)]

+
θ + 1

2
(A + Sm + Im + Sh + Ih)

θ+2 max
{

σ2
1 , σ2

2 , σ2
3 , σ2

4 , σ2
5

}
= (Γ + Λ)(A + Sm + Im + Sh + Ih)

θ+1

−
[

min{µA, µm, µh} −
θ + 1

2
max

{
σ2

1 , σ2
2 , σ2

3 , σ2
4 , σ2

5

}]
(A + Sm + Im + Sh + Ih)

θ+2

= (Γ + Λ)(A + Sm + Im + Sh + Ih)
θ+1 − κ(A + Sm + Im + Sh + Ih)

θ+2

⩽ J − κ

2
(A + Sm + Im + Sh + Ih)

θ+2.

(14)

We combine inequalities (12)–(14) and derive

LW ⩽ M

[
−
(

δ + µA +
σ2

1
2

)
(Rs

0 − 1) +
r2b2βmβh

γ + µh
Sh Im + r4bβh Im

]

− Γ
A

− δA
Sm

− Λ
Sh

− bβhSh Im

Ih
+

b4β2
mβ2

h
(γ + µh)2 S2

h +
1
4

I2
m + bβh Im

+ δ + µA + µm + γ + 2µh +
1
2

(
σ2

1 + σ2
2 + σ2

4 + σ2
5

)
+ J − κ

2
(A + Sm + Sh + Im + Ih)

θ+2

⩽ − M

(
δ + µA +

σ2
1

2

)
(Rs

0 − 1) +
b4β2

mβ2
h

(γ + µh)2 S2
h +

M2r2
2

4
I2
m + r4bβh Im

− Γ
A

− δA
Sm

− Λ
Sh

− bβhSh Im

Ih
+

b4β2
mβ2

h
(γ + µh)2 S2

h +
1
4

I2
m + bβh Im

+ δ + µA + µm + γ + 2µh +
1
2

(
σ2

1 + σ2
2 + σ2

4 + σ2
5

)
+ J − κ

2
(A + Sm + Sh + Im + Ih)

θ+2.

Set

Dε =

{
U ∈ R5

+ : ε ⩽ A ⩽
1
ε

, ε2 ⩽ Sm ⩽
1
ε2 , ε ⩽ Im ⩽

1
ε

, ε ⩽ Sh ⩽
1
ε

, ε3 ⩽ Ih ⩽
1
ε3

}
,

where ε is a small-enough and positive number, and it satisfies the following constraints:

−min{Λ, Γ, δ, bβh}
ε

+ F ⩽ −1, (15)
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− κ

4εθ+2 + F ⩽ −1. (16)

For the sake of simplicity, we separate R5
+\Dε into ten parts as follows:

D1 = {U ∈ R5
+ : 0 < A < ε}, D2 = {U ∈ R5

+ : 0 < Sm < ε2, A ⩾ ε},
D3 = {U ∈ R5

+ : 0 < Im < ε}, D4 = {U ∈ R5
+ : 0 < Sh < ε},

D5 = {U ∈ R5
+ : 0 < Ih < ε3, Sh, Im ⩾ ε}, D6 =

{
U ∈ R5

+ : A > 1
ε

}
,

D7 =
{

U ∈ R5
+ : Sm > 1

ε2

}
, D8 =

{
U ∈ R5

+ : Im > 1
ε

}
,

D9 =
{

U ∈ R5
+ : Sh > 1

ε

}
, D10 =

{
U ∈ R5

+ : Ih > 1
ε3

}
.

And it is easy to check that Dc
ε =

⋃10
i=1 Di. We next prove the assertion LW ⩽ −1 in R5

+\Dε.
Case 1. When U ∈ D1, by (15), one can derive

LW ⩽ − Γ
A

+ F < −Γ
ε
+ F ⩽ −1.

Case 2. When U ∈ D2, by (15), one can derive

LW ⩽ − δA
Sm

+ F < − δε

ε2 + F = − δ

ε
+ F ⩽ −1.

