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Abstract
This paper presents the methodical development of a state-error-driven self-adaptive fractional-order proportional–integral–derivative (AFOPID) con-

trol algorithm to efficiently regulate the velocity of pneumatically conveyed particles at the desired set point and to prevent the blockage of particles in

a pipe due to an imbalanced combination of their velocity and corresponding mass flow rate. The proposed fractional control law is constituted by

adaptively modulating fractional orders of the integral and differential operators in the control based on the state-error variations in the velocity of

solid particles. The particle’s velocity is measured and updated via electrostatic sensors in conjunction with cross-correlation signal processing algo-

rithms. All the other fixed hyper-parameters associated with the proportional–integral–derivative (PID) control scheme are meta-heuristically opti-

mized by using a genetic algorithm. The proposed AFOPID is benchmarked against conventional integer-order PID and the fractional-order

proportional–integral–derivative (FOPID) controllers. Experiments are performed on a laboratory-scale test rig to comparatively analyze the aforesaid

control schemes, where each controller is examined for three velocity set points and three disturbance levels. The experimental results validate the

superior time optimality and robustness of the proposed AFOPID controller against bounded disturbances and abrupt velocity set-point variations by

manifesting relatively faster settling time, low overshoots (and undershoots), and smaller steady-state fluctuations.
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Introduction

Two-phase gas–solid flow systems are widely seen in many

industrial processes such as food processing, handling of ferti-

lizers in agricultural cycles, cement production, shipping, and

power generation (Yan et al., 2021). One of the most com-

monly seen examples of such a system is the pneumatically

conveyed pulverized coal particles in the fuel lines of coal-fired

power plants (Qian et al., 2017). Applications of pneumatic

conveying systems for handling bulk solids are undergoing

rapid growth as they can significantly enhance the efficiency

of material transportation, prevent environmental pollution,

and boost manufacturing safety and reliability. However, the

complex flow patterns in pneumatic conveying pipelines create

intricate modeling and measurement challenges (Yan, 1996).

An uncontrolled flow rate is wasteful, as it can either lead to

energy wastage or eventually result in an unscheduled shut-

down of the plant due to a deficiency of fuel.
To avoid these circumstances, the transportation of mate-

rial through pipes should be optimized, which generally

requires the flow rate to be controlled within a certain range.

Measuring the velocity of solid particles in the aforemen-

tioned industrial processes is very important, as the product

of velocity and concentration results in the mass flow rate of

solid particles, which is required to control the efficiency of

the process. Furthermore, velocity measurement is an impor-

tant factor in evaluating pipeline erosion, as erosion is directly

proportional to velocity and concentration (Xu et al., 2018).

Also, in some industrial processes, it is observed that an

uncontrolled and imbalanced amount of velocity and mass

flow rate of these solid particles can sometimes block the pipe,

which eventually results in a catastrophic situation. As the

velocity of solid particles plays an important role in determin-

ing the abovementioned factors, it is, therefore, highly
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desirable to develop such agile control schemes that can flex-

ibly regulate the velocity of ongoing solid particles whenever

the system encounters a blockage or any kind of disturbance

problem inside a pneumatic pipe.

Literature review

Pneumatic conveying systems are widely used in industries

for transporting bulk materials through pipelines using air or

another gas (Abe et al., 2023; Klinzing et al., 2015 [2010]).

Control of particle velocity in these systems is critical for

ensuring efficiency, minimizing wear and tear, reducing

energy consumption, and preventing blockages or damage to

the materials being conveyed (Weber and Molerus, 1990).

Pneumatic conveying can be broadly classified into dilute-

phase and dense-phase systems (Wypych, 1995). Dilute-phase

conveying involves transporting particles suspended in the

conveying gas at high velocities, whereas dense-phase convey-

ing operates at lower velocities with particles moving in a

more plug-like manner (Mills, 2004).
Developing and incorporating agile closed-loop particle

velocity control techniques with pneumatic conveying systems

is also crucial for the said industrial processes. However, this

development depends on the availability of accurate velocity

measurements so that they can be fed back to the closed-loop

controller. Hence, it is of utmost importance to discuss the

state-of-the-art velocity measurement and acquisition meth-

ods that are available in the open literature and discuss their

suitability for the proposed control system development. A

variety of sensor paradigms have been proposed for monitor-

ing particle velocity and concentration in a bulk strong pneu-

matic conveyor scheme, including radiometric (Barratt et al.,

2000), capacitive (Zhang et al., 2012), ultrasonic (Zulkiflli

et al., 2019), optical (Qian et al., 2015), microwave

(Penirschke et al., 2008), and heat transfer methods. All these

sensors are non-intrusive and can monitor the velocity as well

as the concentration of particles. However, their usage poses

challenges in some cases. Radiometric devices pose a serious

threat to the user’s health and safety. The capacitive sensor

measurements tend to get corrupted by the dielectric proper-

ties of the material(s) being monitored. The optical detectors

require a transparent window in the pipe that is prone to pul-

verized material contamination and abrasion. The ultrasonic

sensors are susceptible to error-induced false signals. Finally,

the microwave sensors work with moderate accuracy at the

cost of being very expensive. Electrostatic charge-based sen-

sing devices are preferred due to their simple design, cost-

effectiveness, durability, and robustness (Coombes and Yan,

2016; Yan et al., 1995). Owing to their aforementioned attri-

butes, non-invasive electrostatic sensors are adopted in this

work to accurately analyze the flow conditions of solid parti-

cles in the pipe without disturbing flow dynamics.
A lot of attempts have been made in the literature to

develop robust particle velocity regulation schemes for pneu-

matic conveying systems. The programmable-logical control-

ler (PLC)-based automatic control system for pneumatic

conveying systems, proposed by Genxi et al. (2008), lacks the

design flexibility to address the system’s state-error deviations.

