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Abstract—This work proposes an approach to robust con-
junction risk assessment given a sequence of Conjunction Data
Messages (CDM). Dempster-Shafer theory of evidence (DSt) is
used to account for epistemic uncertainty in the sequence of
CDMs and derive a robust classification of conjunction events. We
then use Artificial Intelligence (AI) to bypass the computationally
expensive parts of DSt and directly produce a robust classification
from a given sequence of CDMs. Five AI techniques are proposed:
Random Forest (RF) with DSt structures, RF with CDMs, Light
Gradient Boosting machine (LGBm) with CDMs, autoregressive
LGBm (aLGBm), and Transformers for time series. These meth-
ods were trained and tested both on synthetic and in real datasets
to study their applicability to real scenarios. The results show
the potential of AI techniques, especially LGBm, for robustly
classifying encounters from the sequence of CDMs, provided
balanced datasets are available.

Index Terms—Space Traffic Management, Transformers, Ran-
dom Forest, Light Gradient Boosting machine, Dempster-Shafer.

I. INTRODUCTION

The space environment has experienced a dramatic change
during the last years due to the appearance of new mega-
constellations and small satellites [1], the improvement on
Space Situational Awareness (SSA) capabilities and the in-
clusion of thousands of new objects in the catalogues and
the commercialisation of space bringing new actors in space
operations [2]. The combined effect brings the Space Traffic
Management (STM), designed for a different context, to the
limit. The new Low Earth Orbit (LEO) environment loads
operators with thousands of conjunction alerts, whose actual
risk must be analysed, and if high, a detailed and cumbersome
analysis to mitigate the risk is required. The STM system
needs to be upgraded to quickly and automatically analyse
large numbers of encounters and provide robust decisions [2].

The conjunction risk is usually evaluated using the Prob-
ability of Collision (PoC) [3], whose value is determined by
the expected objects’ relative position and their position uncer-
tainty. The main driver on the PoC is the object’s uncertainty,
coming from errors in the observation sensors, the propagation
dynamical models or the uncertainty models themselves. There
are efforts to improve covariance realism [4]. However, to
provide robust decision-making, it is necessary to take into

account the confidence in the available information, including
also epistemic uncertainty in the analysis [5].

The increase in conjunctions requires automation and faster
methods to safely operate the increasing number of space
objects. Artificial Intelligence (AI) appears as the right tool
to handle great amounts of data, providing faster data-driven
models, and assisting operators in decision-making. There are
already some works initiating on the use of AI for space
safety, including space agencies [6], or other examples as
the use of Machine Learning (ML) to assist operators [5],
to conjunction detection [7] or Conjunction Data Messages
(CDMs) forecasting [8].

In this work, we bring a methodology to model mixed uncer-
tainty on sequences of CDMs using Dempster-Shafer theory
of evidence (DSt) and Dvoretzky-Kiefer-Wolfowitz (DKW)
inequalities to provide robust support on decision-making
tasks. CDMs are the most common protocol to communicate
conjunction information among operators, but currently, they
do not account for epistemic uncertainty. We propose the use
of AI techniques like Random Forest (RF), Light Gradient
Boosting machine (LGBm) and Transformers to automate
the conjunction risk assessment given a sequence of CDMs.
Current methods using CDMs for Conjunction Assessment
Risk Analysis (CARA) suffer from lack of automation and
high operators’ work-load [9], [10] and either do not consider
information from previous CDMs [9] or make strong assump-
tions on the CDMs time series [10]. The novelty of this paper
is in simultaneously modelling the epistemic uncertainty in the
sequence of CDMs and the use of AI to bypass the expensive
computations required for a robustly classifying conjunction
events and automatically produce a robust classification from
the time series of CDMs. This novel and unique combination
of AI and DSt would enable the treatment of large catalogues
of events and the robust automation of STM.

The rest of the paper is structured as follows. In Section II
an overview of the approach to perform robust CARA is
provided. Section III presents the synthetic and real datasets
with CDMs employed in the rest of the paper. Section IV
explains the ML and Deep Learning (DL) architectures used.
In Section V, the models’ performances are compared. Finally,
Section VI concludes the paper.
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II. ROBUST CONJUNCTION RISK ASSESSMENT

CDMs are the most common conjunction communication
protocols currently used by space operators [11]. They are
generated by SSA entities from the information collected from
their networks of sensors (like radars and telescopes) and
the propagation of the detected objects’ state and uncertainty.
CDMs contain a standard set of information relative to: i)
metadata (identifier of the event, date of the CDM creation),
ii) the encounter, like the relative geometry, the date of
the encounter or the risk of the encounter, iii) the objects
themselves (object identifier, type of object, state vector and
covariance matrix, object observation information).

