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Characterizing barren plateaus in quantum
ansätze with the adjoint representation

Enrico Fontana 1,2, Dylan Herman1 , Shouvanik Chakrabarti1, Niraj Kumar1,
RominaYalovetzky1, JamieHeredge1,3, ShreeHari Sureshbabu1&MarcoPistoia 1

Variational quantum algorithms, a popular heuristic for near-term quantum
computers, utilize parameterized quantumcircuits which naturally express Lie
groups. It has been postulated that many properties of variational quantum
algorithms can be understood by studying their corresponding groups, chief
among them the presence of vanishing gradients or barren plateaus, but a
theoretical derivation has been lacking. Using tools from the representation
theory of compact Lie groups, we formulate a theory of barren plateaus for
parameterized quantum circuits whose observables lie in their dynamical Lie
algebra, covering a large variety of commonly used ansätze such as the
Hamiltonian Variational Ansatz, Quantum Alternating Operator Ansatz, and
many equivariant quantum neural networks. Our theory provides, for the first
time, the ability to compute the exact variance of the gradient of the cost
function of the quantum compound ansatz, under mixing conditions that we
prove are commonplace.

Variational quantum algorithms (VQAs) are a popular class of
quantum computing heuristics due to their low circuit cost and
ability to be trained in a hybrid quantum-classical fashion1. The
community has identified a variety of potential applications for
VQAs in the areas of optimization2–7 and machine learning8–12.
Unfortunately, the optimization of VQAs can be a computation-
ally challenging task due to (1) exponentially many parameters
being required to ensure convergence13–17, and (2) exponentially
many samples being required to estimate gradients, known as the
barren plateau (BP) problem18–21. In some cases, it has been
observed numerically that both of these obstacles to VQA opti-
mization can be mitigated when the chosen parameterized
quantum circuit (PQC) obeys certain symmetries14,22. The sym-
metries of the ansatz cause its action, in either the Schrödinger or
Heisenberg pictures, to break into invariant subspaces. However,
there have only been a few cases in which potentially useful
symmetries, mostly in the Schrödinger picture, have been iden-
tified for analyzing BPs, e.g. permutation invariant subspaces23.
Previously, symmetries have been leveraged for efficient classical
simulation of quantum circuits in both the Schrödinger24 and
Heisenberg25–27 pictures. The simulation is performed separately

in each invariant subspace defined by the symmetries by pro-
jecting the states or operators accordingly.

The existing theoretical results on the trainability and con-
vergence of ansätze with symmetries have been restricted to the
Schrödinger picture and a setting called subspace controllable14,18,22,23.
Subspace controllability occurs when the circuit can express any uni-
tary transformation between states in an invariant subspace, and it has
been observed that it results in training landscapes that are essentially
trap-free28,29. In addition, if the invariant subspaces have small
dimension, i.e., scale polynomially in systemsize, it canbeeasily shown
that BPs are not present for subspace-controllable PQCs.

These results, however, fail in the uncontrollable setting, where
the circuit is limited to expressing a subgroup of the unitary group in
the invariant subspace.With respect to the BPs problem, existingwork
has observed a desirable feature of subspace uncontrollable circuits22.
In this setting, it appears that the trainability of the ansatz depends on
the dimension of the dynamical Lie algebra (DLA), which holds almost
trivially in the subspace-controllable setting since the DLA dimension
grows with the square of the subspace dimension. However, existing
work has only provided evidence of this connection to the DLA
dimension numerically in the uncontrollable setting22. There are cases
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where, for uncontrollable PQCs, the dimension of the effective DLA
only grows polynomially in the system size, while the invariant sub-
space dimension where the initial state lies is exponentially growing,
such as the quantum compound ansatz30,31. Note that the effective DLA
is the restriction of the action of the DLA to an invariant subspace.
Thus, this connection between the DLA dimension and BPs has
remained unproven in the general setting.

In this work, using a simple but powerful observation regarding
the adjoint representation and the representation theory of compact
Lie groups,weprove that for a general classof PQCs the varianceof the
gradient of the cost function does fall inversely with the dimension of
the effective DLA for 2-designs of the dynamical Lie group. As we will
show, theHeisenbergpicture and the symmetries of the circuit’s action
on the observable are more suitable for explaining this phenomenon.
This will lead to intuitive and commonplace conditions on the obser-
vable that are sufficient for this connection to hold. To show the
validity of the 2-design assumption in practice, we show that fast
mixing occurs for DLAs with polynomial dimensions, and we experi-
mentally verify our formulae for the quantum compound ansatz.

Results
General framework
VQAs consist of optimizing the parameters of parameterized circuits
of the form given in the below definition:

Definition 2.1. (Periodic ansatz) A periodic ansatz constructed from
Hermitian generators f~H1, . . . ,~HK g consists of a unitary of the form

UðθÞ=
YL
l = 1

YK
k = 1

e�θðl,kÞ i~Hk , ð1Þ

an initial state ρ=U0∣0i 0h ∣Uy
0, and a Hermitian measurement opera-

tor O.
The output of a VQA is the parameter-dependent expectation

value hOiρ =TrfUðθÞρUyðθÞOg, known as the cost function.
Forn-qubits, the set ofU(θ) lies in theunique connected subgroup

of SU(2n), called the dynamical Lie group32. It is the subgroup asso-
ciated with the real span of the Lie closure (i.e., closure under taking
commutators) of the generators:

g := spanRhi~H1, . . . ,i~HK iLie, ð2Þ

which is known in the quantum control literature as the DLA32. We
denote the dimension of g as a real vector space by dg.

We also informally define the notion of BP for quantum ansätze.

Definition 2.2. (Barren plateau) A class of quantum ansätze experi-
ences a BP if the variance of the cost function gradient decays expo-
nentially with system size, i.e., for all (l, k),

Varθ∼ ν ∂ðl,kÞhOiρ
h i

2 O 1

bn

� �
, ð3Þ

where the system size n is the number of qubits and b > 1. Typically ν is
the uniform distribution over the range of the parameters.

Note that in general a BP at initialization may not imply a BP
throughout the training trajectory. However, in most cases when ν is
the uniformdistribution over parameters, the collectionU(θ) forms an
approximate 2-design w.r.t. the Haar measure on the dynamical Lie
group (this is made explicit in a later subsection), and due to Haar
invariance, a BP at initialization implies a BP throughout training. A
PQC that experiences a BP is also called untrainable, which follows
from the gradient being computationally infeasible to estimate to
arbitrary precision. Otherwise, if the variance only falls as
Ω 1=polyðnÞ� �

, then the PQC is trainable.

DLA - BP connection
It has been conjectured that the dimension of the DLA plays a crucial
role in characterizing the trainability of VQAs. More specifically, the
following conjecture linking trainability and DLA dimension was put
forward:

Conjecture 2.3. (Conjecture 1 in ref. 22, paraphrased) The scaling of
the variance of the partial derivatives of the cost function is inversely
proportional to the dimension of the DLA:

Varθ∼ ν ∂ðl,kÞhOiρ
h i

2 O 1
polyðdgÞ

 !
: ð4Þ

In this work, we provide a proof of this conjecture. We emphasize
that our results show a more explicit scaling of the variance with the
DLA dimension, instead of just an upper bound. Thus, our results shed
light on when stronger versions of the above conjecture hold, e.g.,
Θð 1

polyðdgÞÞ. However, this depends on the initial state and observable,

since the DLA dimension may not always be the quantity dominating
the decay.

