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Abstract—A free-floating space manipulator attached to a
spacecraft introduces challenges in simultaneously controlling the
motion of the space manipulator and its mother spacecraft’s atti-
tude. This study aims to develop a neural network-based control
approach to synchronously control the space manipulator motion
and spacecraft attitude, improving the control performance in
trajectory tracking, error reduction and eliminating uncertainties
that arise from external disturbances, high-frequency noise,
oscillations and imprecise knowledge of changes in the control
system. Image-based Visual Servoing (IBVS) is used to provide
inputs in terms of image features of the debris to the conventional
controllers such as sliding mode control (SMC) and proportional-
integral-derivative (PID). SMC is used to control the motion
of the space manipulator. The unscented Kalman filter (UKF)
provides the estimate of the spacecraft’s attitude as an input
to the PID controller to control the attitude. PID controller
provides a feed-forward compensation to the SMC to counter
spacecraft reactions to manipulator motion, while maintaining
the attitude of the spacecraft. The neural network is introduced in
the control strategy to enhance the performance of conventional
controllers by dynamically optimising their gains and coefficients.
This adaptability improves trajectory tracking accuracy, response
to changes in the system and autonomy. The stability of this
control approach is proven using the Lyapunov stability theorem,
demonstrating a global asymptotic stability. The neural-network-
based synchronous control approach is tested and validated by
numerical simulations and comparative analysis in the MATLAB-
Simulink environment. The results demonstrate an enhanced
control performance in terms of accurate trajectory tracking,
faster 100% convergence to zero error and more robustness to un-
certainties. Outcomes highlight the potential of neural network-
based control approaches in real-world applications that manage
the free-floating space manipulators during uncooperative debris
capture.

Index Terms—Space manipulator, Sliding mode control,
Proportional-integral-derivative control, Intelligent control, Ac-
tive debris removal

I. INTRODUCTION

The space sectors face a growing threat due to an increase
in space debris that includes discarded spacecraft, rocket
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remnants and various man-made objects. Thus, in recent years,
active debris removal (ADR) has emerged as a crucial strategy
for mitigating space debris. This paper addresses this challenge
by using a space manipulator attached to a spacecraft. In recent
decades, the research on control of the spacecraft attitude
has significantly grown due to its wide range of applications
in various space missions such as earth imaging, spacecraft
docking and rendezvous, satellite surveillance and multi-orbit
tasks. During the on-orbit servicing (OOS), the manipulator’s
movements introduce perturbations to both translational and
rotational motions of the spacecraft’s platform. In a micrograv-
ity environment, due to the absence of weight, the spacecraft’s
platform reacts to torques and forces acting on it by the space
manipulator. Therefore, the primary objective of the paper is
to ensure the safe transfer of spacecraft to the proximity of
the target object. This is achieved by precise control of the
relative translation motion of the manipulator and synchronis-
ing the spacecraft’s attitude. Achieving such a level of control
is particularly challenging in the presence of uncertainties,
such as external disturbances, high-frequency white noise and
oscillations. The uncertainties make it difficult for controllers
to precisely predict the spacecraft’s behaviour and affect the
performance efficiency and stability of the spacecraft system.
Consequently, accurate attitude-tracking of spacecraft becomes
a challenging problem. To overcome these challenges, this
paper has incorporated neural network techniques to enhance
the accuracy of synchronous control, automatically tune uncer-
tainties, and augment the adaptability of the control system.
The adaptive nature of the neural networks ensures a more
responsive control strategy, significantly improving accuracy
in trajectory tracking and stability in the spacecraft system.
Neural networks offer a unique capability to autonomously
learn complex relationships from the data inherent in the sys-
tem model that includes kinematics and dynamics of the space
manipulator and spacecraft. Neural networks excel in mod-
elling non-linear relationships and are well-suited for varying
conditions where the inputs and outputs change over time. In a



study by [4], the research addressed the challenges with finite-
time attitude tracking for a single spacecraft, highlighting
the importance of precise control of the spacecraft. A few
control algorithms have already been suggested for attitude
control in papers [23], [25], [2] and [13]. Additionally, various
effective nonlinear control techniques use neural networks for
achieving accurate tracking control. In the study by [8], the
research discusses the combined control of spacecraft with an
unknown inertia matrix and external disturbances. Taking into
account the recent studies that advocate for the integration
of neural networks in attitude control, this research navigates
through a comprehensive exploration of their application.
Specifically, the paper explores how neural networks enhance
the intelligence and robustness of conventional controllers,
such as sliding mode controllers (SMC) and proportional-
integral-derivative (PID) controllers. The adaptability of neural
networks, adjusting controller parameters based on system
dynamics and varying conditions, ensures a responsive control
strategy, thereby significantly enhancing accuracy and stability.