The most common conjunction assessment methodologies
employing CDMs use the uncertainty information and the
computed risk included in the messages, some implementing
covariance realism techniques, but epistemic uncertainty is not
often considered [9], [12]. In previous works, the authors pro-
posed an approach to provide robust decision-making support
quantifying the epistemic uncertainty in the CDMs [13].

This methodology uses DKW inequalities [14] and DSt
[15] to model the epistemic and aleatory uncertainty in the
CDMs. From each CDM, the encounter is obtained (the miss
distance vector and the combined covariance matrix in the
impact plane), conforming the uncertain space u ∈ U , so
that u = [µξ, µζ , σ

2
ξ , σ

2
ζ , σξζ ]. Each CDM is assumed to be a

sample drawn from an unknown underlying distribution, from
which no further assumptions are made. The method in [13]
extracts information from the CDMs to generate the interval-
valued variables required by DSt by creating a confidence
region around all distributions compatible with the sequence’s
empirical Cumulative Distribution Function (eCDF).

The DKW inequalities define the proposed bounding region:

Fn(x)−
√

ln 2
δ

2n ≤ F(x) ≤ Fn(x) +

√
ln 2

δ

2n (1)

given n CDMs are available and the confidence level 1−δ that

the exact distribution F(x) ∈ Fn(x)± ε, where ε =

√
ln 2

δ

2n .
From the DKW bands, the method then proposes to obtain

the p-box [16] bounding the region of compatible distributions.
The p-box bounds are defined as a weighted sum of Gaussian
distributions centred at the samples:

F(x) ∼ P(x) =
∫ inf

− inf

∑
i wiN (xi, σi;x) dx. (2)

The upper and lower bounds are obtained by solving the
following optimisation problem:{

P(x) = maxwi,σi
P(x;wi, σi)

P(x) = minwi,σi
P(x;wi, σi)

,

s.t.

{
P(x) ≤ min(1, Fn(x) + ε)
P(x) ≥ max(0, Fn(x)− ϵ)

,

(3)

which defines the outer distributions better approximating the
DKW bands. Due to the equivalence between the p-boxes and
the DSt structures [16], it is possible to discretise the p-boxes
by performing horizontal α-cuts, whose intersection with the
upper and lower p-box bounds define the lower and upper

Fig. 1: Intervals partition in µξ from CDM: eCDF (light
blue), p-box (pointed-dashed red), DSt structure with 2
partitions (dashed black) and 7 partitions (dashed blue).

value of the variables intervals. The number of intervals N is
equal to the number of α-cuts minus one. The height of the
interval on the resulting DSt structure indicates the value of
its basic probability assumption (bpa).

Having a set of intervals for the encounter relative geometry,
the authors proposed in [5], [13] a methodology to provide
robust decision-making based on the confidence of the value
of the PoC. This method propagates the epistemic uncertainty
on the uncertain values to the risk metric of interest (the
PoC) by computing the Plausibility (Pl) and Belief (Bel) of
the PoC ≥ PoC0. The value of the Pl at PoC0 indicates
the possibility of the encounter happening according to the
available information. A greater area between the curves is
associated with more epistemic uncertainty or conflict on the
inputs, making it harder to make confident decisions, while
a smaller gap indicates a low degree of uncertainty on the
inputs.

The outcome of the methodology is a 6-fold classification
indicating the operators the best action to be taken to address
the conjunction according to the available information:

• Class 0. Perform a Conjunction Avoidance Manoeu-
vre (CAM) due to uncertainty on an immediate close
encounter, making it impossible to make a confident
decision or to collect more data.

• Class 1. Perform an avoidance manoeuvre due to an
immediate high-risk event.

• Class 2. Design a CAM due to support to high-risk on a
mid/long-term encounter.

• Class 3. Allocate new measurements and collect more
information, since the uncertainty affecting the available
information makes it impossible to make a confident
decision in a mid/long-term conjunction.

• Class 4. Non-escalated event due to low support on high
values of risk in a mid/long-term conjunction.

• Class 5. No mitigation action required due to high support
for low values of risk in an immediate encounter.

Five thresholds are defined to classify the events: T1 and T2

for the time to the encounter, a risk threshold PoC0 and the
two epistemic thresholds Pl0 and APl,Bel [5], [13].

However, some of the steps to robustly classify the events
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are time-consuming. The computation of the Pl and Bel curves
on the value of the PoC requires two optimisation problems
to obtain the maximum and minimum value of the PoC at
each Focal Element whose number grows with Nm, where N
is the number of intervals and m the number of uncertain
variables (m = 5 in this case). A Focal Element is each
of the resulting intervals on the multi-variable space with
bpa ̸= 0 resulting from the Cartesian products of the variables’
intervals [5]. The higher the number of intervals, the more
accurate the bounds of the underlying distribution, but the
higher the computational cost. The computation of the p-boxes
from the DKW bands bounding the underlying distribution,
used to obtain the intervals, requires another two optimisation
problems in Eq. (3), whose complexity increases with the
number of CDMs in the sequence. Moreover, this step has
to be repeated for each uncertain variable.