It turns out that the connectionholds for a certain class of ansätze,
which we term the class of Lie algebra supported ansatz (LASA).

Definition 2.4. (Lie algebra supported ansatz) A Lie algebra supported
ansatz (LASA) is a periodic ansatz where the measurement operatorO
is such that iO belongs to the dynamical Lie algebra associatedwith the
circuit generators fi~H1, . . . ,i~HK g.

In Fig. 1, we display ourmain result, which shows that the variance
of the gradient has a direct dependence on DLA dimension for LASAs.
Aswill bemade rigorous later, by construction, the action of a LASA on
its observable will decompose into invariant subspaces (correspond-
ing to preserved symmetries) each of dimension at most dg.

Whilewe introduce restrictionson theobservable,wenote that our
results are still far-reaching. This is because LASAs include many com-
monly used PQCs such as the Hamiltonian variational ansatz (HVA)33

and quantum alternating operator ansatz (QAOA)2,34. We also note that
all LASAs are equivariant quantum neural networks (EQNNs)35. How-
ever, an EQNN is not necessarily a LASA, since there are equivariant
operators that may not lie in the DLA. This is because equivariance is
definedwith respect to a symmetry groupof thequantumdata, andone
could imagine a situation in which the circuit has a small DLA such that
other equivariant operators exist outside the DLA.

Fig. 1 | Illustration of the main result. For the gradient variance, when the
observable is in the dynamical Lie algebra (DLA), as in the case of Lie algebra
supported ansatz, only the components of ρ in the DLAmatter, and everything can
be computed in the adjoint representation. Specifically, the subscript α for
operators corresponds to their orthogonal projection onto the simple ideal gα .
When the DLA hasmultiple ideals, each ideal individually contributes a term to the
variance.
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Representation theoretic notation
The following presents the notation used throughout the paper and
assumes familiarity with Lie groups and representation theory. The
unfamiliar reader is directed to the Supplementary Information, where
we briefly introduce Lie groups and representation theory.

Our focus will be a compact, connected Lie group G. The corre-
sponding compact Lie algebra will be denoted by g. The notation Vwill
represent an arbitrary finite-dimensional inner product space over C
orR. If a result does not specify which field is used, then either can be
assumed. Additionally, UðV Þ will denote the group of isometries on V
(i.e., depending on the field, either the unitary group or orthogonal
group), and uðV Þ will denote the set of skew-Hermitian operators on V.
For either R or C, we will use ϕ : G ! UðV Þ to denote a unitary
representation of the group G and dϕ : g ! uðV Þ to denote the dif-
ferential or Lie algebra representation. We will frequently use the
notation Ug to denote the element ϕðgÞ 2 UðV Þ for some g∈G when
the representation ϕ and space V are clear from the context.

Recall that the adjoint representation of a Lie group G is the
homomorphism:

8g 2 G,Adg ðkÞ : = gkg�1 2 g,8k 2 g, ð5Þ

and the adjoint representaton of a Lie algebra is the homomorphism:

8h 2 g,adhðkÞ := h,k
� � 2 g,8k 2 g: ð6Þ

For compact simple Lie algebras, since all trace forms are related
by a real factor, we define a scaling constant Iϕ that we call the index of
the representation (w.r.t. the standard representation) such that:

�TrðdϕðeiÞdϕðejÞÞ= Iϕδij , ð7Þ

for {ei} a basis for g satisfying:

�TrðeiejÞ= δij : ð8Þ

The constant Iϕ is the same as (twice) the Dynkin index for irreducible
representations36.

For compact simple Lie algebraswe consider a fewnorms induced
by the trace forms. For any a 2 g, we define the standard norm to be

kak2g = � Trða2Þ, ð9Þ

the Killing normkak2K to be the norm induced by the Killing form (trace
form associated with the adjoint representation), and more generally,
for an arbitrary Lie algebra representation dϕ, we denote the usual
Frobenius norm by kdϕðaÞk2F. All are related in the natural way via the
associated index of the representation, as defined earlier. Specifically,
for arbitrary dϕ:

kdϕðaÞkF = Iϕkak2g ð10Þ

kdϕðaÞk2K = kak2K = IAdkak2g =
IAd
Iϕ

kdϕðaÞk2F: ð11Þ

For an arbitraryX 2 uðV Þ, we defineXg to be the orthogonal projection
under the Frobenius inner product onto dϕðgÞ.

Lastly, throughout the paper, all integration, e.g. ∫G f(g)dg, is with
respect to the Haar measure μ for G. The notation μ⊗2 will denote the
product Haar measure.

Let us now place these notions in the context of VQAs. The vector
space V on which the group acts is the n-qubit Hilbert space C2n . In
general the PQC’s dynamical Lie group will be ϕ(G) with ϕ a faithful
(injective) representation and this is what we will assume here.

In practice however one always can take ϕ to be the identity map,
identifying G with the dynamical group and g with the DLA, without
invalidating the results.

In this abstract setting there is no notion of parameter space and
hence the PQC gradient ∂(l, k)〈O〉ρ is not well defined. Thus, we intro-
duce the following parameter-independent quantity associated with
any compact, connected Lie group:

Definition 2.5. (Abstracted gradient) Let G be a compact, connected
Lie group with representation ϕ : G ! UðV Þ. In addition, let h 2 g and
iO,iA 2 uðV Þ. We define the abstracted gradient to be the following
quantity:

∂hOiA :=TrfUy
g�AUg� ½H,Ug + OUy

g + �g, ð12Þ

where Ug ± :=ϕðg ± Þ for arbitrary g+, g− ∈G, and H = dϕ(h).
Note that now we set the generators to be skew-Hermitian. The

connection between abstracted and PQC gradients is clear for the
periodic ansatz in Definition 2.1: for any parameter θ(l, k) the PQC
gradient will be equivalent to an abstracted gradient, with Ug� (Ug + )
being the unitaries preceding (following) the unitary e�θðl,kÞHk in the
circuit.

In our calculations we will look at second moments of the
abstracted gradient for (g+, g−) ~ μ⊗2. This will accurately model the
experimental behavior if for any θ(l, k) the ansatz takes the form
WðLÞe�θðl,kÞHkWðRÞ with W(L/R) random unitaries forming independent
2-designs for ϕ(G).

For a sufficiently deep periodic ansatz, the assumption is valid for
parameters in the middle of the PQC whenever randomly initialized,
polynomially-sized periodic ansätze form approximate 2-designs.

It has been shown that this holds for g= suð2nÞ or soð2nÞ and when
all generators are in the Pauli group37. It has been widely assumed in
literature that this result still holds for ansatz with different DLAs, with
only numerical evidence. The following result answers this in the
affirmative for LASA with polynomially-sized DLA, showing that rapid
mixing to 2-design still holds when we sample generators from a basis
for the DLA.