Case 3. When U ∈ D3, by (7), one can derive

LW ⩽ −M

(
δ + µA +

σ2
1

2

)
(Rs

0 − 1) + F < −2.

Case 4. When U ∈ D4, by (15), one can derive

LW ⩽ − Λ
Sh

+ F < −Λ
ε
+ F ⩽ −1.

Case 5. When U ∈ D5, by (15), one can derive

LW ⩽ − bβhSh Im

Ih
+ F < − bβhε2

ε3 + F = − bβh
ε

+ F ⩽ −1.

Case 6. When U ∈ D6, by (16), one can derive

LW ⩽ −κ

4
(A + Sm + Im + Sh + Ih)

θ+2 + F ⩽ −κ

4
Aθ+2 + F < − κ

4εθ+2 + F ⩽ −1.

Case 7. When U ∈ D7, by (16), one can derive

LW ⩽ −κ

4
(A + Sm + Im + Sh + Ih)

θ+2 + F

⩽ −κ

4
Sθ+2

m + F < − κ

4ε2(θ+2)
+ F < − κ

4εθ+2 + F ⩽ −1.

Case 8. When U ∈ D8, by (16), one can derive

LW ⩽ −κ

4
(A + Sm + Im + Sh + Ih)

θ+2 + F ⩽ −κ

4
Iθ+2
m + F < − κ

4εθ+2 + F ⩽ −1.

Case 9. When U ∈ D9, by (16), one can derive

LW ⩽ −κ

4
(A + Sm + Im + Sh + Ih)

θ+2 + F ⩽ −κ

4
Sθ+2

h + F < − κ

4εθ+2 + F ⩽ −1.
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Case 10. When U ∈ D10, by (16), one can derive

LW ⩽ −κ

4
(A + Sm + Im + Sh + Ih)

θ+2 + F

⩽ −κ

4
Iθ+2
h + F < − κ

4ε3(θ+2)
+ F < − κ

4εθ+2 + F ⩽ −1.

Consequently, the second condition of Lemma 3.1 in [46] is valid, and the proof is
thereby finished.

3.4. Extinction

In this section, based on the extinction dynamics discussed in [32,46–48], we construct
moderate Lyapunov functions and utilize the ergodic theorem, the strong law of large num-
bers, and the Itô’s formula to obtain the criteria for the extinction of model (3). Under the
suitable conditions, the dengue is declining within the local population, which reflects
that the populations of both infective mosquitoes and infective human beings eventually
approach zero. The extinction is referred to as the long-term eradication of dengue.

Theorem 4. If the following conditions hold,

2 min{µA, µm} > max
{

σ2
1 , σ2

2 , σ2
3

}
, 2µh > σ2

4 ,

then the solution (A, Sm, Im, Sh, Ih) of model (3) has

lim sup
t→∞

1
t

ln
(
R0

µm
Im +

bβmδΓ
µ2

m(δ + µA)(γ + µh)
Ih

)
⩽ φ, a.s.,

where

φ :=min{γ + µh, µm}(R0 − 1)1{R0⩽1} + max{γ + µh, µm}(R0 − 1)1{R0>1}

−
σ2

3 σ2
5

2(σ2
3 + σ2

5 )
+

b2βhβmδσ4ΓΛ

µmµhR0(δ + µA)(γ + µh)
√

2µh − σ2
4

.

If φ < 0, then the population sizes of infective mosquitoes and infective human beings approach
zero when the time is enough long.

Proof of Theorem 4. By the fourth equation of model (3), we obtain

dSh ⩽ [Λ − µhSh]dt + σ4ShdB4(t),

and its auxiliary equation is

dX = [Λ − µhX]dt + σ4XdB4(t), (17)

with X(0) = Sh(0) > 0. We then obtain that Sh ⩽ X a.s. according to the comparison
theorem of SDEs in [49–51]. We set