Proportional–integral–derivative (PID) controllers are widely

favored due to their simple structure and reliable yield to con-
trol industrial processes (Bequette, 2003). A proportional–
integral (PI) control system assisted by tomographic imaging
was developed to control the particle velocity in the conveying
system (Deloughry et al., 2001). However, it lacked the

robustness to address rapid variations in set-point velocity
and random disturbances. The sliding-mode controllers tend
to deliver robust control effort at the cost of highly discontin-
uous control activity and increased chattering content in the
state response (Ren et al., 2019b) Despite their design flexibil-
ity, fuzzy controllers require an elaborate set of qualitative
rules that are empirically synthesized based on the expert’s
knowledge and, hence, are bound to contain inaccuracies
(Barbosa and Seleghim, 2011; Neuffer et al., 1999). The statis-
tical control scheme presented by Romanowski et al. (2006)
uses statistical Bayesian modeling combined with a Markov
chain Monte Carlo (MCMC) sampling algorithm to analyze
the data and generate appropriate control commands. The
fuzzy-PID control scheme proposed by Sun et al. (2022) yields
fast, stable, and high-precision flow control in the pneumatic
conveying system. To improve the controller’s adaptability to
efficiently reject the exogenous disturbances, a neural network-
based controller is employed that tracks a well-postulated gain-
scheduled PID reference controller to yield robust control effort
(Barbosa and Seleghim, 2003). The simulation results show that
the proposed scheme yields a 50% improvement in power effi-
ciency as compared to the conventional control schemes. The
multivariable controllers have also been rigorously analyzed for
pneumatic conveying of particulate material (Birk, 1999).
Despite their optimality, model predictive controllers (MPCs)
rely upon a multitude of parameters that require accurate tun-
ing (Jones and Jabob, 2007). The nonlinear MPCs have demon-
strated enhanced reference-tracking accuracy and a reasonably
enhanced closed-loop response with minimal control effort
(Satpati et al., 2014). However, they require complex computa-
tional algorithms for their realization. An optimal control
design for the pneumatic conveying system is presented by
Wilms and Dhodapkar (2014). However, its performance is

prone to degradation under parametric uncertainties.
To address the shortcomings of state-of-the-art control

schemes, fractional calculus is integrated with the integer-
order PID controller to formulate the fractional-order pro-
portional–integral–derivative (FOPID) controller (Erenturk,
2013; Shekher et al., 2012). This scheme is widely preferred
for controlling nonlinear and chaotic systems (Giernacki,
2016; Ren et al., 2019a; Zhang and Pi, 2012). In addition to
the PID gains, the FOPID controller introduces two new
parameters (d and m) that serve as its integral and derivative
operator’s fractional orders (Mishra and Chandra, 2014).
These fractional operators increase the controller’s degree of
freedom and design flexibility (Dumlu and Erenturk, 2014).
The performance of the ubiquitous FOPID controllers can be
further enhanced by adaptively modifying the parameters (d
and m) via an online parameter adaptation mechanism
(Saleem and Abbas, 2017; Saleem et al., 2020). Different var-
iants of adaptive FOPID controllers have been observed to
yield promising results by improving the robustness of closed-
loop energy conversion and electro-mechanical systems
against exogenous disturbances (Saleem and Abbas, 2017;
Saleem et al., 2020; Saleem and Mahmood-ul-Hasan, 2019).
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Main contributions

The main contribution of this paper is the formulation of a
well-postulated adaptive fractional-order proportional–inte-

gral–derivative (AFOPID) controller to regulate the velocity
of solid particles in a pneumatic conveying system. The pro-
posed control procedure is realized by augmenting the con-
ventional FOPID controller with an online adaptation

mechanism that serves as a superior regulator to dynamically
adjust the fractional orders in real time. The key contribu-
tions of this article are thus listed:

� Constitution of the baseline FOPID controller for a

pneumatic conveying system.
� Realization of the proposed adaptive FOPID control-

ler by retrofitting it with an online adaptation law.
� Formulation of the adaptation law by employing a

pre-configured nonlinear hyperbolic secant function

(HSF) that depends on the real-time error variations
in the particle velocity. These functions are formulated
via well-established meta-rules that self-tune the frac-
tional power to speed up the transient response and

alter the damping control force as the error conditions
change, respectively.

� Experimentally validating the efficacy of the designed
controller variants by conducting real-time experiments

on a standard pneumatic conveying hardware setup.

The proposed AFOPID controller is benchmarked against the
conventional PID and FOPID to justify its efficacy. The pro-
portional, integral, and derivative gains of the three aforesaid

controller variants are meta-heuristically tuned offline via the
genetic algorithm (GA) and are kept constant during every
experimental trial (Saleem and Abbas, 2017). The perfor-
mance of the proposed control scheme is validated by conduct-

ing customized real-time hardware-in-the-loop experiments on
a pneumatic conveying test rig. The experimental results and
the corresponding comparative analysis, presented later in the

article, also validate that the proposed methodology can effec-
tively regulate the velocity of solid particles at the specified set
point with cross-correlation as a velocity measurement method
using two ring-shaped flush-mounted electrostatic sensors.

The robustness of the implemented system is also validated by
introducing three levels of disturbances in the system’s steady-
state response.

Features of the proposed scheme

There are several advantages to using the proposed control
procedure. Fractional controllers are suitable to realize and

address the intrinsic nonlinear dynamics and chaotic behavior
of physical systems. The introduction of self-tuning fractional
orders increases the controller’s degree of freedom and flexi-
bility of controller design, which enhances the system’s

robustness against random exogenous disturbances. The self-
tuning fractional orders achieve the aforesaid control objec-
tive by smoothly alternating the fractional controller to act

predominantly like a proportional–derivative (PD) controller
under large error (transient) conditions to damp the over-
shoots and ensure a rapid transit and like a PI controller as

the response converges to the set point to minimize the
steady-state fluctuations. This is indeed an innovative feat. In
addition, the nonlinear scaling functions formulated to adap-
tively self-tune the fractional orders can be algebraically
solved in a single step after every sampling interval, which

does not put any recursive computational burden on the pro-
cessor. Hence, the proposed scheme can be realized using
modern digital computers. The bounded variation of the frac-
tional orders dictated by the nonlinear functions also serves
to preserve the system’s closed-loop stability.