Theorem 2.6. (Rapid mixing for polynomial DLA) Consider an ortho-
gonal basis of skew-Hermitian generatorsA := fB1, . . . ,Bdg

g for the DLA
with the property that the unitary e�θBk corresponding to a generator
Bk is tk-periodic. In addition, suppose that dg =OðpolyðnÞÞ. Consider a
LASA formed by applying evolutions e�θkBk where Bk is selected uni-
formly at random from the setA and the parameter θk uniformly from
[0, tk). Then, the ansatz is an ϵ-approximate 2-design for the dynamical
group G after OðpolyðnÞ logð1=ϵÞÞ layers.

Note that this result only focuses on bounding the spectral gap of
the walk, i.e., a “layer” is a single application of evolution, and does not
include the cost of implementing the evolutions e�θBk in terms of basis
gates. The proof of the above result and its generalization to t-designs
for arbitrary LASA are in the Supplementary Information and are based
on techniques used by ref. 37 and earlier works. Such random walks
have been known to converge for some time38, and convergence to
Haar for exponential DLA is not efficient. However, the above result
makes the spectral gap dependence explicit. As a comparison,
Oðlogð1=ϵÞÞ layers suffice for random Pauli rotations to approximate a
2-design for SU(2n), as shown by ref. 37. The approach of studying BPs
with 2-designs is standard, e.g. see ref. 18. Furthermore, as we have
shown, it is theoretically motivated in the case of independent, uni-
formly distributed parameters. However, there may still be settings
where the 2-design assumption fails and where our results will not
hold, for example, other initialization schemes or correlated para-
meters. Interestingly, there is evidence that both may avoid BPs39,40,
however they do not investigate this research direction further.
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Inspired by our overall goal of analyzing BPs in PQCs, we seek to
compute the quantity

GradVar :=Varðg + ,g�Þ∼μ�2 ∂hOiρ
h i

=Eðg + ,g�Þ∼μ�2 ∂hOiρ
� 	2
 �

� Eðg + ,g�Þ∼μ�2 ∂hOiρ
h i� 	2

,
ð13Þ

where μ is the unique Haarmeasure overG and ρ is the initial quantum
state to which all elements of the dynamical group are applied.
Eðg + ,g�Þ∼μ�2 ½∂hOiρ� can be shown to be zero is general (see the Sup-
plementary Information), and thus in practice, we focus on the second
moment:

GradVar=Eðg + ,g�Þ∼μ�2 ½ð∂hOiρÞ2�: ð14Þ

Using Definition 2.2, a BP occurs when the following holds:

GradVar 2 O 1

bn

� �
, b > 1: ð15Þ

This is the phenomenon that our methods will seek to probe for the
specific case of LASAs.

Lastly, we formally define what we mean by symmetries in the
Schrödinger and Heisenberg evolution pictures. Schrödinger symme-
tries refer to invariant linear subspaces Vs of states that are preserved
by evolutions generated by the dynamical Lie group G, i.e.,
8U 2 G,UVs � Vs . Heisenberg symmetries refer to invariant linear
subspaces of observables Vh preserved by evolutions generated by
having the dynamical Lie group G act via conjugation, i.e.,
8U 2 G,UVhU

y � Vh. If the observables lie in the DLA, i.e.
the LASA case, then this is the adjoint representation.

Theory of BPs for LASA
We now present our theoretical contributions, which connect the Lie
algebra dimension to the scaling of the gradient variance.We note that
norms involving the Hermitian observable O and the skew-Hermitian
generator H have a few interpretations as mentioned in the previous
subsection. However, to be concise and for readability, we present the
results in only one form.

We start by recalling that all compact Lie algebras (and thus
groups) are reductive.

Definition 2.7. (Reductive Lie algebra41) A Lie algebra g is reductive if
the adjoint representation is completely reducible, i.e., g has the fol-
lowing decomposition as a direct sum of Lie algebras:

g=
M

α
gα � c, ð16Þ

where each gα � g is a simple ideal and c � g is the center of g. Note
that if G is simply connected then c= f0g.

This property is essential for proving our main result, as it allows
us to extend our expression (Theorem 2.8) for the gradient variance
for simple Lie groups to the general compact case. If g is compact, then
the gα will be compact as well42.

Note that this notion of reducibility is related to what has
appeared in prior works, e.g., refs. 22,23,30, the differences are mainly
as towhether the group acts on theobservable or state.Wediscuss this
in detail in the last subsection.

Next, we present our expression for the variance of the gradient
for compact simple groups that applies to each gα in Equation (16).

Theorem 2.8. (Simple group variance) Let G be a compact, connected
simple Lie group with Lie algebra g. Suppose ϕ is a finite-dimensional
unitary representation of G. In addition, o,h 2 g, iO = dϕ(o), H = dϕ(h)

and ρ a density matrix. Then the following holds:

GradVar=
kHk2KkOk2Fkρgk2F

d2
g

: ð17Þ

If G is compact, one can use the fact that it is reductive and apply
Theorem 2.8 to each of the compact simple ideals to obtain the
following:

Theorem 2.9. (Compact group variance) Let G be a compact and
connected Lie group with Lie algebra g. Suppose ϕ is a finite-
dimensional unitary representation, o,h 2 g, iO = dϕ(o),H = dϕ(h), and
ρ is a density matrix. Then the following holds:

GradVar=
X
α

kHgα
k2KkOgα

k2Fkρgα
k2F

d2
gα

: ð18Þ

Note that the center c does not contribute to the variance.
As mentioned in the Introduction, the above theorem is the cen-

tral result of the paper. It shows that under the assumption of a LASA
we can get a precise mathematical expression for the gradient var-
iance. Notably, this expression is in terms of quantities that are inti-
mately linked with the Lie algebra and the representation and are well
characterized for all simple algebras.

Interpretation of results
The three norms in the numerator of Equation (18) can be viewed as
effectivelymeasuring the support that eachoperator hason the simple
ideal dϕðgαÞ. Specifically, kOgα

kF and kρgα
kF being Frobenius norms

can be interpreted as generalized measures of purity with respect to
dϕðgαÞ. This concept was actually first introduced in ref. 43. A similar
interpretation is also valid for the Killing norm kHgα

kK, however, this
time the relevant representation of gα is the adjoint representation,
and so the norm is scaled by the ratio of the indices as in Equation (11).

If one is still uncomfortable with the Killing norm, we note that
kHgα

k2K ≤ 2dgα
kHgα

k2F (see the Supplementary Information), and so one
gets the following upper bound:

GradVar 2 O
X
α

kHgα
k2FkOgα

k2Fkρgα
k2F

dgα

 !
, ð19Þ

which presents the result in terms of more familiar quantities, i.e.,
Frobenius norms. In addition, we now see that Conjecture 2.3 is
explicitly proven (and indeed significantly generalized) for LASA.

From Equation (18) or (19), we infer that a BP can only occur
whenever at least one of the terms in the expression leads to expo-
nential decay. More specifically, the gradients will decay exponentially
under any of these conditions: the state has exponentially small sup-
port over the Lie algebra; the state, themeasurement operator, and the
generator are mostly supported on a subalgebra, gα , the dimension of
which is exponentially large; or the support of the state, measurement
operator and generator aremutually incompatible on the subalgebras,
in the sense that all terms vanish. The second condition amounts to the
conjecture of ref. 22, while the last is a novel prediction of this work,
which only occurs in the strict semisimple case.