The visual feedback extracted from the optical sensor is
to realise the active motion control known as visual servoing.
Image-based visual servoing (IBVS) is a control technique that
utilises the visual information from the onboard cameras to
control the attitude of the spacecraft. It computes the values
for both the joint controller (SMC) and attitude controller
(PID) directly based on the image features by eliminating
the delay in the image interpretation and camera calibration
errors. Using the image features, IBVS estimates the attitude
(orientation) and then generates the control commands to align
with the desired attitude. IBVS helps to improve the grasping
accuracy during the capturing process of uncooperative debris.
Additionally, the uncertainties that arise during the control per-
formances are eliminated using neural networks. Sliding mode
control (SMC) is a nonlinear control methodology designed
to drive system states to a predefined “sliding surface” and
maintain them on that surface. It excels in robustness against
uncertainties and disturbances but may exhibit chattering, and
rapid and high-frequency switching of the control signal. This
characteristic has implications for practical implementations.
In contrast, Proportional-Integral-Derivative (PID) control is
a widely used feedback control strategy that adjusts the
system output by calculating the proportional, integral, and
derivative terms of the error. PID controllers are versatile
and applicable to various systems but require careful tuning
for optimal performance. Integrating neural networks with
both SMC and PID controllers enhances adaptability and
performance. Neural networks can learn system dynamics,
facilitate adaptive tuning of controller parameters, and improve
control responses under varying conditions, uncertainties, and
disturbances. This integration contributes to the development
of intelligent and robust control strategies that are crucial for
addressing real-world challenges in diverse applications. An
unscented Kalman filter (UKF) is used to estimate the attitude
of the spacecraft with the input data obtained from the space
manipulator, thereby facilitating precise spacecraft control and
navigation. Furthermore, the neural network incorporated in

Neural network-based synchronisation of free-floating space manipulator's joint motion and mother spacecraft's attitude for active debris removal

the control framework enhances the capabilities of the UKF
in tackling uncertainties and noise in measurements. The
adaptability and capacity of the neural network to model
complex relationships complement the UKF, contributing syn-
ergistically to enhancing the overall robustness and accuracy of
the spacecraft orientation estimation process. This integrated
approach represents a cutting-edge solution for addressing
challenges associated with uncertainties in space manipulator
systems.

II. METHODOLOGY

A spatial free-floating 3-DOF space manipulator attached to
its mother spacecraft is schematically represented in Fig. 1. It
consists of a spacecraft base (S), manipulator with 3 revolute
joints, and end effector (E) to capture the target object (7).
The target object is assumed to have a grapple fixture (G) for
facilitating its capture. The dynamics of this system involve
complex interactions between the manipulator, spacecraft, and
target object. The inertial frame (I) provides a reference for
understanding the overall motion and orientation of the system,
enabling precise control and coordination of movements for
tasks such as object manipulation and capture. The spacecraft
body frame [z, ys, 25|, end effector’s body frame [z, Ye, 2]
and target object’s body frame [x:,y:, 2] aligned with the
inertia frame.
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The methodology involves a novel neural network-based
synchronized control approach, demonstrated in Fig. 1. The
error between the desired image feature and the actual image
feature serves as an input to the SMC alongside a predefined
trajectory that steers the actual image feature towards the
desired image feature. Simultaneously, the neural network
processes input from the predefined trajectory. The SMC
generates the required torque (7sar¢c), and this torque is
combined with the neural network output (7yy) to govern
the motion of the space manipulator by controlling the joint
positions ¢. The combined torque is represented by (7,,) in
Fig. 1. Subsequently, the joint velocities gare translated into
spacecraft angular velocities 6, which serve as inputs to an
Unscented Kalman Filter. The UKF estimates the actual state



of the spacecraft’s attitude (2). Using this estimated attitude,
a Proportional-Integral-Derivative (PID) controller generates
sufficient torque (7prp) to control the spacecraft’s attitude.
To achieve precision and accuracy in tracking the trajectory,
the neural network again combined with the PID controller to
control the attitude of the spacecraft. The resulting torque (7.)
is applied as compensatory torque to the space manipulator,
which is then applied to the space manipulator, ensuring that
its motion aligns with the desired trajectory while maintaining
synchronisation with the spacecraft’s attitude. As demonstrated
in Fig. 2, the output of the manipulator serves as an input
to the spacecraft, enabling coordinated motion. This intricate
control scheme aims to ensure precise control of both the
manipulator’s motion and the spacecraft’s attitude, effectively
addressing the challenges posed by the uncertainties during
the uncooperative debris.
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Fig. 1: Block diagram of Neural network-based synchronised
control approach.