As compared to the traditional PID controllers, the
FOPID controllers introduce two additional parameters
(fractional orders of the integral and derivative terms), pro-
viding more flexibility to handle external disturbances.
However, the tuning of these parameters is generally quite
labor-intensive. The proposed controller addresses this issue
by adaptively modulating the fractional orders. Apart from
yielding better performance in adapting to changing system
dynamics, this arrangement obviates the necessity to offline
optimize the said parameters. However, the fractional calcu-
lus in conjunction with the adaptive system results in slightly
higher computational requirements. But modern digital com-
puters have sufficient processing power to handle the compu-
tational burden. The Sliding Model Controllers (SMCs) are
simpler to implement, but the smooth dynamic adjustment of
the fractional orders in the proposed controller results in gen-
erating smoother control actions, thus, deliberately avoiding
the chattering problem.

Unlike the Linear Quadratic Controllers (LQRs), the
model-free nature of the proposed controller enables it to
effectively handle the intrinsic nonlinearities and model uncer-
tainties. Its implementation is quite easier for systems whose
precise mathematical model is either not available or is diffi-
cult to derive. However, its control effort may be suboptimal
in terms of a quadratic cost function. The MPC solves optimi-
zation problems online, which inevitably makes it computa-
tionally expensive. The proposed scheme requires relatively
less computational resources compared with MPC. The trans-

lation of expert knowledge into fuzzy rules simplifies the fuzzy
control design. However, the definition of these heuristic rules
or their tuning may not always be precise, which degrades the
controller’s performance. On the contrary, the proposed con-
troller provides a clear analytical framework for design and
tuning. Unlike the neural controllers, the proposed scheme
can adapt to reject disturbances in the system in real time
without extensive training, which makes it computationally
simpler. The proposed controller indeed possesses some short-
comings as compared to the existing control schemes.
However, its benefits tend to outweigh its limitations.

The idea of using an adaptive FOPID controller with self-
tuning fractional orders to robustly regulate the particle velo-
city in a pneumatic conveying system under disturbances has
never been attempted in the scientific literature. Hence, the
proposed scheme is novel and innovative.

The remaining paper is organized as follows: The measure-
ment system is described in ‘‘Particle velocity estimation sys-
tem’’ section. The proposed control scheme is formulated in
‘‘Proposed control methodology’’ section. The parameter
optimization methodology is discussed in ‘‘Parameter optimi-
zation’’ section. The experimental analysis is presented in
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‘‘Experimental analysis’’ section. The article is concluded at

the end.

Particle velocity estimation system

As discussed earlier, pneumatic conveying systems are signifi-
cant in various industries due to their efficiency, flexibility,

and reliability to handle a wide range of materials. They
enhance operational efficiency, ensure product quality, and

contribute to safer and more sustainable industrial practices.
However, developing a robust and agile control system that

regulates the particle velocity in the system poses a challen-
ging problem for the scientists. However, it is imperative to

derive a mathematical model of the particle motion in the
conveying system to analyze the dynamics of the system and

then develop a suitable control scheme around it. This section
presents a nominal model of particle motion and a compre-

hensive description of the particle velocity determination
system.

Mathematical model of particle motion

To model the system dynamics of a particle flowing in a fluid,
consider a constant horizontal input force T applied to a sphe-

rical inertial particle as it travels across a pneumatic conveying
channel. The one-dimensional equation of motion of a particle

having mass m subject to a drag force Fd is expressed as

m _v=Fd +T 1ð Þ ð1Þ

where v represents the particle’s velocity in the inertial frame,
_v is the particle’s acceleration, and T is the constant thrust

force input. Ideally, the particle is subjected to a linear Stokes
drag force, as shown in equation (2)

Fd = � 3pdr v� wð Þ ð2Þ

where d is the diameter of the spherical particle, r is the
dynamic viscosity of the fluid (air in this case) at room tem-

perature, and w is the velocity of the fluid flow in the inertial
frame. By substituting equation (2) in equation (1), the first-

order differential equation representing the particle motion
dynamics is formulated as

_v= � 3pdr

m

� �
v+

3pdr

m

� �
w+

1

m

� �
T ð3Þ

Assuming that the velocity of fluid flow w is negligible, the

aforementioned expression can be simplified as shown in
equation (4)

_v= � 3pdr

m

� �
v+

1

m

� �
T ð4Þ

The expression resembles the state equation of a linear
dynamic system _x= ax+ bu; where x= v is the state variable,

a= � 3pdr

m
is the system variable, b= 1

m
, and u=T is the sys-

tem’s input. The transfer function of the system for v 0ð Þ= 0

is expressed in equation (5)

G sð Þ= V sð Þ
T sð Þ =

1

ms+ 3pdr
ð5Þ

where s is the Laplace operator. In this work, the pneumatic

conveyance of fine wheat flour particles is used for experimen-
tation. The model parameters are shown in Table 1.

Cross-correlation scheme for particle velocity
estimation

The cross-correlation technique is used to evaluate the likeli-
hood between two signals, q1 tð Þ and q2 tð Þ, as a function of

the time delay tp between them. These signals are acquired
via two transducers that are deployed upstream and down-

stream in the pipe at a fixed distance from each other. The
cross-correlation R12 of the acquired signals is computed as

shown in equation (6) (Zhang et al., 2016)

R12 pð Þ=
PN

k = 1 q1 ið Þq2 i+ pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k = 1 q2

1 ið Þ
q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k = 1 q2
2 ið Þ

q� � ð6Þ

where N is the number of sampling points, P is the maximum

number of delayed points (P= 0, 1, 2, . . . , p), and q1 ið Þ and
q2 ið Þ represent the discretized signals, q1 tð Þ and q2 tð Þ, respec-
tively. The value of tp is determined by computing the loca-
tion of the dominant peak in the cross-correlation function,

which corresponds to the point in time where the two signals
are best aligned (Yang et al., 2022). Since the spacing between
the two transducers is already known, the particle velocity is

calculated as shown in equation (7)

v=
L

tp

ð7Þ

where L is the distance between upstream and downstream
electrodes, and tp is the time that solid particles take to move

from upstream to downstream transducer electrodes.