Lastly, we conclude with some details on how one might use our
results in practice to forecast gradient variance scaling without access
to a quantum computer. The main goal is to find a basis for the DLA
and compute its structure constants in OðpolyðdgÞÞ time. Since the
generators and observables will typically be linear combinations of
Pauli strings, one canutilize symbolic computation to reason about the
decomposition of g into simple ideals. A basis for the DLA can be
obtained by computing nested commutators symbolically and
checking for linear independence as done in ref. 22. In summary, as
input we are given the Hermitian generators used in the ansatz.
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Weproceed by computing pairwise commutators, until we findnonew
linearly independent elements. If our current estimate for the basis has
k elements, then we need to compute 0:0ptk2ð Þ pairwise commu-
tators, and we need at most dg iterations. This leads to Oðd3

gÞ pairwise
commutators in total.

Next, using the basis fEkg
dg

k = 1 for the DLA obtained from the pro-
cess just discussed expressed as sums of Pauli strings, we compute the
dg ×dg matrices for each operator adiEk

in the basis fEkg
dg

k = 1. We denote
these matrices by dadiEk

, which contain the structure constants. The
next step is to simultaneously block diagonalize the dadEk

, which will
reveal bases for the simple ideals. This can be done in
OðlogðdgÞpolyðdgÞÞ by diagonalizing dadiE1

, and then finding invariant
subspaces preserved by dadiE2

. Then repeat this procedure for each
smaller block that was found for dadiE2

in the previous step, and so on.
We can compute the kOgα

k2F and k Hgα
k2K norms symbolically. If fAkg

dgα

k = 1
is a basis for the ideal gα , which can be expressed in terms of sums of
Pauli strings given our assumption, then the norm
kρgα

k2F =
Pdgα

k = 1TrðA
�2
k ρ�2Þ can be computed classically for product

input states.
However, we cannot yet claim that the overall computational

complexity is polynomial in dg, aswe typically express operators in the
Pauli basis, and computing pairwise commutators can cause the sup-
port on the Pauli basis to grow, in the worst case, exponentially with
the number of iterations. Simply put, there may be no way to express
the basis elements compactly. This is the same challenge with the
classical simulation technique g-sim27 and is currently unclear whether
it can be overcome in general. Assuming that the growth of support of
nested commutators in the Pauli basis does grow polynomially with
the number of iterations, thenwe have a procedurewith a runtime that
is a (potentially large) polynomial in dg. If the DLA dimension is poly-
nomial, then it is an overall polynomial-time process. This can at least
be done at small scales to probe the scaling of the gradient variance.

The analysis so far assumed no a priori knowledge about the DLA.
The situation radically improves when the DLA isomorphism class is
known. Then exact variancecalculationwithour formula canbecome a
relatively straightforward task, as we shall see in the next subsection.

Variance computation for quantum compound Ansatz
The quantum compound ansatz is a quantum representation on n
qubits (2n-dimensional) of the Lie group SO(n) or SU(n)30,44. Given a
general g∈ SU(n) (SO(n)), one can decompose it into a product of
SU(2) (SO(2)) rotations on 2-dimensional subspaces, which are (gen-
eralized) Givens rotations:

Ug =
Y
ði,jÞ2E

UGivens
ij ðgÞ, ð20Þ

and are implemented using the fermionic beam splitter (FBS) gate
defined in ref. 30.

The graph E can have various topologies, for example a pyramid
or a staircase. The circuit preserves Hamming weight, and the repre-
sentation splits into subspaces corresponding to the different Ham-
ming weights. The analysis of the gradient variance for a more general
class of Hamming weight-preserving unitaries appears in ref. 45.

One can check that the appropriate representation for the gen-
erators of a SU(2) Givens rotation between qubit i and j is

hij
x = � i

4
ðσi

x � σj
x + σ

i
y � σj

yÞ � σ�ji�j�1j
z ð21Þ

=dϕ � i
2
X ðijÞ

� �
ð22Þ

hij
y = � i

4
ðσi

y � σj
x � σi

x � σj
yÞ � σ�ji�j�1j

z ð23Þ

=dϕ � i
2
Y ðijÞ

� �
ð24Þ

hij
z = � i

4
ðσi

z � σj
zÞ=dϕ � i

2
Z ðijÞ

� �
, ð25Þ

whereX (ij), Y (ij), Z (ij) act as the Pauli operators σx, σy, σzon the 2 × 2 block
formed by i and j, respectively, and are zero otherwise. They are ele-
ments of suðnÞ, and ϕ is the direct sum of the alternating representa-
tions for k = 1, …, n, i.e.:

V =
Mn
k = 1

^kCn: ð26Þ

Note that the norm of each of these generators in g is 1/2. Importantly,
while the set of generators spans the representation of g, since it is
larger than the dimension of g it is a not linearly independent set. Note
the extra σz’s in the definition of hx and hy are reminiscent of the string
of σz in the Jordan–Wigner encoding, only that here they are needed
for the algebra to close. The SO case is generated by the hij

y
elements only.

To clarify why the ansatz is subspace uncontrollable, we can
consider theHammingweightn/2 subspace.On this subspace, theDLA
is isomorphic to suðnÞ, while the Lie algebra of the full space of unitary
operators on this subspace is isomorphic to suð 0:0ptnn=2

� �Þ, hence
the compound ansatz cannot enact all unitary transformations.

Before proceeding we present a mixing time result to t-design for
the quantum compound ansatz that is tighter than Theorem 2.6.

Theorem 2.10. (Rapid mixing for Compound Ansatz) Consider an
n-qubit quantum compound ansatz that is a LASA constructed using
the set of generators fX ðijÞ,Y ðijÞ,

Pj
i= 1Z

ðijÞg with rotations angles chosen
uniformly at random. Then, for t ≤ n/2, the ansatz is an ϵ-approximate
t-design for the dynamical group SU(n) after Oðtn logð1=ϵÞÞ layers.

Of course, for BPs t = 2 is the main interest. The proof follows
simply from a generalization of Theorem 2.6 and is left to the Supple-
mentary Information. Note that for the chosen set of generators some
of the randomly chosen angles are not independent (i.e., the

Pj
i = 1Z

ðijÞ

type generators).
The following three results utilize our theory of BPs for LASA to

show that the quantum compound ansatz can be BP-free under uni-
form initialization.

Theorem2.11. For a quantumcompound ansatz that is alsoLASA, if the
initial state is a computational basis state, then the following holds:

GradVar 2 Ω
1
n3

� �
: ð27Þ

The conclusion is that SU compound layers with Lie algebra-
supported measurements do not have BPs for any fixed Hamming
weight computational basis state. Note that computational basis states
of the same Hamming weight are in an irreducible subspace of the
tensor product representation (see the Supplementary Information).