In this work, we propose ML and DL architectures to predict
the evidence-based class of an encounter, given its sequence
of CDMs, without explicitly executing the aforementioned
expensive steps. For more information on the architecture of
the framework combining epistemic uncertainty and AI, refer
to [5]. In the following, the databases used to train the models
and the proposed architecture are presented.

III. DATABASES

The architectures proposed in the next section are tested
on three different databases of close encounters. One of the
databases is composed exclusively of virtual encounters, while
the other two correspond to encounters faced by two real
mission operators by the European Space Agency (ESA). The
databases include the uncertain variables derived from the
CDM sequences of a number of encounters, including the
object ID (if any), the encounter identification, the number
of the CDM on the list, the time to the encounter from the
CDM creation and the miss distance and combined covariance
matrix at the impact plane corresponding to each CDM. For
each new sample, that is, for each CDM in the sequence, the
database associates a label indicating the class, according to
the methodology presented in the previous section, accounting
for all the event CDMs received up to that stage.

sgen. =[EventID −ObjID1 −ObjID2−
#CDM − t2TCA− µξ − µζ − σ2

ξ − σ2
ζ − σξζ ]

(4)

For the rest of this work, the class in the databases is
computed using the following parameters and thresholds:
δ = 0.5, T1 = 3 days, T2 = 5 days, PoC0 = 10−4,
Pl0 = 1/243, A∗

Pl,Bel = 0.1, PoC = 10−30 and N = 3.
For more information, refers to Section II and [5], [13].

A. Synthetic database

A synthetic database composed of 1,000 virtual encounters
was generated. The reason for using a synthetic database is
twofold. First, knowing the real orbits of the objects (called
nominal orbits in the remainder of the paper), provides the
ground truth for each event. This means it is possible to know
whether the objects are on a collision course. Second, suppose

the ML models trained exclusively on the synthetic database
perform well in the real ones. In that case, it is possible to
integrate unbalanced real databases and create datasets tailored
to the operators’ necessities.

This database comprises 1,000 encounters, 50% of whom
are collision scenarios. Each event was created as follows:
the primary object’s Keplerian elements at the nominal Time
of Closest Approach (TCA) were randomly drawn from
a ∈ [6, 850, 7, 200]km, e ∈ [0, 10−6], i ∈ [0, π] rad, and
Ω, ω, θ ∈ [0, 2π] rad. The associated nominal position is
expressed with x. The Hard Body Radius (HBR) of both
objects and the nominal miss distance were drawn from
HBR ∈ [1, 12] m, xb ∈ [0.02, 200] m, with xb =

√
µ2
ξ + µ2

ζ ,
ensuring the proportion of collision/no-collision events re-
mained balanced. The secondary object’s position was derived
from the miss distance and its velocity was randomly selected
so that its Keplerian elements at the encounter fall within the
same boundaries used for the primary object. Both objects
were back-propagated assuming Keplerian motion to the first
observation epoch, drawn from [1.5, 7] days to TCA.

Once the nominal orbit was defined, an error was added to
both objects’ state vector assuming a Gaussian distribution,
N (µ0,Σ0), expressed in the object’s < R, T,H > frame
(i.e. simulating the filtering process outcome from a set of
observed positions). The position offset’s components were
drawn from the interval [0.02, 5]m for the collision cases and
from [0.02, 200]m for the no collision cases, ensuring the
expected miss distance, x0 = ∥µ0 − x∥, also fell within
those intervals. No off-set in the velocity was considered. The
covariance matrix at the first observation epoch was assumed
to be diagonal with the values drawn from σrr,0 ∈ [0.1, 0.15] ·
10−4, σtt,0 ∈ [0.5, 0.6] · 10−4, σhh,0 ∈ [0.1, 0.15] · 10−4,
σrr,0 ∈ [5, 6] · 10−8, σrr,0 ∈ [1, 1.5] · 10−8, σrr,0 ∈ [1, 1.5] ·
10−8, in km2 and km2/s2. For each object, between 15 to
30 noisy observations were determined. The observation error
was assumed to follow a Gaussian distribution N (µi,Σi),
expressed in the object’s frame. One of these three alternatives
was considered:

i) no position off-set was assumed in any observation (in-
cluding the first one), µi = 0, and the same covariance
error as in the first observations was assumed at every
observation, Σi = Σ0;

ii) the same observation off-set of the first observations was
assumed for the rest of the observations, µi = µ0,
while the same covariance matrix was assumed for each
observation (Σi = Σj), derived from a rotated and
resized version of Σ0;

iii) at each observation, a different off-set and covariance
matrix were assigned (µi ̸= µj , Σi ̸= Σj), with µi

obtained in the same way as µ0, and Σi being a rotated
and resized version of Σ0.