Electrostatic sensor setup

In this research, electrostatic sensors are used as transducers
to acquire the correlated signals. The electrostatic sensor is a
passive device that measures the charge value of the solid par-

ticles. Hence, first, the charge signals are converted into corre-
sponding voltage signals (Qian et al., 2017). These voltage

signals are amplified to ensure their accurate recognition and
interpretation by the acquisition system. The final stage of the

conditioning circuit comprises a low pass filter that removes

Table 1. Identification of system parameters.

Symbol Description Value Unit

m Mass of the particle 2.48 3 1029 kg

d Diameter of the particle 200 mm

r Dynamic viscosity of the fluid (air) 1.85 3 1025 kg/m.s
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the high-frequency noise to remove unnecessary chattering

content from the signal. The sensor layout is shown in Figure

1(a). The two ring-shaped electrostatic electrodes are flush

mounted with the walls of the sensing head (Yan, 2005). In

this work, the value of L is set at 16 mm. The disturbance in

the gas–solid flow is introduced using a rectangular shape

strip as shown in Figure 1(b).

Proposed control methodology

The proposed control scheme works by dynamically updating
the fractional orders based on the real-time error variations in

the velocity of solid particles. The overall closed-loop system,

along with the proposed methodology, is shown in Figure

2(a). The whole process starts with a velocity set point vset

prescribed by the user. The difference between vset and the

particle’s actual velocity vo yields the velocity error e tð Þ. The
values of e(t) and its derivative _e(t) are fed to pre-calibrated

HSFs that modify the fractional orders online. The PID gains
and the variation rates of the HSFs are pre-calibrated offline

by using the GA. The AFOPID controller uses the error var-

iations to generate a voltage signal that is bounded within 0–

10 V. The variable frequency drive (VFD) uses this voltage to

vary the pump’s frequency between 0 and 50 Hz to control its

suction power. The schematic of the test rig used for this pur-

pose is shown in Figure 2(b).

Integer order PID controller

The conventional PID controller is formulated as the

weighted sum of the classical error variable, the integer-order

error-integral variable, and the integer-order error-derivative

variable. The linear combination of the aforesaid error vari-

ables is expressed as shown in equation (8)

u tð Þ= kpe tð Þ+ ki

ðt
o

e tð Þdt + kd _e tð Þ ð8Þ

such that e tð Þ= vset � vo

where kp, ki, and kd are the proportional, integral, and differ-

ential gains, respectively. The proportional controller

improves the reference-tracking accuracy of the closed-loop

system. The integral controller attenuates the overshoots and

minimizes the steady-state fluctuations. The derivative con-

troller enhances the phase margin and the response speed of

the system (Shang et al., 2009). Altogether, these terms

increase the controller’s agility to flexibly manipulate the stiff-

ness of the control input as the error conditions vary (Saleem

et al., 2020). The PID gains are optimized offline via GA dis-

cussed in ‘‘Parameter optimization’’ section.

FOPID controller

Despite its reliability, the integer-order PID controller lacks

the robustness to compensate for nonlinear disturbances

(Erenturk, 2013). This problem can be addressed by retrofit-

ting the integer-order PID control law with fractional calculus.

Fractional calculus serves as an effective tool to realize and

reject intrinsic and unmodeled nonlinear disturbances. The

fractional control law is realized by replacing the integer-order

integral and differential operators with their fractional-order

counterparts. This augmentation increases the controller’s

flexibility, which enhances its resilience against exogenous dis-

turbances. To implement the fractional control law, integral

and differential operators are assigned fractional number

powers. In this article, the fractional operators are denoted as

De, where e is the fractional order. The three well-known defi-

nitions governing fractional calculus are given by Riemann-

Liouville, Gruunwald-Letnikov, and Caputo (Mishra and

Figure 1. (a) Layout of sensor design and (b) sensing head with source

of disturbance.

Figure 2. (a) AFOPID control algorithm and (b) test rig schematic.
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Chandra, 2014). These definitions are expressed as follows,

respectively

Def tð Þ= 1

G n� eð Þ
dn

dtn

ðt
a

f tð Þ
t � tð Þe�n+ 1

dt ð9Þ

where f tð Þ is an arbitrary function, G :ð Þ is the Euler gamma
function, n is an integer number, and n� 1\e\n

Def tð Þ= lim
h!0

1

he

Xt�að Þ=h

j= 0

�1ð Þj e
j

� �
f t � jhð Þ ð10Þ

where
e
j

� �
=G e+ 1ð Þ=G j+ 1ð ÞG e� j+ 1ð Þ, and h is the

step size

Def tð Þ= 1

G e� nð Þ

ðt
a

f n tð Þ
t � tð Þe�n+ 1

dt ð11Þ

The integer-order PID control law, designed in the previ-

ous subsection, is retrofitted with fractional-order integral and
derivative operators to realize the FOPID control law. The

fractional powers of the integral and derivative operators, d

and m, are treated as the two new hyper-parameters. The

FOPID control law is formulated as shown in equation (12)

u tð Þ= kpe tð Þ+ ki D�de tð Þ
� �

+ kd Dme tð Þð Þ ð12Þ

where kp, ki, and kd are the same proportional, integral, and
differential gains as prescribed in the last subsection. The frac-

tional orders d and are meta-heuristically tuned via the GA.
The offline tuning procedure is discussed later in this article.
The transfer functions of the control laws u tð Þ are presented

in equation (13)

C sð Þ= U (s)

E(s)
= kp + kdsm +

ki

sd
ð13Þ

It is quite difficult to computationally realize the terms sd and

sm due to their fractional nature. Hence, these fractional opera-
tors are digitally implemented by using the Oustaloup recursive fil-
tering technique (Saleem et al., 2020). The fractional operator se is

approximated via the Oustaloup filter, as shown in equation (14)

se =P
YM
i= 1

1+ s=vz, i

� �
1+ s

	
vp, i

� � ð14Þ

such that vz, i =vl
vh=vl

� �2i� 1� e=2M
,

v p, i

=vl
vh=vl

� �
2i� 1+ e=2M

where vh and vl are the upper and the lower translational fre-
quencies of the filter, respectively, and M is the filter order.