A. Image-Based Visual Servoing

Image-based visual servoing is a control technique that
leverages visual information for precise control of the space
manipulator. Unlike traditional control methods that solely rely
on numerical data, visual servoing integrates real-time visual
feedback to guide the motion of a space manipulator. The
primary objective is extracting features by employing Harris
Corner detection through the functions in MATLAB, yielding
a set of corner points that highlight the desired image features
[18]. These Harris corners are visualized on the extracted
images to validate the accuracy of the detection process.
These extracted features are used as input for conventional
controllers. By having IBVS in the control loop, this control
approach aims to improve the adaptability and responsiveness
of the control system in uncooperative debris recognition.

e=1(m(r(1)), C) = I'(1) (1)

where e is the error between desired image features 1*(¢) and
actual image features I(m(r(¢)), C' is the camera’s intrinsic
parameters such as focal length, pixel aspect ratio, and lens
distortion parameters. To effectively control the movement of
the space manipulator, / — I must be minimised, which is
regulated by a sliding mode controller.

Taking the derivative of e with respect to time, the following
equations are obtained:

;0L omor  OIOC _
©T omor ot " 9C ot

dr*

r 2
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The matrix Z and vector V, is defined as follows:

7= 2 ®
or
V. = {3@} 4)
ot
é=2V,—I* (5)

where Z is the image matrix containing intrinsic parameters
of the camera such as focal length, which is given as follows:

_f — _f2+- 2
< 0 3 2;y2 7 . Y
Z=|0 = ¢ i%i i% —z (6)
— _ _ 2
F o0 3 = P

where f is the focal length of the camera, d is the depth,
representing the distance from the camera to the object in
focus, z and y represents the positions in the image plane.
The matrix relates the spatial velocity of the camera V, to the
camera’s or end effector’s linear and angular velocities.

B. Sliding Mode Control

Image-based visual servoing (IBVS) commonly applies a
proportional gain to minimise the image feature errors [7].
However, this method might lack the precision required for
effectively capturing the target object. To address this lim-
itation, sliding mode control is used in this research. SMC
employs a predefined feature trajectory in the image plane as
a guide to direct the actual image feature toward the desired
features along this trajectory. By following this trajectory,
SMC enhances the control precision and achieves the desired
motion required for capturing the target object. The primary
role of IBVS is to extract the relevant image features, while the
SMC utilises these features to guide and optimise the motion
control process. The tracking error in the SMC is defined as
follows:

e=q—qq @)
€=q—qa ¥
€=q¢—qq )

where e is the error between the desired position and measured
position, e, é and é are supposed to be bounded, ¢4, ¢g
and ¢y are the vectors of the desired position, velocity, and
acceleration of the joint. The modified sliding surface s with
visual servoing as input is given as follows:

s=I—-T* (10
s§=1—1T* (11)
s=eé=2V,—I* (12)

The sliding surface is defined in equations (11) and (12),
which will converge to 0 when the image features stay within
the sliding surface during the approaching phase. The time
derivative of the sliding surface is defined as follows [28]:

5= MNd—qq)—G+M " (q)[r—h(q,q) — Ty —asin(s) — As]
(13)



where M ~1(q) is the inverse inertia matrix, A is the robust
term used in the neural network for tuning to achieve accurate
trajectory tracking, T, is the external disturbance and white
noise in the control system, h(q, ¢) is the centrifugal and Cori-
olis terms. By equating equation (12) and (13), the following
equation is obtained;

Ve

MZ (14)

Neural network-based synchronisation of free-floating space manipulator's joint motion and mother spacecraft's attitude for active debris removal

actual measurement related to the spacecraft’s attitude at time
k, zj|p—1 is the predicted measurement at time k|k — 1 based
on the predicted state at the time k|k — 1 and measurement
function. The Kalman gain at time £ is given as follows [3]:

K =P..(S;} )