From each observation epoch, the ellipsoids were propa-
gated with Monte Carlo sampling to the TCA and projected
onto the impact plane and fitted to a Gaussian distribution
N (µTCA,ΣTCA) to obtain the corresponding CDM.
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TABLE I: Class distribution on the three databases.

Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

Synth. (%) 25.3 46.6 10.0 6.03 5.07 7.00
Real 1 (%) 0.46 0.03 0.01 10.7 30.9 57.9
Real 2 (%) 0.48 0.01 0.01 10.5 31.3 57.7

A total of 17,051 messages were generated, from which
52.6% corresponds to collision scenarios and the other 47.4%
to no-collision cases whose robust-classes distribution is in
Table I. The database is relatively well distributed, although
some classes (especially, Classes 3, 4 and 5) present a lower
percentage of samples. This effect is due to the epistemic
threshold selection, which moves some low-risk cases to the
uncertainty classes. Nevertheless, the threshold tuning falls out
of the scope of this work.

B. Real databases

Two real databases are used in this work. They correspond
to two different missions operated by ESA in the same
LEO region (within the boundaries of the synthetic database).
The databases are compounded by the CDMs received and
analysed by the ESA’s Space Debris Office (SDO) during
the period 2015-2022. The objective of the real databases is
double: first, to analyse the performance of the ML models
trained on the synthetic database; second, to study the predic-
tion capacity of the model when applied to another mission,
by training the models in one of the two real databases and
making predictions on the other.

The first real database contains 36,071 encounters and a
total of 239,521 CDMs. The second real database contains
36,160 events and a total of 249,943 CDMs. The class distri-
bution for both databases after the robust conjunction analysis
appears in Table I.

The main characteristic of the real databases is the marked
unbalanced structure, where the immense majority of cases
correspond to low-risk scenarios, with only a handful of events
falling in classes associated with high-risk or CAM execution.

C. Database split

To avoid overfitting, during the training stage, we decided
to split the databases into a training set (80%) and a test set
(20%). The test set remained unseen for the models during
the training phase and is only used to make predictions and
compare the models’ performance. Thus, the same test split
is shared by all the models. A further split was made during
training, so 80% of the samples on this subset are used to
adjust the model parameters, while the remaining 20% forms
the validation set, which is used to evaluate the trained model
and perform the hyperparameter search. Both subsets on the
training set keep the same class distribution on these two sets.

Since from each event, several samples are obtained (one
sample per each new CDM on the sequence), to avoid having
two very similar samples coming from the same event in the
training and the test set, the division is made at an encounter
level, splitting by the Event ID. The training set is compounded
by the 80% of the events, which is close, but not necessarily

TABLE II: Class distribution on the training/test sets.

Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

Synth Train. (%) 25.9 45.6 10.3 6.13 4.98 7.09
Synth Test (%) 23.2 50.4 8.64 5.66 5.09 7.01

Real Train. (%) 0.46 0.02 0.02 10.7 30.8 58.0
Real Test (%) 0.54 0.05 0.01 10.7 31.1 57.6

equal, to the 80% of the samples due to the difference in the
CDM sequences lengths.

Table II shows the distribution of classes in both training
and test sets for the synthetic database and one of the real
databases. The remaining database is not divided since it is
not used for training, but only for evaluating the capabilities
of the models to predict on a database from a different mission.

IV. MODEL ARCHITECTURES

This section presents the different architectures analysed in
this work to predict the class obtained with the evidence-based
classification criterion presented in Section II. Five different
architectures are proposed, two of them using RF, another
two using LGBm and a last one employing Transformers.
From previous works in similar classification problems for
conjunction risk assessment, [5], the authors identified that
RF outperformed other classification techniques like Support
Vector Machine and k-Nearest Neighbours. RF is set as a fast
and robust baseline. LGBm is selected for its capacity to han-
dle continuous and categorical features in tabular data as well
as for its higher speed relative to RF. Finally, Transformers
are used due to their potential to address the problem as a
time-series classification, which comes from their success in
handling sequences in other fields such as Natural Language
Processing.

RF [17] is an ensemble method that combines several inde-
pendent Decision Trees during the training step, feeding each
of them with different subsets of the training set. The predicted
class is the mode of the output of every single tree. This
ensemble approach allows for overcoming the overfitting and
bias problem presented by Decision Trees while maintaining
the simple architecture.