S(X) = Λ − µhX, σ(X) = σ4X, X ∈ (0, ∞),

and then ∫ X

1

S(y)
σ2(y)

dy =
∫ X

1

Λ − µhy
σ2

4 y2
dy =

1
σ2

4

(
−Λ

X
− µh ln X

)
+

Λ
σ2

4
,

which yields

e
∫ X

1
S(y)

σ2(y)
dy

= e
Λ
σ2

4 X
− µh

σ2
4 e

− Λ
σ2

4 X ,
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thus, we obtain

∫ ∞

0

1
σ2(X)

e
∫ X

1
2S(y)
σ2(y)

dy
dx =

e
Λ
σ2

4

σ2
4

∫ ∞

0
X
−2− µh

σ2
4 e

−2Λ
σ2

4 X dX < ∞.

Using Theorem 1.16 in [52], it is simple to verify that the recurrent process X is positive;
then, Equation (17) has a stationary solution X̃(t) with invariant density:

π(x) = Qσ−2
4 x

−2− 2µh
σ2

4 e
− 2Λ

σ2
4 x , x ∈ (0, ∞),

where

Q =

σ−2
4

(
σ2

4
2Λ

)1+
2µh
σ2

4
Γ

(
1 +

2µh

σ2
4

)
−1

is a constant fulfilling ∫ ∞

0
π(x)dx = 1. (18)

We define
I1 :=

∫ ∞

0
xπ(x)dx, I2 :=

∫ ∞

0
x2π(x)dx.

Let t = 2Λ
σ2

4 x
, then

I1 = Qσ−2
4

∫ ∞

0
x
− 2µh

σ2
4
−1

e
− 2Λ

σ2
4 x dx = Qσ−2

4

∫ ∞

0

(
2Λ
σ2

4

)− 2µh
σ2

4
−1

t
2µh
σ2

4
−1

e−t 2Λ
σ2

4
dt

= Qσ−2
4

(
σ2

4
2Λ

)2
2µh

σ2
4

Γ

(
2µh

σ2
4

)
= 2

Λ
σ2

4
Γ

(
2µh

σ2
4

)/
Γ

(
2µh

σ2
4

+ 1

)
= 2

Λ
σ2

4

σ2
4

2µh
=

Λ
µh

,

I2 = Qσ−2
4

∫ ∞

0
x
− 2µh

σ2
4 e

− 2Λ
σ2

4 x dx = Qσ−2
4

∫ ∞

0

(
2Λ
σ2

4

)− 2µh
σ2

4
t

(
2µh
σ2

4
−1
)
−1

e−t 2Λ
σ2

4
dt

= Qσ−2
4

(
2Λ
σ2

4

)1−2
2µh
σ2

4
Γ

(
2µh

σ2
4

− 1

)
=

(
2Λ
σ2

4

)2

Γ

(
2µh

σ2
4

− 1

)/
Γ

(
2µh

σ2
4

+ 1

)

=

(
2Λ
σ2

4

)2
σ2

4
2µh

(
2µh

σ2
4

− 1

)−1

=
2Λ2

(2µh − σ2
4 )µh

.

Therefore,

∫ ∞

0

(
x − Λ

µh

)2
π(x)dx =

∫ ∞

0

(
x2 − 2

Λ
µh

x +
Λ2

µ2
h

)
π(x)dx = I2 − 2

Λ
µh

I1 +
Λ2

µ2
h

=
2Λ2

(2µh − σ2
4 )µh

− 2
Λ2

µ2
h
+

Λ2

µ2
h
=

Λ2σ2
4

µ2
h(2µh − σ2

4 )
.

(19)

According to the approach in [53], we set

R0(n1, n2) = (n1, n2)M0,

with
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(n1, n2) =

(
R0,

bβmδΓ
µ2

m(δ + µA)

)
, M0 =

 0 bβmδΓ
µ2

m(δ+µA)
bβhΛ

µh(γ+µh)
0

.

We define a C2-function:

V7 = α1 Im + α2 Ih,

where

α1 =
n1

µm
, α2 =

n2

γ + µh
.