The value of P is selected such that jvð Þe = 1 at 1.0 rad/s. In
this research, a fifth-order Oustaloup’s recursive filter is
employed with vl = 10�4 rad/s and vh = 102 rad/s to realize

the fractional operators. The stability and robustness of the
designed FOPID controller are analyzed as per the basic

definitions of the gain margin and phase margin in the fre-

quency domain. The feedback control system is required to
satisfy the following conditions to ensure its stability (Hui
et al., 2019).

� The phase of the open loop at the gain cross-over fre-

quency vc satisfies: arg C jvcð ÞG jvcð Þð Þ=um � p,
where um is the phase margin.

� The gain of the open loop at vc satisfies:

C jvcð ÞG jvcð Þj j= 0dB
� To ensure robustness against loop gain variations, the

phase satisfies: d
dv

arg C jvð ÞG jvð Þð Þ½ �jv=vc
= 0

� To attenuate high-frequency noise v ø vh, the magni-
tude of the closed-loop transfer function Q must sat-

isfy: Q jvhð Þ= C jvhð ÞG jvhð Þ
1+C jvhð ÞG jvhð Þ




 


\H dB

� To attenuate low-frequency noise v ł vl, the sensitiv-

ity function S satisfies: S jvlð Þ= 1
1+C jvlð ÞG jvlð Þ




 


ł MdB.

For the setup used in this work, the following specifica-

tions can be considered; um = 0:785rad, vc = 0:5, H = � 10,
and M = � 20. These specifications can be used to compute
the five parameters of the FOPID controller while preserving

its asymptotic stability. Since it is quite hard to evaluate the
analytical solutions, GA is used in this work to optimize the

said parameters. The GA-based offline tuning of the FOPID
controller parameters is discussed in ‘‘Parameter optimiza-
tion’’ Section.

Adaptive FOPID controller

Despite the optimum tuning of the fractional orders, the con-
sequent FOPID controller would still lack the adaptability to
flexibly manipulate the stiffness of the control effort to

robustly compensate for the bounded exogenous distur-
bances, load-step variations, and measurement noise. This is

because assigning a unique set of preset values to the control-
ler gains and fractional orders is insufficient to address and
yield the best control behavior against every disturbance

condition.
The aforementioned problem can be easily addressed by

retrofitting the FOPID controller with an online adaptation
mechanism that dynamically modulates the fractional orders

d and m as a nonlinear function of state-error variables
(Saleem and Abbas, 2017). It is well-known that an appropri-

ate setting of d and m can transform the FOPID controller
into its integer-order variants: the P, PI, PD, and PID con-
trollers. Each of these controller subclasses exhibits beneficial

features to handle the response as it commutes between its
different phases.

Hence, in this work, the proposed adaptation mechanism
acts as a superior regulator to adaptively modulate the frac-

tional orders so that the FOPID controller can be smoothly
transformed into its appropriate subclasses as the error condi-

tions vary. The adaptation mechanism is formulated by using
the following meta-rules (Saleem et al., 2020).

� The value of m is increased during the initial start-up
and the transient disturbances, and vice versa, to
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strengthen the derivative action. This arrangement

increases the system’s response speed and tightens the
control application.

� The value of d is increased during steady-state condi-
tions, and vice versa, to strengthen the integral action.
This improves the system’s damping against steady-

state fluctuations, allowing it to settle smoothly at the
set point.

These rules tend to increase the system’s response speed while
strengthening its damping effort against overshoots. The
arrangement enables the controller to satisfy the desired

objectives while addressing the disturbances. The AFOPID
controller is formulated as per the aforementioned meta-rules.
The fractional orders are dynamically adjusted as a nonlinear
function of the classical error and its derivative. The AFOPID

control law is formulated as shown in equation (15)

u tð Þ= kpe tð Þ+ ki D�d z, tð Þe tð Þ
� �

+ kd Dm z, tð Þe(t)
� �

ð15Þ

where kp, ki, and kd are the proportional, integral, and differ-

ential gains, respectively. The fractional orders d and m are
dynamically modified via the HSFs shown in equations (16)
and (17)

d z, tð Þ=sech g1z tð Þð Þ ð16Þ

m z, tð Þ= 1� sech g2z tð Þð Þ ð17Þ

where g1 and g2 depict the variation rates of the HSF sech(:),
and z(t) is the maximum value chosen between the normalized
value of classical error ê(t) and derivative of normalized errorsb_e(t). The HSFs are chosen in this work because they are con-
tinuous, even-symmetric, and bounded between zero and
unity. These features lead to smooth transitions of d and m

while restricting them between zero and unity, irrespective of

the sign of z tð Þ. The variable z tð Þ is expressed as shown in
equation (18)

z tð Þ= max ê,b_e� �
ð18Þ

The particle velocity is estimated via the cross-correlation
technique, which is then used to compute e(t). Numerical dif-
ferentiation of e(t) delivers _e(t). The instantaneous values of
e(t) and _e(t) are normalized, as shown in equation (19)

ê tð Þ= e tð Þ
emax










= e tð Þ

vset










,b_e tð Þ= _e tð Þ

_emax










 ð19Þ

The maximum error occurs when the particle’s velocity is

zero. In this case, the error becomes equal to the reference
velocity. The maximum value of the derivative of error is
determined experimentally to be 12 m/s for this research

work. To ensure the system’s stability with the proposed
methodology, all the controller gains and the other para-
meters need to be kept within the range described in Table 2.
The parameter adaptation procedure does not put any recur-

sive computational burden on the computer. Hence, the
scheme can be easily realized with modern digital computers.
The proposed control guarantees asymptotic convergence if

the conditions prescribed in the previous subsection are satis-

fied. The parameters kp, ki, kd , g1, and g2 are tuned offline

via the GA as discussed in ‘‘Parameter optimization’’ section.