LGBm [18] is a variant of the Gradient Boosting methods,
also based on the ensemble of Decision Trees (Boosting).
LGBm presents the advantages of other Gradient Boosting
models, like the simplicity of implementation, and the reduced
number of parameters required to be tuned, but it allows
for faster training and higher accuracy. The main difference
to other Decision Trees-based algorithms is that it does not
present a level-wise growth (growing a new row from the
previous nodes at a time), but a more efficient leaf-wise
growth, where only the most promising node generates a new
row. One important advantage to other architectures is that
it accepts simultaneously continuous and categorical variables
without any pre-processing.

The Transformer architecture [19], originally proposed for
the task of machine translation in the field of Natural Language
Processing (NLP) and now applied to a wider range of tasks,

4

Robust classification with belief functions and deep learning applied to STM



leverages the ideas from attention-based models and proposes
to construct a model to process sets and sequences by using
only an attention mechanism between a data encoder and a
decoder. The term “attention mechanism” in neural networks
is used to represent a specific class of algorithms, in which
the model looks at each element of the sequence in turn,
and compares it to every other point, attempting to determine
the most relevant part of the sequence for each point. This
overcomes the limitation of local connectivity, at the cost of
the quadratic complexity that the attention matrix has in terms
of memory usage. The network implemented here follows the
structure used in [20].

A. Random forest with intervals

This architecture uses RF to classify the events using the
uncertain variables intervals bounds, allowing skipping the
explicit computation of the Pl and Bel (Section II). It still
requires the derivation of the p-boxes from the CDMs.

RF requires tabular inputs with the same length. Since
sequences of CDM have different lengths, this approach takes
advantage of the tabular format of the DSt structures after
performing the α-cuts. However, the number of inputs grows
with the number of cuts, thus a trade-off between accuracy (of
the DSt structure) and complexity (of the input data) should
be achieved. As indicated before, in this work, two α-cuts per
variable are performed, thus N = 3 for each variable.

The features are structured for this architecture so they take
the time to the TCA and, for each of the uncertain variables,
the lower and upper bound of each interval and its bpa. Thus,
the number of features is equal to: #featRF,int = 1+3Nm =
1 + 3 × 3 × 5 = 46, with N the number of intervals and m
the number of uncertain variables.

sRF,int =[µξ,1, µξ,1, bpaµξ,1, µξ,1, µξ,2, bpaµξ,2, ...,

σ2
ξ,1, σ

2
ξ,1, bpaσ2

ξ ,1
, ...]

(5)

The method was implemented using Python’s “scikit-learn”
library. A hyper-parameters search was carried out among the
values included in Table IV. The rest of the arguments took
the default values, including the loss function (cross-entropy).

B. Random forest with CDMs

This architecture also uses RF, but it takes directly the
information from the CDMs, skipping the two computationally
expensive optimisation steps. To avoid the different lengths of
the sequences, a lag window is used. Only a certain number of
CDMs previous to the latest one in the sequence are selected,
solving the problem of the tabular inputs, at the cost of losing
some information on the sequence. This allows training the
model on a database with more accurate classes obtained from
a finer p-box partition without increasing the number of inputs.
However, to compare the different models’ predictions across
the different alternatives in this work, the same partition of 3
intervals partition as in the previous case was used here.

The structure of the features takes the last CDM uncer-
tain variables and the time to the encounter plus the same
variables of the previous CDMs included on the lag window:

#featRF,lag = (m+1)(l+1), where l is the lag window and
l = 0 meaning only the last CDM is considered. In Table III,
an example of the sample can be seen (note the last column
is not used in this case).

The same implementation, hyperparameters and loss func-
tion as in the previous model were employed.

C. LGBm with CDMs

The same approach is followed here, but using LGBm
architecture instead. The inputs and output are the same
(Table III). Thus, the influence of the model can be analysed
as a mid-step between the previous and the next approaches.

The method was implemented using Python’s “LightGBM”
library, following the same approximation as in the previous
scenarios. The set of hyperparameters considered in the search
appears in the Table IV, with the rest of the argument’s values
set as default, with cross-entropy as loss function.

D. Autoregressive LGBm with CDMs

This approach follows a similar approach to the previous
one, but instead, it uses the previous class as a feature. Due to
the possibility of combining numerical and categorical features
in the input data, this alternative applies a sort of autoregres-
sive implementation, including the class to be predicted in the
previous time series instance as a feature.

To have a tabular structure on the input data, a lag window
is also employed to take the information from the last and the
previous l CDMs, and additionally, the class associated with
those previous cases. Thus, the number of features is equal to
#featLGBm = m+(m+1)l. In Table III, an example of the
sample can be seen, including the Classt−1 column.