Applying Itô’s formula on V7, we have

d(ln V7) = L(ln V7)dt +
1

V7
(α1σ3 ImdB3(t) + α2σ5 IhdB5(t)),

where

L(ln V7) =
α1

V7
[bβmSm Ih − µm Im] +

α2

V7
[bβhSh Im − (γ + µh)Ih]−

α2
1σ2

3 I2
m

2V2
7

−
α2

2σ2
5 I2

h
2V2

7
.

By Cauchy–Schwarz inequality, we easily obtain

V2
7 =

(
α1σ3 Im

1
σ3

+ α2σ5 Ih
1
σ5

)2
⩽
(

α2
1σ2

3 I2
m + α2

2σ2
5 I2

h

)( 1
σ2

3
+

1
σ2

5

)
,

it then implies that

−
α2

1σ2
3 I2

m

2V2
7

−
α2

2σ2
5 I2

h
2V2

7
⩽ −

α2
1σ2

3 I2
m + α2

2σ2
5 I2

h

2
(
α2

1σ2
3 I2

m + α2
2σ2

5 I2
h
)( 1

σ2
3
+ 1

σ2
5

) ⩽ −
σ2

3 σ2
5

2(σ2
3 + σ2

5 )
,

and

α1

V7
[bβmSm Ih − µm Im] +

α2

V7
[bβhSh Im − (γ + µh)Ih]

=
α1bβm Ih

V7

(
Sm − δΓ

µm(δ + µA)

)
+

α2bβh Im

V7

(
Sh −

Λ
µh

)
+

1
V7

{
n1

µm

[
bβm

δΓ
µm(δ + µA)

Ih − µm Im

]
+

n2

γ + µh

[
bβh

Λ
µh

Im − (γ + µh)Ih

]}
⩽

α1bβm

α2

(
Sm − δΓ

µm(δ + µA)

)
+

α2bβh
α1

∣∣∣∣X − Λ
µh

∣∣∣∣+ 1
V7

(n1, n2)
(

M0(Im, Ih)
T − (Im, Ih)

T
)

⩽
α1bβm

α2

(
Sm − δΓ

µm(δ + µA)

)
+

α2bβh
α1

∣∣∣∣X − Λ
µh

∣∣∣∣+ 1
V7

(R0 − 1)[α1µm Im + α2(γ + µh)Ih]

⩽
α1bβm

α2

(
Sm − δΓ

µm(δ + µA)

)
+

α2bβh
α1

∣∣∣∣X − Λ
µh

∣∣∣∣
+ min{γ + µh, µm}(R0 − 1)1{R0⩽1} + max{γ + µh, µm}(R0 − 1)1{R0>1}.

We denote

η := min{γ + µh, µm}(R0 − 1)1{R0⩽1} + max{γ + µh, µm}(R0 − 1)1{R0>1} −
σ2

3 σ2
5

2(σ2
3 + σ2

5 )
, (20)
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therefore,

d(ln V7) ⩽
[

η +
α1bβm

α2

(
Sm − δΓ

µm(δ + µA)

)
+

α2bβh
α1

∣∣∣∣X − Λ
µh

∣∣∣∣]dt

+
α1σ3 Im

V7
dB3(t) +

α2σ5 Ih
V7

dB5(t).
(21)

When the inequality (21) is integrated from 0 to t, and then divided by t, the result is

ln V7(t)
t

⩽
ln V7(0)

t
+ η +

α1bβm

α2

〈
Sm − δΓ

µm(δ + µA)

〉
+

α2bβh
α1

〈∣∣∣∣X − Λ
µh

∣∣∣∣〉+
M1

t
+

M2

t
, (22)

where

M1 =
∫ t

0

α1σ3 Im(s)
V7(s)

dB3(s), M2 =
∫ t

0

α2σ5 Ih(s)
V7(s)

dB5(s)

are local martingales whose quadratic variations are

⟨M1, M1⟩ = α2
1σ2

3

∫ t

0

(
Im(s)
V7(s)

)2

ds ⩽ α2
1σ2

3 t,

⟨M2, M2⟩ = α2
2σ2

5

∫ t

0

(
Ih(s)
V7(s)

)2

ds ⩽ α2
2σ2

5 t.