Klk—1 1)

where P,, is the cross-covariance matrix that relates the

_ MAé— MG+ (7 - h(g,q) — Ta — asin(s) — As + M1 predicted state (g|x—1) with predicted measurement (zj,_1),

S—l

Klk—1 is the inverse of the predicted measurement covari-
ance matrix that represents the uncertainty in the predicted

Vo =M*Z  {MAé—Mi+(r—h(q, Q))—Td—asin(s)—As—l—measuremem‘

MI] (15)
The control law for the SMC is obtained as follows:

Vo= Z7 Y Aé—G+M " (1 —h(q,q))—Ta—asin(s)— As+1]
(16)
The joint velocity of the space manipulator is calculated using
the velocity of the end effector (¢), which is given by the
equation:
=MV,

C. Spacecraft Attitude Dynamics

The spacecraft’s angular velocity w can be related to the
joint velocities ¢ of the space manipulator using the trans-
formation matrix. can be expressed as a function of the joint
velocities of the space manipulator. ¢ = [q1, q2, ..., ¢] is the
vector of joint positions and ¢ = [¢1, ga, ..., ¢ ] is the vector of
joint velocities of the space manipulator. The transformation
matrix 7' that maps joint velocities to spacecraft angular
velocities is rewritten as follows [22]:

Wy

Wy

a7

The coupling of spacecraft dynamics and space manipulator
dynamics for coordinated control is considered a challenging
task and the research is still ongoing. Equation (17) is rewritten
in terms of the matrix as follows:

Wy 1 sin(¢)tan(f) cos(¢)tan(d) | |41
wy| = |0 cos(¢) —sin(¢) gz | (18)
W, 0 sin(¢)/cos(f) cos(d)/cos(8)| |dgs
Given the inertia tensor I as:
1 sin(¢)tan(f) cos(¢)tan(6)
I=|0 cos(¢) — sin(¢) (19)
0 sin(¢)/cos(d) cos(¢)/ cos(0)

D. Unscented Kalman Filter

The unscented Kalman filter is used to estimate the attitude
of the spacecraft based on the manipulator’s motion. The
updated state estimate of the spacecraft is given as follows
[3]:

Thik = Tpjp—1 + Kp(2h — 2pj—1) = T (20)

where x5, is the predicted state estimate at time k) based
on the state at time £ — 1 and the system dynamics, zj, is the

E. Proportional-Integral-Derivative Controller

The estimated state of the spacecraft is defined as
follows:

i = [61,6,,63] (22)
where él, 62, and 653 are the estimated Euler angles repre-
senting the spacecraft’s attitude along z, y, and z axes, respec-
tively. Consider the state covariance matrix of the estimated
state as P, and it represents the uncertainty in the estimated
state.

The PID controller uses the error between the desired
attitude and the estimated attitude of the spacecraft to estimate
the control torque 7. The error in estimated attitude is given
by the following equation:

e = @d - (23)

where eg is the attitude error of the spacecraft. The PID
controller then calculates the control signal based on the
attitude error eg and the control gains K, K;, and K for the
proportional, integral, and derivative components, respectively:

u = Kp(e@) + Kd(eé) + Ki(/ eedt) 24)

F. Neural Networks

The neural network architecture chosen for this research is
shown in Fig. 2. The neural network consists of input layer
with 2 neurons, hidden layer with 20 neurons and output layer
with 2 neurons. The equations of the inputs, ; and x5, and
outputs of the neural network, 7 v, with different weights 1%
and W;, in respective layers are derived in this section.

To address concerns about convergence and computational
complexity, the proposed neural network approach incorpo-
rates a multi-layer architecture with adaptive weights. Initially,
these weights adjust the sliding surface’s slope, the gains
associated with sliding mode control (SMC), and the control

input, derived from error and its rate of change:
(25)

x1 = [e;, 8]

The updated values of the gains will be derived in the cost
function section. The first layer’s output is expressed as:

Yi = Nix; (26)
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Fig. 2: Neural Network Architecture

where A represent the respective gain of e; and é;. The
modified sliding surface is computed as:

si = fi(ys)

where f; = (ZV — I) represents the activation function of
the respective neuron in the neural network, where I is an unit
matrix of 3*6 order for simplification in simulation purposes.
The hidden layer’s input is formulated as:

27

Knp = Kp + ()(B)(e)(s:) + T

where 7 is the positive constant and § represents the coeffi-
cients in the controller that are fine-tuned to achieve desired
control performance by reducing the effects of sensor noise
when used in conjunction with the Kalman filter. In this
research, I' is introduced representing an uncertainty that is
challenging to predict precisely or model accurately. This
uncertainty could arise from imprecise knowledge of system
dynamics. Therefore, I' is associated with uncertainties that the
neural network aims to learn and compensate for, enhancing
the system’s robustness and adaptability. I' is represented by a
random number block generator to model uncertainties arising
from imprecise knowledge.