The aim of this autoregressive technique is to include the
sequential character of the inputs, expecting that the classifi-
cation is influenced by the incremental amount of information
received with the new CDMs. With this approach, some of the
information from previous CDM lost with the lag window is
expected to be recovered, since the previous class implicitly
contains information from the whole sequence. The same
implementation as the previous case was followed.

E. Transformers with CDMs time series

Finally, this last proposal implements Transformer archi-
tecture. to classify the time series of CDMs. As in the two
previous implementations, from an event with N CDMs, N−1
samples were extracted (at least two samples are required to
perform the proposed methodology). However, in this case,
each sample is compounded by a set of eight time series
corresponding to the five uncertain variables, the time to the
encounter, the previous class (categorical) and a padding flag.
To have regularly spaced time series of equal length, the
samples in the time series were sorted according to their index
on the series, including the time as a feature (time to the
encounter), and the length of the time series was set equal to
the maximum length, filling shorter times series with a padding
value. The padding flag indicates if the value comes from the
CDM or is a filling value. The variables are normalised before
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TABLE III: Synthetic samples with lag step 1 used by the LGBm architectures and the RF with CDM approach.
The Classt−1 columns would be used only by the aLGBm method. Units in m, m2 and days.

#Sample µξ,t µζ,t σ2
ξ,t σ2

ζ,t σξζ,t t2TCAt µξ,t−1 µζ,t−1 σ2
ξ,t−1 σ2

ζ,t−1 σξζ,t−1 t2TCAt−1 Classt−1

0 37.51 7·10−11 9.4·105 5.1·105 -6.9·105 2.79 177.1 -5·10−10 1.8·106 2.6·104 2.1·105 2.86 -
1 25.37 4·10−10 3.4·105 1.6·106 6.3·105 2.64 37.51 7·10−11 9.4·105 5.1·105 -6.9·105 2.79 1
2 22.59 -7·10−11 1.7·10−5 8.5·105 -3.8·105 2.36 25.37 4·10−10 3.4·105 1.6·106 6.3·105 2.64 1
3 32.99 4·10−10 5.9·105 4.7·105 5.3·10−10 2.23 22.59 -7·10−11 1.7·10−5 8.5·105 -3.8·105 2.36 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...

TABLE IV: Set of hyperparameters considered to select the best model during training.

Random Forest Light GB machine Transformer

Hyperparam. Values Hyperparam. Values Hyperparam. Values

n_estimators {50, 100, 200, 400} n_estimators {1, 2, 5, 10} depth {1, 2, 3, 4, 5}
max_depth {None, 50, 100} max_depth {2, 7, 10, 15} attn_dropout {0, 0.1, 0.2, 0.3, 0.5 }
min_samples_split {2, 20} subsample 0.7 res_dropout {0, 0.1, 0.2, 0.3, 0.5 }
min_samples_leaf {10−7, 10−4, 1} colsample_bytree 0.8 wd {0, 0.1, 0.3}
max_features {’auto’,’log2’,0.5} boosting_type {’gbdt’,’rf’} n_epochs {10, 25, 50}

Fig. 2: Multi-channel time series synthetic sample for
the transformer, including padding and the padding flag.

being fed to the network. For more details on the algorithm’s
architecture, refer to [20].

The model was implemented using Python’s “tsai” library.
The models are compared using the F2-score metric. For the
optimiser, we use Ranger, an extension of the Adam optimiser
[20]. Weights and momentum are instantiated as default, the
loss function used is also cross-entropy and a variable “one-
cycle” learning rate was applied.

F. Training and hyperparameter search

The same hyperparameter search process was performed on
each architecture during training. The process performed a
random search on the space defined in Table IV. The model
defined by the selection of hyperparameters was trained on the
training set and evaluated on the validation set. The process
was repeated for several combinations of hyperparameters, and
the best model was selected as the one performing better on
the validation set. Due to the class imbalance and the higher
importance of avoiding miss encounters than the false alert,
the performing metric used was the average F2 score, F2,

F2 =
ΣN

i F2,i

N , F2,i =
5·precisioni·recalli
4·precisioni+recalli

, (6)

being N the number of labels. For the architectures using a
lag window, the best model for different window lengths was
saved for further analysis in the next section.

V. RESULTS

In this section, the different models’ performances across
the different databases, having been trained on the synthetic
and the real databases, are compared. In the first case, the
different models were trained on the synthetic training set
and their performance was evaluated both in the synthetic test
set and in one of the real databases. In the second case, the
models were trained in the training set of the other real set and
evaluated both in the test set of that real database and in the
whole remaining real dataset (the same as in the first case).