By the strong law of numbers [44], we derive

lim
t→∞

Mi
t

= 0, i = 1, 2 a.s..

We calculate the upper limit of inequality (22), and the proof is undertaken by
two steps.

Step 1. It is easy to check that

dA = [Γ − (δ + µA)A]dt + σ1 AdB1(t). (23)

After integrating Equation (23), we have

lim
t→∞

1
t
(A(t)− A(0)) = Γ − lim

t→∞
(δ + µA)⟨A⟩+ lim

t→∞

σ1

t

∫ t

0
A(s)dB1(s),

which further shows that
lim
t→∞

⟨A⟩ = Γ
δ + µA

+ lim
t→∞

ρ1

t
, (24)

with

ρ1 =
A(0)

δ + µA
− A(t)

δ + µA
+

σ1

δ + µA

∫ t

0
A(s)dB1(s).

Similarly, for inequality

dSm ⩽ [δA − µmSm]dt + σ2SmdB2(t), (25)

after the integration, we obtain

lim
t→∞

1
t
(Sm(t)− Sm(0)) ⩽ lim

t→∞
δ⟨A⟩ − lim

t→∞
µm⟨Sm⟩+ lim

t→∞

σ2

t

∫ t

0
Sm(s)dB2(s).

By (24), we then obtain
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lim
t→∞

⟨Sm⟩ ⩽ lim
t→∞

δ

µm
⟨A⟩+ lim

t→∞

ρ2

t
=

δΓ
µm(δ + µA)

+ lim
t→∞

ρ1

µmt
+ lim

t→∞

ρ2

t
,

with

ρ2 =
Sm(0)

µm
− Sm(t)

µm
+

σ2

µm

∫ t

0
Sm(s)dB2(s).

By Lemma 1, we obtain

lim
t→∞

ρi
t
= 0 (i = 1, 2).

Therefore,

lim
t→∞

α1bβm

α2

〈
Sm − δΓ

µm(δ + µA)

〉
= 0.

Step 2. Because X(t) is ergodic with
∫ ∞

0 xπ(x)dx < ∞, by ergodic theorem [52] and
Hölder inequality, together with (18) and (19), we obtain

lim
t→∞

〈∣∣∣∣X − Λ
µh

∣∣∣∣〉 =
∫ ∞

0

∣∣∣∣X − Λ
µh

∣∣∣∣π(x)dt ⩽
∫ ∞

0

∣∣∣∣X − Λ
µh

∣∣∣∣√π(x)
√

π(x)dt

⩽

(∫ ∞

0

(
X − Λ

µh

)2(√
π(x)

)2
dt

) 1
2(∫ ∞

0
π(x)dt

) 1
2
=

Λσ4

µh

√
2µh − σ2

4

,

therefore,

lim sup
t→∞

ln V7(t)
t

⩽ η +
b2βhβmδσ4ΓΛ

µmµhR0(δ + µA)(γ + µh)
√

2µh − σ2
4

:= φ a.s..

When φ < 0 holds, the population sizes of infective mosquitoes and infective human
beings go to eradication, where φ represents the exponential rate of the decline.

Remark 1. If the population sizes of infective mosquitoes and infective human beings tend to zero,
then φ might be positive. The corresponding numerical simulations support this result in Section 4.

4. Sensitivity Analysis and Numerical Simulations

The sensitivity analysis and the numerical simulations were carried out using MAT-
LAB. The time step was set to be 0.01. The final time for the persistence of model (3) was
assumed to be 400 days due to the effective presentations in Section 4.2. The final time
for the extinction and the corresponding sensitivity analysis of model (3) is assumed to be
800 days in Sections 4.1 and 4.3. Because 400 days is not enough to capture the extinction
dynamics of the dengue transmission, we extended the simulations within 800 days for
obtaining extinction behaviors. The validations of model (3) without the awareness delay
are verified in Figures 1–4. While, the 2019 dengue outbreak from 1 June to 31 December
concerns the awareness delay due to the report of the surveillance data, the corresponding
curves in Figures 5 and 6 provide the variations of the scenario investigations.