Next, we consider the uniformsuperposition state ∣ψ
�
= ∣+ i�n and

show that the quantum compound ansatz is still BP-free. In addition, in
this case, the variance decays exactly with the DLA dimension n2 − 1.

Theorem 2.12. For a quantum compound ansatz that is also LASA, if
the initial state is a uniform superposition of all computational basis
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states, then the following holds:

GradVar 2 Θ
1
n2

� �
: ð28Þ

Thus, we also have no BP with the initial state being the uniform
superposition. We numerically verified the predictions for the various
initial states as shown in Fig. 2.

Finally, we see how the result can be extended to cover single-
qubit measurements.

Corollary 2.12.1. For a quantum compound ansatz with an observable
that is composed of single-qubit measurements, and if the initial state
is a computational basis state or the uniform superposition of all
computational basis states, then the following holds:

GradVar 2 Ω
1

polyðnÞ

� �
: ð29Þ

We verify these predictions in Fig. 3.
This answers an open question proposed in ref. 31. As a final note,

even though σz
i does not lie in the DLA, single-qubit expectations of

observables with respect to the compound ansatz starting from a
product state are still known to be classically simulatable46.

Lastly, we present another setting in which the observable does
not lie in the DLA, but this time, the quantum compound ansatz
has a BP.

Theorem 2.13. For the quantum compound ansatz if the initial state is
a computational basis statewithHammingweight n2 and the observable
is a rank-one projector onto another computational basis state in this
space, then

GradVar 2 O
n

n=2

� ��1
 !

: ð30Þ

We verify the scaling in Fig. 4.
Intuitively, the above decay comes from the fact our choice of

observable and initial state are rank-one projectors, and thus, the
overlap of traceless parts of both operators will spread across an

exponentially large subset of su. Theorem 2.13 is interesting because
the compound ansatz is not very expressive and the depth of the
circuit exceeds the shallow regimeofOðlogðnÞÞ47.We note that the cost
function we choose is still global.

The details of how the numerical results were obtained are
described in the Supplementary Information.

Comparison with previous approaches
As mentioned in the Introduction, previous approaches have taken a
state-first or Schrödinger picture viewpoint. Specifically, under the
action of G, the quantum state space V will decompose into invariant
subspaces:

V =
M
κ

V κ , ð31Þ

each of which is acted upon by the subrepresentation ϕκ(G). This
decomposition is in linewith the symmetries that the ansatz obeys, i.e.,
its commutant35. If the initial state ρ∈Vκ, then since G preserves this
space, the variance calculation is restricted to integrating overϕκ(G). If
the restriction of the DLA dϕκðgÞ to the invariant subspace is iso-
morphic to suðdimV κÞ, then one says that PQC is subspace controllable
on Vκ, otherwise, it is subspace uncontrollable. The calculation is pos-
sible in the subspace-controllable setting via the Schur-Weyl duality22,
but the subspace uncontrollable setting poses significant obstacles to
the calculation of the second moment (Equation (14)) using this
approach.

In our setting we are instead using the Heisenberg picture and,
assuming LASA, considering the action of dϕðgÞ on itself via conjuga-
tion, so V =dϕðgÞ in this case and dϕ is the adjoint representation.
Notice that if the DLA is reductive (Equation (16)) and ϕ is faithful
(injective), the decomposition of V respects the decomposition into
simple ideals:

dϕðgÞ=dϕð
M

κ
gκÞ=

M
κ
dϕðgκÞ=

M
κ
dϕðgÞκ : ð32Þ

Thus, the Lie algebra being reductive implies that the adjoint repre-
sentation splits into irreducible invariant subspaces, which are pre-
cisely the simple ideals dϕðgκÞ. As detailed inMethods, this is sufficient
to calculate the second moment for any compact Lie group.

Fig. 2 | Gradient variance scaling for SU compound layers, observable in Lie
algebra. Dots are numerical results while dotted lines are analytical predictions
using the equations in the text. Showing results for computational basis input states
of Hamming weight 1 and n/2 and the uniform superposition state ∣+ i�n, for n
number of qubits ranging from 2 to 18 in steps of 2. The measurement operator is
�ihz

12 = ðσz
1 � σz

2Þ=4. Accounting for the randomness of initialization, there is good
agreement of numerical results with the predictions. The error bars are too small to
plot. Additional information on the numerics is in the Supplementary Information.

Fig. 3 | Gradient variance scaling for SU compound layers, observablenot in Lie
algebra. The setup is identical to the Lie algebra supported ansatz (LASA) case,
except that here the measurement operator is a single σz/4. We show the analytical
prediction derived from the LASA case as explained in the text, and therefore we
see a disagreement with numerics, implying that the covariance term is nonzero.
Still, the scaling is similar, and additionally, the numerics converge to theprediction
at larger system sizes. The error bars are too small to plot. Additional information
on the numerics is in the Supplementary Information.
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So in this setting, we always know the invariant subspaces and the
representation acting on them, namely the dϕðgκÞ and the corre-
sponding adjoint representation. This is a significant simplification
from the Schrödinger picture approach and enables us to completely
circumvent the obstacles posed by the subspace uncontrollable set-
ting. Notice finally that now the invariant subspaces dϕðgκÞ reflect the
symmetries that are preserved by the evolution of observable instead
of the state, so while related this is a different concept of PQC sym-
metry than the one prior work had explored.

Lastly, we would like to emphasize that DLA does not always split
into a direct sum over the decomposition of V into Vk for an arbitrary
unitary representation. However, this does hold if dϕðgÞκ for subspace
Vκ is simple, like it is for the adjoint and in ref. 23. More specifically, the
condition implies that dϕðgÞκ must then be dϕðgαÞ for some simple
ideal gα .

Discussion
In this work, we present a general framework for diagnosing the BP
phenomenon in Lie algebra supported ansätze,which includes popular
PQCs, such as HVA, QAOA, and various equivariant QNNs. Our main
contribution is a method that explains the previously mysterious
connection between the dimension of the DLA and the rate at which
gradients decay. This method has enabled us to analyze the gradient
variance for subspace uncontrollable circuits, such as the quantum
compound ansätze, which was not previously possible with existing
techniques from the literature.

We note that the kinds of circuits where the simulatability
results of ref. 27 apply are exactly LASAs. In fact, many of the
techniques employed here are similar. As the aforementioned
paper links the dimension of the DLA to the performance of the
classical simulation of expectations via their algorithm g-sim, we
see that at least for LASAs there is a connection between the
absence of vanishing gradients and simulatability, in the sense that
a LASA with polynomial DLA can avoid BPs but is classically
simulatable. Future work may look at the vanishing gradients in
other symmetric settings like those of refs. 24–26, and at eluci-
dating this connection more generally. We also note that our

results could be applied to the DLAs that have been classified
by ref. 42.

Regarding general VQAs, when the observable has support out-
side of the DLA, we show in the Supplementary Information that the
same techniques used in the LASA setting can be used to obtain
the gradient variance expression for general ansatz. Unfortunately, it
can be challenging to determine gradient variance scaling from these
expressions in general. Characterizing the gradient variance in this
setting would potentially allow for constructing ansätze that both do
not have BPs and do not have classically simulated expectations.
Existing literature has already shown that when the observable lies in
the DLA and the DLA has polynomially growing dimension, then the
computation of expectation values can be classically simulated.
Potentially, the gradient variance can be shown to still scale inversely
with the DLA dimension when the observable has only some small
support outside of the DLA, as we have shown for the quantum com-
pound ansatz (Corollary 2.12.1).