Parameter optimization

The GA is a heuristic search and optimization algorithm that

is inspired by the theory of natural evolution by Charles

Darwin. The GA technique offers several advantages over
other optimization schemes (Lazarevic et al., 2013).

The GA is a stochastic search method that imitates the

evolution processes observed in nature (Guo et al., 2010). It

can afford parallelism to solve optimization tasks. It is simple,
requires less information, offers a higher convergence rate,

and can handle larger sets of solution spaces as compared to

other techniques (Guo et al., 2010). It represents natural
genetics using chromosomes to perform parameter optimiza-

tion and can be applied to a vast variety of practical engineer-

ing problems. These features make GA the ideal candidate to

optimize the controller parameters for this work. This algo-
rithm uses the natural selection process in which the most

suitable people are chosen for reproduction to generate the

next generation of children. The algorithm contains five steps
that are described as follows:

1) Initialization: The method starts with a collection of
random parameters denoted as the ‘‘population.’’
Every parameter in the population is a candidate solu-
tion to the optimization problem. The population is
chosen such that the algorithm yields faster conver-
gence while preserving the quality of the solutions and
the computational economy. For this purpose, differ-
ent population sizes (e.g. 50, 100, and 200) were ana-
lyzed, and the algorithm’s corresponding performance
in terms of convergence speed and quality of solutions
was observed. Consequently, a population size of 100
is selected for this application.

2) Evaluation: The likelihood of selecting a parameter for
reproduction is based on its fitness value. Every para-
meter is assigned a fitness value. The percentage over-
shoot (PO), settling time (ts), rise time (tr), and
summation of all steady-state errors (ess) are used to
ascertain the fitness of the parameter. The fitness
function is shown in equation (20)

Table 2. Range of controller parameters.

Parameters Minimum Maximum

kp 0.01 1

ki 1 10

kd 0.001 0.1

d 0.1 1

m 0.1 1

g1 0.01 1

g2 1 20
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Jf = POj j+ ts + tr +

ð‘
0

ess(t)j jdt ð20Þ

The computation of the solutions to the optimization

problem is directly impacted by the selection of the weighting

factors of the performance indices in the cost function.

Applying a higher weighting factor to ts and tr allows the con-

troller to respond more quickly to changes in the system,

leading to a faster transient response, and better tracking of

desired references. However, it also contributes to larger over-

shoots and steady-state fluctuations. On the contrary, apply-

ing a higher weighting factor to PO or integral of ess reduces

the overshoots and potentially attenuates the steady-state

fluctuations. However, it also slows the response speed and

prevents the controller from keeping up with rapid changes in

the system, leading to poor tracking performance.
Imposing equal weights on each performance index typi-

cally establishes a beneficial trade-off between the system’s

tracking performance, robustness against disturbances, and

transient speed. By setting all weights to unity, each perfor-

mance index is considered equally important. This approach

assumes that all parameters have the same impact on the

overall cost, thus simplifying the optimization problem. In

the absence of specific knowledge about the relative impor-

tance of different performance indices, setting all weights to

unity is a neutral starting point. This avoids the introduction

of bias that might come from arbitrary weighting. Hence, in

this research, a weighting factor of 1 is applied to each perfor-

mance metric in Jf .

1) Selection: This stage selects the fittest parameters and
transfers their properties to the next generation. The
number of iterations (or generations) is determined
based on empirical testing with various numbers of
generations (e.g. 50, 100, and 200) via pilot algorithmic
runs until improvements in fitness are negligible (con-
vergence). The algorithm is thus run for 50 iterations
in this research because the entire system takes consid-
erable time to converge to the reference velocity. The
chosen number of iterations yielded near-optimal solu-
tions while preserving the computational economy.

2) Crossover: Two previously existing parameters
exchange their properties to reproduce the next gener-
ation of parameters that can be added to the popula-
tion. The new parameters are generated as shown in
equations (21) and (22)

Y1 = b1X1 + 1� b2ð ÞX2j j ð21Þ

Y2 = (1� b1)X1 � b2X2j j ð22Þ

where b1 and b2 are crossover rates that are bounded between

0 and 1, X1 and X2 are the parent elements that contribute

their properties to generate new parameters Y1 and Y2.

Generally, a higher crossover rate promotes exploration but

can disrupt good solutions, whereas a lower crossover rate

promotes exploitation but can lead to premature convergence.

By conducting preliminary runs of the algorithm, b1 = 0:4
and b2 = 0:6 are selected. This set of empirically selected

crossover rates balances exploration and exploitation for this

application.

1) Mutation: Mutation happens within the population to

preserve diversity and damp premature convergence
by flipping some of the bits within one parameter.

The inner parameters of the GA are empirically tuned via the

following steps: An initial set of inner parameters (popula-

tions, generations, and crossover rates) is chosen based on lit-

erature and general guidelines. A few pilot runs of the

algorithm are then performed to understand the GA’s beha-

vior. One inner parameter is adjusted at a time, and its impact

on the GA’s performance is observed. This process involves

refining the inner parameters and testing the algorithm until

its performance is satisfactory. That is, the algorithm’s con-

vergence rate improves while preserving the quality of the

solutions and the computational budget.
The algorithm’s flow is illustrated in Figure 3. The con-

troller parameters (kp, ki, kd , d,m,g1, and g2) of the PI, PID,

fractional-order proportional–integral (FOPI), FOPID, and

AFOPID controllers are optimized offline via GA to ensure a

fair comparison between the three control variants. While

optimizing a particular controller variant, the GA chooses

the random initial value of the parameters from the selection

ranges (identified in Table 2) and evaluates their fitness Jf by

running the conveying system to track the 20 m/s velocity set

point for 40 seconds. The optimized controller parameters

are recorded in Table 3.

Experimental analysis

This section describes the experimental procedure and ana-

lyzes the experimental outcomes.

Table 3. Selected control parameters.