(28)

Kna = Ka+ (1)(8)(e)(€)(sin(s:)) 29)
Kni = Ki+ ()(B)(e)(€)(é)(s:)

With K, K; and K in the PID controller, the neural network
adjusts these gains to help eliminate steady-state errors e and
rate of erroré providing stability to the controller. Also allows
the control system to adapt to changing uncertainties.

T2 = [si1, 8i2, Knp, Knal” 31

(30)

With s;1 = s;, S0 = sin(si), while K4 and KNp serve
as offset signals compensating the control input signal.
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The hidden layer’s output for SMC is defined as:

Aq q€728i
_ _ 2 ¢ Ko — U
An1 =My ﬂAl(ez)(ﬁTi) < Kpi Kdl(l te250)2
L. 32
A 20 B9y (e ge
AN2 - A2 (77/\2)(67, €; 67_1) ( Kpl Kdl (1 + 623i)22
A (33)
Ay = =L 4
N A (34
Uy = —An(si1) — An(Knp) (35)
Uz = —An(si2) — An(Kna) (36)
Usmc = [Us, Uz] (37
The hidden layer’s output for PID is expressed as follows:
N
UPID:ZmiW (38)
n=1

where W is the weight added in the hidden layer of the neural
network and is given as follows:

W:a(Kp8+Kdé+Ki/6dt)+ANN (39)
where « is the tuning parameter used in the neural network
to determine the influence of neural network correction term
Ay relative to conventional gains of PID controller. Thereby,
enhancing the control signal based on its learned knowledge
of the control system. The overall neural network output is
given as follows:

TN = (Usme)(Uprp)(Ws)

where W, is the loss function used in training the neural
network, which is given as follows [15]:

1 ~\2
Wi = *(ed — .Z‘)
2
The objective is to minimise this loss function, leading to more

accurate results.

(40)
(41)

III. RESULTS AND DISCUSSION

In this section, the controllers outlined in equations (16),
(25) and (41) are tested using MATLAB-Simulink environ-
ment to demonstrate the performance of the network-based
control approach. The three reference trajectories of the Euler
angles that represent the position and attitude of the space
manipulator and spacecraft are defined as follows:

55 55 . (27r-10 71')
Qd= - +—5sin| ——— 5

2 "2 0 2
Rd="5 T 10 2
_ 105 105 . (2710

B3a = 2 "M 1o 2



The following control parameters are fine-tuned using net-
works to obtain the desired control performance:

o Camera Parameters

- f=150

-d=2

- =75

- y =100

e SMC

50 100 100

- A= {100 50 100
100 100 50

0.05
-T;=10.1
0.15
- a=0.01
0.2
- s=10.3
0.4
1 1 1
-A=1|1 1 1
1 1 1
« PID
- K, =125
- K;=15
- K; =125
- A=05
- n=0.1
- =05
-I'=01

When tuning these parameters, it is important to make the
controller responsive to changes, such as desired state changes
(setpoint changes) and environmental changes, while being
robust to the impact of noise. If the controllers become overly
sensitive to external disturbances and noise, the controllers
will respond to fluctuations that are not reflective of the actual
state of the system, leading to instability. Therefore, these
parameters are traded off to strike the right balance between
responsiveness and robustness, and the neural network plays
a pivotal role in achieving this balance. With these carefully
adjusted parameters, the enhanced trajectory tracking perfor-
mance is demonstrated in Fig. 3. Both the space manipulator
and spacecraft accurately and precisely follow the desired
trajectory.

The output of the controllers, neural network, SMC, and
PID, in terms of torque, is plotted using MATLAB-Simulink
environment, which is demonstrated in Fig. 4. It shows that
the output of the controllers follows each other’s trajectory
closely.

The angular velocity of both the space manipulator and
spacecraft is demonstrated in Fig. 5. The figure illustrates
a good convergence rate and responsive behaviours achieved
with the help of neural network-based controllers. This col-
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Fig. 3: Trajectory tracking performance of both space manip-
ulator and spacecraft
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Fig. 4: Torque performance of the controllers

laborative approach ensures accurate and dynamic tracking of
desired trajectories.