Lastly, BPs only correspond to oneof two issues that plagueVQAs.
As mentioned earlier, like BPs, the convergence of VQAs has also only
been theoretically characterized in the subspace-controllable setting14.
Potentially, the framework we have developed can be applied to
understanding the projected gradient dynamics that occur in the
uncontrollable setting.

Note on ref. 48: During the writing of the manuscript, we
became aware through a comment in ref. 42 that Michael Ragone
et al. have independently obtained a proof of an extension of the
conjecture in ref. 22. This was later released in ref. 48.We encourage
the reader to review both papers for a richer picture of the solution,
however we summarize here the most important differences
between our works. The main one is that the work of Ragone et al.
focuses on cost function concentration as opposed to concentra-
tion of the partial derivatives. The authorsmention, by citing ref. 49,
that loss function concentration implies concentration of the par-
tial derivatives, and thus provide bounds. However, in our case, we
obtain exact expressions for the variance of the partial derivatives,
thus revealing the connection between the gradient variance scal-
ing and the Killing norm of the generators. In addition, we include
explicit formulae for the gradient variance for the quantum com-
pound ansatz in commonly used settings, which leads to the novel
prediction that it can avoid BPs under Haar initialization. Lastly, we
include a discussion on the application of our techniques to
observables that lie outside of the DLA. The work by Ragone et al.,
however, does include a broader discussion that links BPs in sym-
metric ansätze to other known causes of BPs, including cost
function-induced19 and noise-induced20, and thus places the result
into a wider context.

Methods
In this section, we formally derive the connection between the DLA
dimension and the gradient variance, leading to our theory of BPs.
Specifically, we present the proofs of the majority of the theorems
shown in the Results section, the rest are left to the Supplementary
Information. The main tools that we utilize are the concepts of
the adjoint representation and Schur orthogonality.

The adjoint representation connection
We start by providing some explanation as to why the connection
between the DLA dimension and BPs that agrees with existing
numerical evidence is not obvious. It will be the adjoint representation
that makes the relationship clear and allow for exact computation of
the gradient variance that agrees with existing numerics.

As in earlier parts of the text, the dynamical group G associated to
a periodic ansatz is a unitary representation of some other Lie groupG.
Thus, the representation ϕ:G→ SU(2n) corresponds to G acting on the

Fig. 4 | Gradient variance scaling for SU compound layers, projective mea-
surement. Numerics for gradient variance of SU compound layer, with input state
is a computation basis state of Hamming weight n/2 and the observable is a pro-
jection onto the same state. The resulting PQC is not a Lie algebra-supported
ansatz, and indeed displays a barren plateau. We also show the upper bound of

n
n=2

� ��1

which appears to be very loose. The error bars are too small to plot.

Additional information on the numerics is in the Supplementary Information.
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n-qubit Hilbert space V and ϕðGÞ=G. Let MðC,22nÞ denote the set of
22n × 22n complex matrices.

Before proceeding we make a small note on the compactness of
the dynamical group. While the dynamical group G is obviously con-
nected, it may not be compact (due to lack of closure). An example is
the irrational flow on a torus that occurs when the generators ~Hi have
at least two eigenvalues whose ratio is irrational. The action of these
generators will lead to non-periodic orbits. Notice that such non-
periodic ansätze can occur in principle, for example in QAOA on
graphs with random weights. However, since any Lie subalgebra of
suð2nÞ must be the direct sum of compact simple Lie subalgebras and
its center42,50, ignoring the center also leads to a compact, connected
dynamical subgroup. Thus if G is not closed, this will be the compact
dynamical subgroupwe consider. Note that it is harmless to ignore the
center, since the component of the observable in the center of g does
not evolve (in a Heisenberg sense) anyways.

The variance of the gradient, under Haar initialization, relies on
the second-moment operator:

T : A 7!
Z
G
ðUg � Ug ÞAðUy

g � Uy
g Þdg, ð33Þ

which orthogonally projects onto the set of commuting operators (i.e.,
commutant) of {Ug⊗Ug:∀g∈G}. Commutation implies that 8A 2
MðC,22nÞ,T ðAÞmust respect thedecompositionofV⊗2 into irreducible
components (invariant subspaces). If V⊗2 has the following decom-
position into irreducible components (not grouping by multiplicity)

V�2 =
M

λ
V λ, ð34Þ

then

Z
G
ðUg � Ug ÞAðUy

g � Uy
g Þdg =

X
λ

Tr½APλ�
dimV λ

Pλ, ð35Þ

for orthogonal projectors Pλ onto Vλ. This projection can also be
expressed in terms of the well-known Weingarten function51,52.
Notice that the Lie algebra appears to play no role in this discussion.
In addition, the inverse scaling with the dimension of each Vλ is
apparent. Furthermore, while a general theory of such integrals
exists53, they are quite challenging to tackle in practice. Most results
in quantum information restrict to the case where G = SU(2n), where
the commutant is easy to characterize. Specifically, this leads to the
well-known result that approximate 2-designs for SU(2n) have
BPs18,22.

Fortunately, the integrals appearing in the theory of VQAs turn
out to have substantial simplifications, which furnishes the connection
to the dimension of the DLA in certain settings. Our results shedmuch-
needed light on this apparently unintuitive phenomenon observed in
practice. The first key insight is thatA is always a tensor product of two
operators, i.e., ifO is theobservable in thequantumcircuit, thenweget
second-moment integrals with A = iO⊗ iO, that is,

Z
G
ðUg iOUy

g Þ � ðUg iOUy
g Þdg ð36Þ

=
Z
G
Adg ðiOÞ � Adg ðiOÞdg, ð37Þ

where the relation to the well-known adjoint representation, of G, i.e.,
Adg ðiOÞ=Ug iOUy

g , is apparent when iO lies in g. This simple
observation is critical in enabling concise expressions for the variance
of the gradient, revealing the inverse dependence on the dimension of
the DLA. Specifically, given that the dimension of the adjoint
representation isdg the reason for the scalingbecomesmoreplausible.

Note that to connect back to (35), this can also be viewed as a
projection of the subspace

S := spanCfiO� iO : iO 2 dϕðgÞg � MðC,22nÞ ð38Þ

onto the commutant via an operator called the Casimir.
The (split quadratic) Casimir operator, K, for representation ϕ is

defined as:

K= I�1
ϕ

X
i

Ei � Ei, ð39Þ

where {ei} is an orthonormal basis under the standard norm for g and
Ei = dϕ(ei). We can also use the Casimir to define an orthogonal pro-
jector, Pg, from the space of skew-Hermitian operators on V, i.e., uðV Þ,
onto the subspace dϕðgÞ, which is useful when we are dealing with
objects not completely supported on the Lie algebra:

Xg := PgX = � Tr1ððX� 1ÞKÞ ð40Þ

= � I�1
ϕ

X
i

TrðXEiÞEi, ð41Þ

kXgk2F = � TrððX� XÞKÞ= � I�1
ϕ

X
i

Tr2ðXEiÞ ð42Þ

whereX 2 uðV Þ and Tr1 is the partial trace over the first subspace. One
can check that as expected PgdϕðaÞ=dϕðaÞ.