4.1. Sensitivity Analysis of Main Parameters

By numerical simulations, an extensive discussion on the sensitivity analysis of the
main parameters is provided. In particular, the influences of the death rates of aquatic
mosquitoes and adult mosquitoes on dengue transmission dynamics are mainly inves-
tigated. Let the intensities of the fluctuations be fixed as σ1 = 0.1, σ2 = 0.1, σ3 = 0.1,
σ4 = 0.001, σ5 = 0.001. Based on the parameter ranges of Table 2, the main parameters with
setting (I) are fixed in Table 3, the initial values with setting (I) are set in Table 4, and the
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sensitivity analysis is carried out for Rs
0 in Figure 1, which demonstrates the 3-dimensional

image of Rs
0 with respect to µA and µm. Obviously, the value of Rs

0 increases with the de-
crease in the death rates µA and µm. Especially, the value of Rs

0 declines fast with µm when
the value of µA is fixed in Figure 1. The tendencies of infective mosquitoes and infective
human beings are demonstrated when the changes in µA and µm are set in Figure 2. It is
significant that the reductions for both Im and Ih mainly depend on the increase in µm.

Table 3. The main parameters for the numerical simulations to model (3).

Parameter
(I) (II) (III) (IV)

Value Source Value Source Value Source Value Source

Γ 2000 Fitted 100 Fitted 2000 Fitted 1,800,000 Fitted

µm (0, 0.06] Fitted 0.05 [22] 0.03 [22] 0.0149 a
Fitted

0.1910 b

b 3.33 × 10−6 Fitted 1.0 × 10−4 Fitted 3.33 × 10−6 Fitted 7.36 × 10−9 c Fitted
∆T 0 Fitted 0 Fitted 0 Fitted 20 d [2]
µA (0.01, 0.6] Fitted 0.01 [21] 0.01 [21] 0.01 [21]
γ 0.1428 [21] 0.1428 [21] 0.1428 [21] 0.1428 [21]
βm 0.75 [22] 0.6 [22] 0.75 [22] 0.7 [22]
βh 0.5 [22] 0.5 [22] 0.4 [22] 0.5 [22]
δ 0.3 [26] 0.1 [26] [0.1, 0.7] Fitted 0.2 [26]
µh 3.75 × 10−5 [10] 3.75 × 10−5 [10] 3.75 × 10−5 [10] 3.41 × 10−5 e [38]
Λ 0.56 Fitted 100 Fitted 0.56 Fitted 282.5 f [38,54]

a µm = 0.0149 was estimated by the least squares method for the period from 1 June to 11 September 2019.
b µm = 0.1910 was estimated by the least squares method for the period from 12 September to 31 December 2019.
c b = 0.061

8,291,268 ≈ 7.36× 10−9, where 0.061 was derived by the optimal fitting in Figure 5. d ∆T was taken as 20 days
for Fuzhou dengue transmission because the mosquitoes took 8–12 days to be capable of spreading viruses to a
new host, and the human beings with symptoms took 4–10 days after infection as reported in [2]. e Following [47],
the formula of µh was written as µh = 1

LE × 1
365 , where LE (life expectancy) was 80.41 years old in [38]. We then

obtained µh = 1
80.41×365 ≈ 3.41 × 10−5. f Following [47], the formula of Λ was written as Λ = TPH

LE × 1
365 , where

TPH (total population size of human beings) was 8,291,268 in [54]. We then obtained Λ = 8,291,268
80.41×365 ≈ 282.5.

Table 4. The initial values of the numerical simulations to model (3).

Variable (I) (II) (III) (IV)

A(0) 40,000 20,000 40,000 9,000,000
Sm(0) 20,000 20,000 20,000 10,000,000
Im(0) 1,000 10 1,000 15
Sh(0) 15,000 15,596 15,000 8,291,266
Ih(0) 150 2 150 2
Rh(0) 0 0 0 0
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Figure 1. Plot of the critical threshold Rs
0 in terms of µA and µm.
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Figure 2. The tendencies of infective mosquitoes and infective human beings when µA and µm change
in their values.