T T
3F —Input Trajectory—Space Manipulator—Spacecraft

Time (s)

Fig. 5: Angular velocity performance of both space manipu-
lator and spacecraft

Fig. 6 showcases the tracking errors for both the space
manipulator and spacecraft. The convergence of these errors to
zero is a positive indication that the controllers are successfully
guiding the manipulator and spacecraft to closely follow the
desired trajectories. This convergence is a key objective in the
control design, as it signifies that the neural network-based
controllers are capable of accurately steering the actual states
to the desired states. This also indicates that the controllers
are capable of managing the uncertainties, disturbances and
any changes in the control system.

Additionally, the rate of error performance (¢) for both the
space manipulator and spacecraft is demonstrated in Fig. 7.
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Fig. 6: Angular velocity performance of both space manipu-
lator and spacecraft

This figure underscores the effectiveness of the neural network
in enabling rapid adjustments and minimizing the rate of
errors, contributing to the overall stability and precision of
the control system.

—Space Mlanipulator
—Spacecraft

Fig. 7: The rate of error for both space manipulator and
spacecraft

The stability of this control approach is also tested using
the Lyapunov analysis theorem. The Lyapunov function (V) is
a positive definite, denoted as V' > 0, which means that the
Lyapunov function has a positive value for all non-zero inputs,
and it approaches zero only at the equilibrium point of the
system. The primary purpose is to analyse the stability of the
control system. Whereas, the time derivative of the Lyapunov
function V is semidefinite and is denoted as V < 0. The
trajectory of the space manipulator and spacecraft must stay
close to the sliding manifold. From Fig. 8, it is observed that
(V) is always negative, indicating that the control system has
achieved global asymptotic stability. The Lyapunov function
calculation is given as follows [10]:

V < —sTasin(s) — sTks +sTT; <0

= sTasin(s) + s"ks > 5" Tybound

(42)
(43)
where Typound = f (&) = f1& + fosin(4) and f; and fo are
positive constant matrices.
IV. COMPARISON WITH CONVENTIONAL CONTROLLERS

In the realm of neural networks, the assessment of the
control performance is critical in measuring the efficiency of
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Fig. 8: The stability performance of neural-network-based
synchronous control approach

the learning ability of the neural network. One prevalent metric
employed for this purpose is Mean squared error (MSE) or
loss function as shown in equation (43). The MSE provides
a quantitative measure of the average squared between the
predicted values generated by the neural network and the
actual observed values from the input data.

The results obtained from the neural network show a very
low value of 0.00029638 at Epoch 1000 as demonstrated in
Fig. 9 and a very low is observed throughout the analyses
[15]. This indicates that the neural network-based control
approach provides accurate predictions and demonstrates a
strong control performance during the training of the model
in the network [17]. Low MSE also indicates that the neural
network is robust to uncertainties.

Best Validation Performance is 0.00029638 at epoch 1000
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10| —Test i
P D N 7 R Best
5
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=
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Epochs

Fig. 9: Mean Squared Error performance vs Epoch

To test the efficiency of the proposed control approach, it
is subjected to a comparative analysis against an alternative
control scheme without neural network integration. This com-
parative study aims to highlight the distinctive advantages and
improvements achieved through the incorporation of neural
network-based control strategies. The comparison evaluation
of trajectory tracking performance of both space manipulator
and spacecraft is demonstrated in Fig. 10 and 4. Fig. 10
demonstrates that the space manipulator and spacecraft follow
the trajectory but not closely, displaying less accuracy and



more pronounced discrepancies in the control system. The
inherent uncertainties in the control system lead to deviation
from the desired trajectory.

I Input Trajéctow—Ménipulator—Spacecraﬂ

Time (s)

Fig. 10: Trajectory tracking performance of manipulator and
spacecraft without neural network

In the presence of a neural network, both space manipulator
and spacecraft exhibit a remarkable ability to closely follow
the desired trajectory with high precision as demonstrated in
Fig. 4. This is because of the capacity of neural networks to
mitigate uncertainties and disturbances in the control system.
This highlights the crucial role played by the neural network
in enhancing control performance and trajectory tracking ac-
curacy.