Controller kp ki kd d m g2

PI 0.50 5.1 — — — — —

PID 0.50 5.0 4.9 3 1023 — — — —

FOPI 0.52 3.1 3.4 3 1023 0.85 — — —

FOPID 0.52 3.2 3.4 3 1023 0.92 0.181 — —

AFOPID 0.48 2.1 4.8 3 1023 HSF HSF 0.05 10
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Experimental setup

All experiments are conducted on a laboratory-scale negative

pressure test rig, as shown in Figure 4(a). In this research, the

velocity of pneumatic conveyance of fine whole-grain wheat

flour particles is used to analyze the performance of the pro-

posed control scheme in the physical environment. The flour

particles are placed in the vibratory feeder that conveys them

to the pipe inlet of 0.05 m diameter. A suction pump is

installed at the pipe’s other end to move these particles at the

desired velocity. Hence, a VFD is commissioned to control

the pump’s suction power via a personal computer (PC). A

separate sensing head is installed at 2.6 m from the starting

point of the horizontal pipe to analyze the behavior of the

charge absorbed by the solid particles. The measurements are

acquired via the National Instruments Data Acquisition (NI-

DAQ) card at a sampling rate of 50 kHz. The acquired sig-

nals are conditioned and serially transferred to the software

control routine running on the PC. The DAQ card also

receives control commands from the PC and applies them to

the VFD, as shown in Figure 4(b).
The proposed control system is programmed in the

Windows-based MATLAB application using the FOMCON

toolbox. The toolbox uses the Oustaloup recursive approxi-

mation to approximate fractional-order operators in the con-

tinuous domain. This involves generating a continuous-time

rational transfer function with a specified number of poles

and zeros to approximate the fractional order over a given

frequency range.
For implementation in digital controllers, FOMCON pro-

vides built-in functions to discretize the continuous-time

approximation. This is typically done using methods like the

Tustin (bilinear) transformation or other discrete approxima-

tion techniques, allowing the continuous-time model to be

used in discrete-time systems. The Oustaloup filter provides a

rational function approximation that can be applied in the

continuous domain, which can then be discretized for imple-

mentation in digital systems.
The implementation of the proposed control algorithm

involves a higher computational burden compared with sim-

pler control algorithms like the traditional PID controller.

This increased computational complexity arises from the need

to approximate fractional-order integrals and derivatives,

which inevitably increases the memory requirements as well

as the complexity and the number of calculations per sam-

pling interval. However, the said computational load can be

easily handled with modern day programmable-logical con-

trollers (PLCs) or digital controllers, given that these systems

support a high-level programming language (such as struc-

tured text and function block diagrams), a sufficient sampling

rate (at least 50 kHz), an adequate memory, and processing

power. Hence, the proposed scheme can be practically inte-

grated into industrial applications.

Tests and results

Two unique experimental scenarios are used to assess the

real-time performance of the proposed control scheme. In

every experimental trial, irrespective of the controller variant

being used or the test condition being applied, the system

starts with the vibratory feeder supplying the same (preset)

quantity of solid particles while the pump’s VFD adjusts the

suction power to meet the desired set point. The details of the

two experimental tests, the corresponding results, and the per-

formance analysis are presented as follows:

Tests under different velocity set points. The reference-tracking
behavior of each control scheme is tested with three different

velocity set points for a duration of 40 seconds. to analyze

their performance. The variation in velocity set points is a

common occurrence in practical conveying systems, and this

test case emulates the aforementioned phenomenon. The min-

imum velocity required to drive the particles in the pneumatic

pipeline of the hardware setup used in this work is 15 m/s.

Below this threshold, the particles tend to accumulate at the

bottom of the pipe.
The air velocity measurement capability of the hot anem-

ometer used in this work is limited to 26 m/s. In compliance

Figure 3. Flow chart of GA.

Figure 4. (a) Laboratory scale test rig and (b) data acquisition and

control system.
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with the aforementioned constraints, the three equally spaced

velocity set points are chosen from the range of 15 m/s to

25 m/s. Hence, the test results for 15, 20, and 25 m/s velocity
set points are illustrated in Figure 5(a)–(c), respectively. The

performance of AFOPID is compared with classical PI, PID,
FOPI, and FOPID controllers. The AFOPID outperforms

the other control techniques in terms of rise time (tr), settling

time (ts), PO, steady-state error (ess), integral square-of-error
(ISE), and integral time-weighted absolute error (ITAE) as

shown in Table 4. The PI and FOPI controllers minimize the
chattering content but also slow down the response. The PID

exhibits faster transition at the cost of large overshoots and

chattering. The FOPID controller exhibits a mediocre
improvement in time-domain performance. The AFOPID

controller yields the most time-optimal behavior with mini-
mal fluctuations.

Tests under different disturbance levels. The second set of
experiments is done with three different disturbance levels.

The disturbances are injected into the system by blocking a
portion of the pipe with a rectangular strip of three different

sizes, as shown in Figure 1. This practical disturbance sce-
nario is designed specifically to emulate different levels of

blockage that occur in the conveying system in real time.

Three different disturbance levels (L1, L2, and L3) are chosen
that block 25%, 50%, and 75% of the cross-section area of

the pipe, respectively. The aforementioned blockage percen-
tages are chosen to analyze the system at three different

(equally spaced) blockage levels. This test assesses the sys-

tem’s robustness as the disturbance levels are systematically
increased by a 25% step in each case. The test results are illu-

strated in Figures 6(a)–(c), respectively. In each case, the dis-
turbance is introduced during steady-state conditions. Each

controller is analyzed based on its transient recovery time

(trec), mean absolute error (MAE), ISE, and ITAE.
The experimental results are summarized in Table 5. The

introduction of a bounded disturbance in continuous flow

causes a sudden fall in velocity, as shown in Figure 6(a).
However, the sudden rise in velocity in Figure 6(b) and (c) at

the time of disturbance application is caused by the incremen-

tal blockage level, which enables the particles lying at the bot-

tom of the pipe to flow with higher air pressure and a higher

velocity. The PI controller and the FOPI controller exhibit

fragile damping against disturbance-induced undershoots,

along with a slow transient recovery. The PID exhibits a rela-

tively quicker transient recovery behavior while contributing

a large undershoot. The FOPID controller exhibits a reason-

able improvement in damping control activity and response

speed. The AFOPID controller exhibits rapid transits with

relatively stronger damping against undershoots.
The system learns about the disturbances by observing the

variations in the state-error dynamics, namely the error, error

derivative, and integral of error. Together, these three state

variables provide the closed-loop system with an accurate esti-

mate regarding the magnitude of disturbance encountered by

it. The customized state observers are not used to avoid addi-

tional computational load, noise sensitivity, and implementa-

tion complexity (Yuan and Gao, 2019).