4.2. Persistence in the Mean

The PPTEM method for SDEs in [55,56] is adopted to organize the discretization equations
of model (3). For further details, it is recommended to read the recent work [57]. For other
approaches used in numerical simulations of SDEs, it is encouraged to consult [46,47] and
references therein. Here, the numerical simulations of persistence in the mean are provided.
The initial values with setting (II) of model (3) are presented in Table 4, and the main
parameters with setting (II) are presented in Table 3. The intensities of the fluctuations are
fixed as σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, σ4 = 0.001, σ5 = 0.001. The conditions of Theorem 2
are checked below:

5
√
Rs

0 = 4.3778 > 1, 0.02 = min{µA, µm} > max{σ2
1 , σ2

2 , σ2
3} = 0.01,

2/(73 × 365) = 2µh > max{σ2
4 , σ2

5} = 0.0001.

Because the condition 5
√
Rs

0 = 4.3778 > 1 is equivalent to Rs
0 > 1, by Section 3.3,

model (3) has a unique stationary distribution. In other words, model (3) is ergodic.
Consequently, the persistence in the mean of infective mosquitoes and infective human
beings is illustrated on the left panel of Figure 3, and the probability density functions
of model (3) around the quasi-equilibrium point P∗ with A∗ = 909, S∗

m = 988, I∗m = 830,
S∗

h = 2408, I∗h = 699 are provided on the right side of Figure 3.
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Figure 3. The persistence in the mean and stationary distribution of A, Sm, Im, Sh, Ih of model (3).

4.3. Extinction

The numerical simulations of the extinction of model (3) were performed using PPTEM.
The initial values of setting (III) of model (3) were taken from Table 4, the main parameters of
setting (III) are presented in Table 3, and the intensities of the fluctuations were set as σ1 = 0.1,
σ2 = 0.01, σ3 = 0.01, σ4 = 0.001, σ5 = 0.001. It is easy to check that P0 with A0 = 2817,
Sm0 = 65, 728, Im0 = 0, Sh0 = 15, 000, Ih0 = 0, and the conditions in Theorem 4 are checked
as follows:

2 min{µA, µm} > max{σ2
1 , σ2

2 , σ2
3}, 2µh > σ2

4 , φ = −0.0007 < 0.

These simulation results show that the extinction occurs for a long period, which
indicates that the population sizes of infective mosquitoes and infective human beings
exponentially tend to zero as δ decreases on the left panel of Figure 4. Further, the parameter
values are kept same, and if βh is taken as 0.5, δ is set as 0.1, then conditions of Theorem 4
are still valid with P0 with A0 = 1818, Sm0 = 60, 606, Im0 = 0, Sh0 = 15, 000, Ih0 = 0, while
the sign of φ changes as φ = 0.0015 > 0. The differences in the numerical simulations
can be observed on the right side of Figure 4. The reduction in the maturity proportion of
aquatic mosquitoes suppresses the number of infective human beings. But the effectiveness
of this measure is limited as shown in Figure 4.
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Figure 4. Extinctions of infective mosquito population and infective human population with the
exponential rates as δ decreases.
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4.4. Application of dengue in Fuzhou City

We used model (3) to investigate the 2019 dengue outbreak in Fuzhou City, and we
adopted the surveillance data from 1 June to 31 December from Fujian CDC. According
to the reports from [38,54], the total population size and the life expectancy of human
beings of Fuzhou City in 2019 are 8,291,268 individuals and 80.41 years old, respectively,
which then gives the following initial values while setting the human beings and related
parameters to model (3):

Sh(0) = 8, 291, 266, Ih(0) = 2, Rh(0) = 0, Λ =
8, 291, 268

80.41 × 365
, µh =

1
80.41 × 365

.