While the angular velocity trajectory performance, demon-
strated in Fig. 11 and 5, exhibits a similar profile during
both scenarios, the integration of a neural network in the
control system significantly enhances the attitude controller’s
performance and accuracy. Fig. 11 demonstrates that there is a
sudden change in control signals or disturbances in the control
system, leading to sharp changes in system behaviour. Fine-
tuning control parameters is done to ensure a smooth and
gradual change in the control system response. The presence
of the neural network enables the system to respond more
effectively to dynamic changes and effectively attenuates the
impact of noise and disturbances. This improvement is crucial
for maintaining precise control and ensuring the system’s
adaptability to varying conditions.

T T T T T T
—Input Trajectory—Space Manipulator —Spacecraft|

0 1 2 3 4 5 6 7
Time (s)

Fig. 11: The angular velocity performance of manipulator and
spacecraft without neural network

In examining the error performance of both the space ma-
nipulator and spacecraft, the spacecraft experiences challenges
in converging to zero error, requiring additional tuning to
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achieve convergence towards the end as demonstrated in Fig.
12.

—Space Manipulator

4
Time (s)

Fig. 12: The error performance of manipulator and spacecraft
without neural network

Conversely, the neural network-based control approach sig-
nificantly improves error reduction by attaining 100% con-
vergence to zero seamlessly and efficiently. The consistent
convergence to zero in the error plot in Fig. 6 indicates that the
automatic tuning within the neural network is effective. This
also suggests that the neural network is learning and optimiz-
ing control parameters in real time, leading to improvement in
error reduction. Therefore, the neural-based control approach
is more robust and has enhanced the control performance
by addressing uncertainties and disturbances in the control
system.

Analysing the rate of error performance, demonstrated in
Fig. 13 and 7, reveals a clear enhancement in the neural
network-based control approach. Fig. 13 demonstrates that the
rate of error has a high magnitude, ranging between 10-15
units. However, the neural network-based approach in Fig.
7 demonstrates that the error has been significantly reduced
between -4 to -6 units. The intriguing behaviour observed in
the rate of error plot, where the plot transitions to the negative
axis before converging, indicates that the neural network is
not only compensating for the errors in the control system
but also actively anticipating the errors and mitigating them.
This negative value signifies a proactive corrective mechanism,
showcasing the neural network’s ability to enhance the control
system’s anticipation, and adaptability response to errors,
ultimately guiding to a smoother convergence. This valuable
trait of neural networks, especially in dynamic systems where
real-time adjustments are crucial.
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Fig. 13: The rate of error performance of manipulator and
spacecraft without neural network



V. CONCLUSION

The integration of a neural network-based control approach
in the synchronisation of free-floating space manipulator mo-
tion and mother’s spacecraft attitude, within the framework
of image-based visual servoing, demonstrates a spectrum of
advantages, such as precision in trajectory tracking, adaptive
response to uncertainties, dynamic disturbance, and noise re-
jection, improved system stability and mitigation of systematic
errors that arise due to uncertainties in space manipulator
and spacecraft. The control scheme leverages Image-based
Visual Servoing (IBVS) for precise manipulation, while the
unscented Kalman filter accurately estimates the spacecraft
parameters, effectively mitigating camera noise. The fine-tuned
control parameters, including robust terms in the sliding mode
control, external disturbance compensation, coefficients and
constant in the proportional-integral-derivative controller, and
noise measurements in UKF, play pivotal roles in maintaining
the trajectory accuracy and stability of the system. The neural
network serves a crucial role in enabling the system to
maintain a balance between responsiveness and robustness.
The visual representation of error and rate of error plots un-
derscores the adaptability nature of neural networks, resulting
in 100% error reduction and convergence rate, and highly
responsive control, significantly improving accuracy and sta-
bility. A comprehensive comparative analysis against the non-
neural network counterpart validates the effectiveness of this
intelligent control method, demonstrated through MATLAB-
Simulink simulations. The synchronisation control of space
manipulator motion with spacecraft attitude is a challenging
task, especially in the presence of uncertainties and distur-
bances in the space environment. The neural network aids in
overcoming these challenges, thereby improving the system’s
response during changes and noise. The direct comparison
with a control approach devoid of neural network incorpo-
ration underscores the clear advantages of a neural network-
based approach. Image-based visual servoing, coupled with
the adaptability and learning capabilities of neural networks,
enhances synchronisation, which is critical in space missions
where precision and reliability are important. Challenges in
fine-tuning are mitigated through the neural network’s ability
to adapt to changing conditions.
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