Proof of theorem 2.8
The following Lemma is fundamental to our main theorem, it may also
be of independent interest. The proof can be found in the Supple-
mentary Information.

Lemma 4.1. Let G be a compact simple Lie group with Lie algebra g.
Suppose V is a finite-dimensional inner product space,ϕ : G ! UðV Þ is
a unitary representation of G, and Ug =ϕ(g). In addition, a 2 g,
A = dϕ(a). Then the following holds:

Z
G
ðUgAU

y
g Þ

�2
dg =

kAk2F
dg

K: ð43Þ

From Lemma 4.1, it can be seen that the commutant is the one-
dimensional subspace spanned by the Casimir operator, i.e.

T ðRÞ= TrðRyKÞ
dg

K 8R 2 S: ð44Þ

We are also going to frequently use the following identity. Let a 2 g

and A: = dϕ(a). Also let Ei: = dϕ(ei) be a basis for the Lie algebra
orthonormal under the standard norm. Then

kAk2F = � I�1
ϕ

X
i

Tr2ðAEiÞ, ð45Þ

which is important as when working with a quantum circuit one often
has access to the representation basis {Ei} but not directly to {ei}, so it is
a convenient shortcut to calculate kak2g .

Proof of theorem 2.8. As was shown in the Results section, we can
assumeGradVar=Eg + ,g� ∼μ�2 ½ð∂hOiρÞ2�. Let us write the integral for the
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second moment in full, and rearrange terms appropriately:

Eg + ,g� ∼μ�2 ½ð∂hOiρÞ2� ð46Þ

=
Z Z

G
ðTrðUg� iρUy

g� ½H,Ug + iOUy
g + �ÞÞ2 dg + dg� ð47Þ

=
Z Z

G
Tr ðiρÞ�2 U�2

g� ½H,Ug + iOUy
g + �

�n
� H,Ug + iOUy

g +

h i	
Uy�2

g�

o
dg + dg�:

ð48Þ

SupposeX+ :=
R
GðUg + iOUy

g + Þ�2
dg + . Let us ignore the trace and ρ, and

expand out the commutators:

RR
GU

�2
g� ðHUg + iOUy

g + � Ug + iOUy
g + HÞ

�ðHUg + iOUy
g + � Ug + iOUy

g + HÞUy�2
g� dg + dg� ð49Þ

=
Z
G
U��2

g H�2X +U
y�2
g� dg� ð50Þ

+
Z
G
U�2

g� X+H
�2Uy�2

g� dg� ð51Þ

�
Z
G
U�2

g� ðH� 1ÞX+ ð1�HÞUy�2
g� dg� ð52Þ

�
Z
G
U��2

g ð1�HÞX+ ðH� 1ÞUy�2
g� dg�: ð53Þ

We end up with four similar terms. Starting with the common
inner integral, since G is compact, we can apply Lemma 4.1 and write

X+ =
Z
G
ðUg + iOUy

g + Þ�2
dg + =

k Ok2F
dg

K: ð54Þ

We can plug this expression back into the earlier expression without
the trace and ρ, and rearranging terms and using K := I�1

ϕ

P
i
Ei � Ei

gives:

kOk2F
Iϕdg

Xdg

k = 1

Z
G
Ug ½H,Ek �Uy

g � Ug ½H,Ek �Uy
g dg: ð55Þ

Now applying the Lemma again, noting that H =∑qhqEq, we have:

kOk2F
Iϕd

2
g

Xdg

j,k = 1

k½H,Ek �k2FK ð56Þ

=
kOk2F
Iϕd

2
g

Xdg

j,k = 1

Trð½H,Ek �EjÞTrð½H,Ek �EjÞ
Iϕ

K ð57Þ

=
kOk2F
d2
g

Xdg

q,r,j,k = 1

hqhr

Trð½Eq,Ek �EjÞTrð½Er ,Ek �EjÞ
I2ϕ

K ð58Þ

=
kOk2F
d2
g

Xdg

q,r,j,k = 1

hqhrf
j
qkf

j
rkK ð59Þ

=
kOk2F
d2
g

Xdg

q,r = 1

hqhr �
Xdg

j,k = 1

f jqkf
k
rj

0
@

1
AK ð60Þ

=
kOk2F
d2
g

Xdg

q,r = 1

hqhr �gqr

� 	
K ð61Þ

=
kOk2F k Hk2K

d2
g

K, ð62Þ

wherewehave used anti-symmetryof the commutator braket to reveal
that the inner sum is the Killing form (since g is a compact simple Lie
algebra, the negative of the Killing form is a valid inner product). Note
that f jqk =Trð½Eq,Ek �EjÞ are the structure constants.

Now, we can reintroduce the trace and ρ to get:

Eg + ,g� ∼μ�2 ½ð∂hOiρÞ2� ð63Þ

=
kHk2K k Ok2F

d2
g

TrððiρÞ�2KÞ ð64Þ

=
kHk2K k Ok2F k ρgk2F

d2
g

: ð65Þ

Proof of theorem 2.9
The following is a generalization of Lemma 4.1 to outside the simple
group setting. The proof can be found in the Supplementary
Information.

Lemma 4.2. Let G be a compact and connected Lie group with Lie
algebra g. Suppose V is a finite-dimensional inner product space, ϕ :

G ! UðV Þ is a unitary representation of G, and Ug =ϕ(g). In addition,
a 2 g, A = dϕ(a). Then the following holds:

Z
G
ðUgAU

y
g Þ

�2
dg =

X
α

kAgα
k2F

dgα

Kgα
+A�2

c , ð66Þ

whereAgα
is the image of the component of a in gα under dϕ. Likewise,

Kgα
is the Casimir in the subalgebra gα .
The above result implies that we expect contributions to the

variance from the various subalgebras. Indeed, the final expression for
the variance is remarkably simple, since all the cross terms between
different subalgebras vanish, and the abelian subalgebras do not
contribute.

Proof of theorem2.9. The proof largely follows the strategy of that for
simple groups. Define the shorthand iOgα

:=Pgα
iO and iOc :=PciO. Like

before, we expand the commutator but this time use Lemma 4.2:

Z
G
ðUg + iOUy

g + Þ�2
dg + =

X
α

kOgα
k2F

dgα

Kgα
+O�2

c : ð67Þ

Now, after applying the commutator and taking the integral over Ug� ,
we find the result is still a summation over αonly. This is because, since
the subalgebras are ideals, if Ek 2 dϕðgαÞ then ½H,Ek � 2 dϕðgαÞ, and
therefore kPgβ

½H,Ek �kF =0 if β ≠ α. Thus the cross terms vanish. The
contribution from the center also vanishes upon taking the commu-
tator. Thus the result follows.
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Proof of theorem 2.11
Using the identities from the Representation theoretic notation sub-
section of Results we can get forms of the theorems that are practically
useful. For example, in the simple group case,

GradVar =
IAdkok2gkhk2g

d2
g

X
i
Tr2ðiρEiÞ, ð68Þ

where Ei = dϕ(ei) for orthonormal basis {ei} for g. This turns out to be
the most useful form of the result for the examples below because we
will have explicit knowledge of the representation ϕ. In addition, the
representation index, Iϕ, drops out.