Conclusion

This article systematically formulates an innovative self-

adaptive FOPID control scheme for particle velocity regula-

tion in an industrial pneumatic conveying system to enhance

its time optimality, adaptability, and robustness against

bounded disturbances. The innovative adaptive tuning of

fractional orders using error-driven scaling functions has

enhanced the flexibility of the proposed control law to achieve

the desired control objectives. Three control algorithms are

implemented and investigated to regulate the velocity of pneu-

matically conveyed solid particles. Reliable hardware experi-

ments are conducted to analyze the efficacy of the AFOPID

control law. The AFOPID controller surpasses all the other

controller variants by displaying enhanced time-domain per-

formance and superior disturbance-compensation capability.
It exhibits rapid transits with strong damping against

overshoots and steady-state fluctuations while tracking the

velocity set points: 15, 20, and 25 m/s. Under different

Table 4. Experimental result summary under different velocity set points.

Velocity (m/s) Controller tr(seconds) ts(seconds) PO(%) ess (m/s) ISE (m/s)2 ITAE (m)

15 PI 8.56 27.55 23.17 0.41 4.21 3 103 42.23

PID 4.62 21.15 80.18 0.48 2.90 3 103 33.29

FOPI 6.72 20.18 22.88 0.33 1.89 3 103 20.21

FOPID 4.16 18.15 25.79 0.38 1.25 3 103 18.30

AFOPID 4.05 7.50 8.46 0.27 0.98 3 103 13.61

20 PI 9.38 35.33 20.12 0.33 5.12 3 103 45.87

PID 4.33 34.32 51.52 0.37 4.92 3 103 39.01

FOPI 7.51 33.95 21.18 0.28 4.14 3 103 32.33

FOPID 5.18 33.63 21.95 0.29 3.20 3 103 31.92

AFOPID 4.62 10.28 11.11 0.23 2.91 3 103 26.23

25 PI 9.18 37.25 14.56 0.47 8.65 3 103 63.25

PID 5.77 36.84 25.00 0.56 7.60 3 103 55.44

FOPI 8.26 31.89 14.23 0.51 7.23 3 103 40.02

FOPID 5.77 23.55 14.29 0.46 6.63 3 103 39.36

AFOPID 6.93 12.64 5.26 0.24 5.62 3 103 29.87
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disturbance levels, when the cross-section area of the pipe

was blocked systematically, it was observed that the AFOPID

accurately tracks the set-point velocity and quickly converges

to the set point, effectively rejecting the overshoot. It exhibits

the strongest immunity against bounded exogenous distur-

bances and improves the transient recovery time by 10 folds

as compared to the conventional control schemes analyzed in

this research. Similarly, it also improves the MAE, ISE, and

ITAE metrics by at least two times. The study shows that the

FOPID controller for the pneumatic conveying system

demonstrates superior agility and robustness as compared to
the other controllers due to the introduction of the two self-
adjusting parameters that increase the controller’s design flex-
ibility. Thus, it is concluded that the AFOPID controller per-

forms better than other classical control schemes by
effectively rejecting disturbances.

There is still a lot of room for future enhancements. The
proposed scheme can be investigated with other meta-
heuristic optimization algorithms. Other expert adaptation

systems can be assessed to improve the control yield of the
proposed scheme. With the specialized hardware setup and
data acquisition of the appropriate state variables, the

Figure 5. Response of the controllers with velocity set point: (a) 15 m/

s; (b) 20 m/s; and (c) 25 m/s.

Figure 6. Response of the controllers upon disturbance level:

(a) L1; (b) L2; and (c) L3.
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proposed scheme has the potential to be applied to networked

control applications as well. Furthermore, the proposed

scheme can be modified to control the behavior of under-

actuated mechatronic systems, renewable energy conversion

systems, robotic manipulators, aircraft control, satellite atti-

tude and orbital control, humanoid robot control, and biolo-

gical systems (like glycemic regulators). Finally, the transient

response speed and reference-tracking accuracy of the pro-

posed AFOPID controller can be experimentally compared

with those of the adaptive PID controller whose integral and

differential gains are dynamically adjusted online using pre-

calibrated adaptation functions, customized to address the

requirements of pneumatic conveying systems.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iDs

Faisal Abbas https://orcid.org/0000-0003-2323-278X
Omer Saleem https://orcid.org/0000-0003-2197-9302

Data availability statement

Data sharing is not applicable to this article as no data sets
were generated or analyzed during this study.

References

Abe MC, Gelladuga GA, Mendoza CJ, et al. (2023) Pneumatic con-

veying technology: Recent advances and future outlook. Engineer-

ing Proceedings 56(1): 205.

Barbosa PR and Seleghim P (2003) Improving the power consump-

tion in pneumatic conveying systems by adaptive control of the

flow regime. Journal of the Brazilian Society of Mechanical

Sciences and Engineering 25: 373–377.

Barbosa PR and Seleghim P (2011) On the application of fuzzy logic

control in pneumatic conveying systems. Learning and Nonlinear

Models 9: 256–265.

Barratt I, Yan Y, Byrne B, et al. (2000) Mass flow measurement of

pneumatically conveyed solids using radiometric sensors. Flow

Measurement and Instrumentation 11(3): 223–235.

Bequette BW (2003) Process Control: Modeling, Design, and Simula-

tion (1st edn). Hoboken, NJ: Prentice Hall.

Birk W (1999) Multivariable control of a pneumatic conveying system.

Dissertation, Lulea University of Technology, Luleå.
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