Since the ratio for mosquito population to human population ranges from 0.53 to 2
in [58] and the number of daily average hatch of mosquitoes is from 0 to 2 in [22], we then
assume the initial values with the setting of mosquitoes and related parameters as follows:

A(0) = 9, 000, 000, Sm(0) = 10, 000, 000, Im(0) = 15, Γ = 1, 800, 000.

Let σi = 0. Model (3) degenerates into the deterministic model (1). We fit model (1) on
surveillance data to estimate parameters b and µm employing the major parameters listed
in Table 3 and the least-squares method. Here, the awareness delay (∆T) is referred to as
the time interval from the initial infection to the first confirmed diagnosis for the given
infectious diseases [40].

Further, the curves for the cumulative number and daily number of dengue cases
are shown in Figure 5. The main parameters with setting (IV) are collected without the
fluctuations for the 2019 dengue outbreak. Since the number of infective human be-
ings during the 2019 dengue outbreak was relatively small compared to the number of
susceptible human beings, the changes in susceptible human beings introduce the ran-
domness of human–mosquito contacts and the randomness of human behaviors. It is
reasonable to incorporate the randomness into the 2019 dengue outbreak. Therefore,
the effects of fluctuations of dengue were studied by setting σ1 = 0.01, σ2 = 0.005,
σ3 = 0.005, σ4 = 0.003, σ5 = 0.003 in Figure 6. The main findings indicate that the
yellow curve is the mean of model (3) and the purple curves are the deviation to model (3)
for 200 sample paths. Further, model (3) is valuable for the dynamic prediction of dengue.
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Figure 5. Cumulative number and daily number of the 2019 dengue outbreak from 1 June to 31
December in Fuzhou City.
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Figure 6. Cumulative number of the 2019 dengue outbreak with fluctuations from 1 June to 31
December in Fuzhou City.

5. Conclusions and Discussion

Since dengue is the most common mosquito-borne disease in human society and the
population sizes of aquatic mosquitoes and adult mosquitoes affect the circulation, we
establish a vector–host model with multiple stages and fluctuations for the transmission
mechanism of dengue. We focus on the survival analysis of the vector–host model with the
long-time dynamical properties in this paper.

In this study, we prove the existence and uniqueness of positive solutions of model (3)
in Theorem 1 by contradiction. Then, we obtain the critical threshold Rs

0 and prove that
the population sizes of infective mosquitoes and infective human beings are persistent
in the mean, when Rs

0 > 1 is valid and conditions of Lemma 1 hold. By building the
appropriate Lyapunov functions, we further demonstrate that when Rs

0 > 1 holds in
Theorem 3, model (3) has a unique stationary distribution. The corresponding simulations
are performed by using the PPTEM method in Figure 3.

By using the comparison theorem, ergodic theorem, and some related stochastic analy-
sis methods, we obtain the criteria of the extinction of model (3) in Theorem 4. Precisely,
when φ < 0 is valid, 2 min{µA, µm} > max{σ2

1 , σ2
2 , σ2

3} and 2µh > σ2
4 hold, and we find that

the dengue model (3) undergoes eradication in the long run. The numerical simulations
were carried out using the PPTEM method in Figure 4, of which the numerical simulations
showed that the transfer proportion from aquatic mosquitoes to adult mosquitoes affects
the infection scale of infective human beings with dengue virus. When the fluctuations
disappeared, we conducted parameter estimations and numerical simulations of the 2019
dengue outbreak in Fuzhou City based on the surveillance data in Figure 5. When the
intensities of the fluctuations were controlled, we employed model (3) to investigate the
effects of fluctuations on the infection scale of dengue cases, and we further conclude
that model (3) is feasible for the dynamic prediction of infection scale in Figure 6. We,
therefore, suggest that policymakers pay more attention to the constant recruitment rates
of aquatic mosquitoes, the maturity proportion of aquatic mosquitoes, and the death rate
of aquatic mosquitoes before reasonable control measures are made. In the short-term,
we will consider the optimal control of aquatic mosquitoes, the effects of time delay from
aquatic mosquitoes to biting mosquitoes, and the periodic recruitment of dengue infection
cases as the best possible investigations.
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