A. Training on synthetic database

The right side of Table V shows the performance of the dif-
ferent approaches trained on the synthetic set both evaluated on
the synthetic test set (upper tier) and the real database (lower
tier). The prediction on the synthetic test set, with similar
characteristics to the training set, presents a generally good F2
score, both overall and by classes. RF fed with intervals has
good prediction capabilities, since the inputs are some steps
closer to the output in the underlying model. However, the
autoregressive LGBm (aLGBm) and the Transformer (which
also include the previous class among the inputs) match or
improve those results, even though they are fed directly with
the CDMs. Attending to the score by class, there is a slightly
better score in the more populated categories, although good
prediction capabilities are obtained across the classes. In any
case, the synthetic database does not present a sharp imbalance
trend. Nevertheless, it seems that an equally distributed and
enough populated database could level those scores.

However, the application to a real database did not provide
good results. The aLGBm still provides the best results,
also when applied to a database different than the one used
for training, although with a score some points below the
previous case. While the populated classes still score well,
the scarcely populated categories are not well predicted. This
pattern is repeated across all the methods, including also the
RF with intervals, despite the less complex model required.
This method scores especially well on labels 4 and 5, but
very poorly on the others. Surprisingly, the transformer does
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TABLE V: F1 and F2-scores of the best AI model, trained on the synthetic (left) or the real (right) sets, and
evaluated in the test set (upper-tier) or the remaining real set (lower-tier). In bold, the model with the highest
overall F2-score. Underlined, the best F2-score by class.

Trained on synthetic set Trained on real set

Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

RF interv. (test set) F1 .847 .889 .958 .891 .851 .752 .834 .632 .607 .000 .522 .998 .999 .997
F2 .854 .902 .947 .868 .841 .805 .873 .663 .637 .000 .731 .999 .998 .997

RF CDMs (test set) F1 .723 .785 .948 .849 .752 .703 .513 .484 .352 .000 .000 .905 .902 .907
F2 .748 .780 .933 .820 .798 .803 .581 .509 .436 .000 .000 .954 .936 .924

LGBm CDMs (test set) F1 .760 .760 .940 .810 .763 .711 .599 .463 .000 .000 .000 .896 .898 .949
F2 .759 .788 .930 .766 .798 .774 .449 .448 .000 .000 .000 .950 .935 .922

aLGBm (test set) F1 .871 .891 .959 .876 .864 .830 .854 .637 .770 .485 .000 .897 .893 .949
F2 .879 .916 .948 .883 .859 .838 .847 .640 .835 .434 .000 .949 .926 .924

Transformer (test set) F1 .899 .908 .967 .898 .871 .829 .850 .725 .828 .400 .000 .966 .949 .990
F2 .888 .896 .973 .891 .877 .818 .861 .732 .807 .294 .000 .961 .935 .981

RF interv. (real) F1 .536 .119 .039 .014 .881 .940 .944 .546 .475 .000 .000 .998 .999 .996
F2 .523 .079 .024 .009 .823 .975 .958 .566 .578 .000 .000 .998 .999 .995

RF CDMs (real) F1 .218 .024 <.001 .061 .551 .593 .385 .467 .169 .000 .211 .886 .885 .939
F2 .270 .015 <.001 .043 .459 .766 .599 .489 .250 .000 .322 .944 .930 .908

LGBm CDMs (real) F1 .394 .033 .004 .005 .831 .847 .777 .429 .000 .000 .000 .879 .884 .940
F2 .403 .020 .003 .008 .830 .915 .806 .441 .000 .000 .000 .944 .931 .907

aLGBm (real) F1 .612 .691 .039 .026 .908 .895 .952 .561 .762 .109 .000 .883 .880 .940
F2 .601 .672 .026 .016 .907 .903 .950 .579 .824 .098 .000 .944 .923 .910

Transformer (real) F1 .347 .224 .003 .137 .504 .555 .687 .609 .581 .823 .000 .927 .953 .970
F2 .351 .220 .009 .236 .548 .595 .608 .618 .549 .898 .000 .914 .949 .963

not perform well when applied to a different database than
the virtual set. Such an imbalanced database, with very few
high-risk cases and so differently distributed from the training
set is, at least partially, behind those poorer results. It is
the belief of the authors, given the score in the synthetic
database, that a more equally distributed database should
provide better scores. Regarding the scarcity of real high-
risk data, a potential approach is to evaluate the model during
training in a validation set simulating the distribution on the
real set, so it prioritises models scoring high on such databases.

From Fig. 3, the score is indifferent to the lag step. The
window length has little influence on the performance, even
though it adds more information to the model. For the RF
(green) and LGBm (red) using the CDMs, the score both in
the synthetic validation and the real sets is almost constant,
with the LGBm approach performing slightly better. However,
when attending to the aLGBm (blue), adding a 1-step lag
window significantly increases the performance, but longer
windows have no effect. This allows the conclusion that adding
the previous class is what improves the model prediction
capabilities.