Proof of theorem2.11. For suðnÞ,dg =n
2 � 1 and theDynkin indexof the

adjoint representation is IAd = 2n. Nowwework out the state’s projected
norm. Choose ρ to be a computational basis state, where it can be
shown that ρ⊗ ρ lies in an irreducible subrepresentation of the tensor
product representation ϕ⊗ϕ (see Supplementary Information). Then
we only need to focus on the simultaneously diagonal elements of the
Lie algebra, that is, the Cartan subalgebra h. To calculate the Casimir
eigenvalue we need to find an orthogonal basis H for h, which cannot
be fhij

z gi≠j since the elements are not linearly independent.
We can construct a suitable basis for h using the formula

H =
i
2

[n�1

m= 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm+ 1Þ

p mσz
m+ 1 �

Xm

i = 1
σz
j

n o
ð69Þ

= i
4

ffiffiffi
2

p
ðσz

2 � σz
1 Þ,

ffiffi
2

pffiffi
3

p ð2σz
3 � σz

2 � σz
1 Þ,

n
1ffiffi
3

p ð3σz
4 � σz

3 � σz
2 � σz

1 Þ,:::
o ð70Þ

even though this is expressedmore cleanly with Pauli zs, each element
can be obtained as a linear combination of the fhij

z g generators. One
can check that the elements are all orthogonal and the norm of their
pullback on g is 1, and the resulting subalgebra has the correct
dimension: dim h= rank suðnÞ=n� 1. With this, one can explicitly cal-
culate the diagonal part of IϕK for any n,

IϕdiagðKÞ=
X
Hi2H

Hi �Hi ð71Þ

however the calculation is unwieldy. Fortunately, we can directly infer
the final form from symmetry arguments, since by inspection: diag(K)
is composed of sums of tensor products of twoPauli zs, it is symmetric
around the tensor product, and furthermore since
SWAPij⊗ SWAPij∈ϕ(G)⊗ϕ(G) it must be invariant upon any simul-
taneous permutation of the qubit indices on the subspaces. Thus,

IϕdiagðKÞ=A
Xn
i= 1

σz
i � σz

i +B
X
i≠j

σz
i � σz

j : ð72Þ

To find the value of A, evaluate diag(K) on the state ∣Ψi= ∣+ :::+0i�2

using Eqs. (71) and (72):

IϕhΨjdiagðKÞjΨi= � 1
4nðn� 1Þ ðn� 1Þ2hΨjσz

n � σz
njΨi ð73Þ

=AhΨjσz
n � σz

njΨi ) A= � n� 1
4n

, ð74Þ

and for B, on ∣Ψ0�= ∣+ :::+0i � ∣+ :::+0+ i:

IϕhΨ0jdiagðKÞjΨ0i ð75Þ

=
1

4nðn� 1Þ ðn� 1ÞhΨ0jðσz
n � σz

n�1ÞjΨ0i ð76Þ

=BhΨ0jσz
n � σz

n�1jΨ0i ) B=
1
4n

: ð77Þ

Now we use this to evaluate the expectation value of K on a compu-
tational basis state of Hamming weight k. The first summation in Eq.
(72) will be constant and equal to n, while the second summation will
be equal to the number of distinct bits of equal value minus those of
different value, k(k − 1) + (n − k)(n − k − 1) − 2k(n − k) = (n−2k)2 − n. So
overall

Iϕkρgk2F =
X
Hi2H

Tr2ðiρHiÞ ð78Þ

=
n� 1
4

� ðn� 2kÞ2 � n
4n

=
kðn� kÞ

n
: ð79Þ

Choosing O= ih12
z and H any generator, kok2g = 1=2 = khk2g , and the final

result is

GradVar =
2nð1=2Þ2

ðn2 � 1Þ2
kðn� kÞ

n
ð80Þ

=
kðn� kÞ
2ðn2 � 1Þ2

2 Ω
1
n3

� �
: ð81Þ

Proof of theorem 2.12. For the uniform superposition of computa-
tional basis states, ∣ψ

�
= ∣+ i�n, then 8i,j,hψjhy

ijjψi= hψjh
z
ijjψi=0. The

only nonzero terms involve the Pauli-x type generators. We can form
the corresponding orthogonal generators normalized in g by
Hx

ij =
ffiffiffi
2

p
hx
ij . However, even though there are 0:0ptn2ð Þ, only the n − 1

with j = i + 1 do not annihilate on ∣ψ
�
since the others have σz’s in their

definition. For these generators, hψjHx
ijjψi= � i

2
ffiffi
2

p , giving

IϕkPgρk2F = �
Xn�1

i = 1
jhψjHx

iði + 1Þjψij2 =
1
8
ðn� 1Þ, ð82Þ

and so

GradVar=
2nð1=2Þ2

ðn2 � 1Þ2
ðn� 1Þ

8
=

nðn� 1Þ
16ðn2 � 1Þ2

2 Θ
1
n2

� �
: ð83Þ

Proof of corollary 2.12.1. We expand the variance term for the com-
putational basis state case:

2kðn� kÞ
ðn2 � 1Þ2

= Varðg + ,g�Þ∼μ�2 ½∂hσz
i � σz

j i� ð84Þ

=Varðg + ,g�Þ∼μ�2 ½∂hσz
i i�+Varðg + ,g�Þ∼μ�2 ½∂hσz

j i� ð85Þ

�2Covðg + ,g�Þ∼μ�2 ½∂hσz
i i,∂hσz

j i�: ð86Þ

Note since a permutation swapping qubit i with j is a valid compound
SU matrix, we have that ∂hσz

i i and ∂hσz
j i are identically distributed.

Thus,

2kðn�kÞ
ðn2�1Þ2 = 2Varðg + ,g�Þ∼μ�2 ½∂hσz

i i�
�2Covðg + ,g�Þ∼μ�2 ½∂hσz

i i,∂hσz
j i�:

ð87Þ
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Due to the above equality and Cauchy–Schwarz, i.e.,
Varðg + ,g�Þ∼μ�2 ½∂hσz

i i�≥ jCovðg + ,g�Þ∼μ�2 ½∂hσz
i i,∂hσz

j i�j (recall the variances
are equal), we can conclude that Varðg + ,g�Þ∼μ�2 ½∂hσz

i i� must only be
polynomially vanishing in n, which implies no BP for any k and any
single-qubit σzmeasurement. A similar result can be shown to hold for
the uniform superposition state.

Data availability
The gradient variance simulation data generated in this study have
been deposited in the Zenodo database under accession code https://
doi.org/10.5281/zenodo.10720106.

Code availability
The code used to generate the gradient variance simulation data has
been deposited in the Zenodo database under accession code https://
doi.org/10.5281/zenodo.10720106.
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