B. Training on the real database

This case shows the analysis when training on the real set.
On the left side of Table V, the performance of the models on
the validation set of the real database (upper tier) and in the
whole dataset of the other mission (lower tier) are shown.

The performance of the validation is greatly affected by the
imbalance in the dataset. The overall F2 score is lower than
when trained on the synthetic database, affected by the poor
performance in the less populated categories, especially Class
1 and Class 2, where some methods are not able to predict any
sample. Nevertheless, the aLGBm and the transformer are the
better models, performing well along all the classes (including
Class 0), except the least populated.

Fig. 3: Overall F2 score as a function of the lag
window length. Solid: train and evaluated in synthetic
set; dashed: train in synthetic evaluated on the real sets.

More interestingly, when comparing the performance of
the models trained on the synthetic dataset and validated in
the same real set, the performance is better for these two
techniques, aLGBm and the transformer, especially the latest.
Although not achieving the same scores as when validating in
the synthetic dataset due to the imbalance character of the real
set, they achieve almost similar results as when predicting on
the test set in the previous scenario. Moreover, the performance
of the transformer when applied to the other real set improves
from when trained on the synthetic set and validated on the
real set. It achieves good scores except for Class 2, not being
able to predict any sample as the rest of the architectures.
Again, a better-distributed database for training is likely to
improve scores on the less populated categories.

C. Computational time analysis

Table VI shows a comparative of the computational time
saved by the different AI approaches with respect to using the
model-based approach for a case with 15 CDMs and 3 α-cuts.
It can be seen that proposed approaches save time by skipping
specific steps: the derivation of the p-boxes (except for the RF
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TABLE VI: Computational time (in seconds) for robust
CARA with and without using AI techniques.

p-box Pl/Bel Class. Total

No AI 75.4 2.37 (∼150) 0.02 78.1 (∼225)
RF inter. 75.4 - 0.06 75.8
RF CDMs - - 0.15 0.16
LGBm CDMs - - 0.03 0.03
aLGBm - - 0.03 0.03
Transf. - - 0.07 0.08

with intervals) and the computation of the Pl and Bel curves.
The required time is one or two orders of magnitude smaller
when using the ML approaches directly with the sequences.
Note that, if increasing the number of α-cuts, the time required
for the computation of Pl and Bel increases significantly (in the
table, indicated in parenthesis), while the classification with
AI-based approached remains indifferent.

VI. CONCLUSIONS

This work presented an AI-based approach to robustly clas-
sify space conjunctions provided the sequence of CDMs. Start-
ing from an evidence-based methodology using DSt to model
aleatory and epistemic uncertainty, the proposed approach was
demonstrated to rapidly classify conjunction events with a
good degree of reliability. In doing so it provides valuable
decision support to operators. The gains in computational
speed and the good levels of accuracy suggest that employing
ML as surrogate models can be used to automate STM tasks.

The aLGBm technique, including the previous sample class
as a feature, gave the best results across the different databases.
The transformer, which employs a novel encoding of the
time series information, showed some good results and good
potential to be applied to a dataset from a mission different
from the one used for training. However, more work to find
the right set of hyperparameters is required. Using RF with
the DSt intervals gets similar results in some cases as the
other two techniques. However, it requires computing the DSt
structures, which can be computationally expensive.

We used both synthetic and real databases. Although the
performance in the synthetic dataset is excellent, the applica-
bility to a very differently structured database was shown to
be affected by the imbalance in the real datasets. Furthermore,
the similarity between the time series of the synthetic and
real database needs to be improved to allow one to train
on the synthetic database and apply the model to a real
dataset. Further work to improve performance on the real
database is underway, including improving the techniques
and models, obtaining more data, applying data augmentation
and balancing techniques to the datasets, or combining the
strengths of the different methods with an ensemble approach.
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TABLE VII: F1 and F2-scores with ensemble, trained on the synthetic (left) or the real (right) sets, and evaluated
in the test set (upper-tier) or the remaining real set (lower-tier). In bold, the model with the highest overall F2-
score. Underlined, the best F2-score by class.

Trained on synthetic set Trained on real set

Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Overall Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5

Ensemble (test set) F1 .832 .839 .952 .851 .822 .794 .738 .514 .328 .000 .000 .902 .901 .950
F2 .824 .840 .944 .843 .853 .822 .748 .490 .530 .000 .000 .000 .958 .923

Ensemble (real) F1 .407 .028 .003 .007 .848 .861 .697 .474 .131 .000 .000 .887 .886 .940
F2 .386 .018 .002 .004 .878 .921 .838 .456 .263 .000 .000 .951 .931 .908
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