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Abstract: For most landslides, several destabilising processes act simultaneously, leading to relative
sliding along the soil or rock mass surface over time. A number of machine learning approaches
have been proposed recently for accurate relative and cumulative landside displacement prediction,
but researchers have limited their studies to only a few indicators of displacement. Determining
which influencing factors are the most important in predicting different stages of failure is an ongoing
challenge due to the many influencing factors and their inter-relationships. In this study, we take
a data-driven approach to explore correlations between various influencing factors triggering slope
movement to perform dimensionality reduction, then feature selection and extraction to identify
which measured factors have the strongest influence in predicting slope movements via a supervised
regression approach. Further, through hierarchical clustering of the aforementioned selected features,
we identify distinct types of displacement. By selecting only the most effective measurands, this
in turn informs the subset of sensors needed for deployment on slopes prone to failure to predict
imminent failures. Visualisation of the important features garnered from correlation analysis and
feature selection in relation to displacement show that no one feature can be effectively used in
isolation to predict and characterise types of displacement. In particular, analysis of 18 different
sensors on the active and heavily instrumented Hollin Hill Landslide Observatory in the north west
UK, which is several hundred metres wide and extends two hundred metres downslope, indicates
that precipitation, atmospheric pressure and soil moisture should be considered jointly to provide
accurate landslide prediction. Additionally, we show that the above features from Random Forest-
embedded feature selection and Variational Inflation Factor features (Soil heat flux, Net radiation,
Wind Speed and Precipitation) are effective in characterising intermittent and explosive displacement.

Keywords: feature selection; feature extraction; hierarchical clustering; supervised learning; dendrogram;
landslides; shear failure; slope; monitoring

1. Introduction

Moisture-induced landslides, activated by prolonged and heavy rainfall periods, are
an increasing threat to humans, especially around train tracks, major roads, dam reservoirs,
canals and densely populated areas [1]. With the growing intensity of landslides, especially
those linked to precipitation and climate change, it is important to understand the underly-
ing processes leading up to a slope failure. Geophysical monitoring of moisture-induced
landslides can provide knowledge about spatial and temporal subsurface variations, while
also enhancing and guiding the deployment of effective monitoring technologies [2]. How-
ever, subsurface analyses are more limited due to the cost of monitoring and maintenance,
access to high-risk slopes and slow emergence of data-driven approaches from the com-
munity. The timely prediction of imminent landslides at the slope scale still remains
a challenging problem, because the relationship between indicators (such as displacement)
and influencing factors (such as temperature, soil heat flux, net radiation, moisture content),
including their connection with stabilising forces (friction, gravity) and destabilising forces
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(rainfall, gravity in higher angles of inclination and earthquakes), that govern a slope’s
stability are as yet not fully understood.

Over the years, many landslide models have been developed based either on limit
equilibrium analysis methods [3], or on numerical simulation methods [4–6] to perform slope
stability analyses, taking into account slope geometry, influencing physical and mechanical
geomaterial properties contributing to a slope failure, as extracted from costly laboratory
tests. For example, the Factor of Safety (FOS) of a slope, i.e., the ratio of shear strength stress
to acting shear stress, is sensitive to slope angle, slope height, unit weight, friction angle
and cohesion of soil, while it is least sensitive to the deformation parameters of soil and the
depth of foundation layer or the choice of the constitutive models of the material response to
different loads [7].

Besides these physical model-driven approaches, developed to model the influencing
physical factors contributing to slope instabilities, there has been a recent trend to investi-
gate data-driven approaches to better understand the spatial and temporal relationships
between the influencing factors and landslide deformation. This has been enabled by
a large amount of sensor measurements that have been collected and made available for
slope stability analysis. In an attempt to quantify the link between identified landslides and
meteorological data (i.e., rainfall, maximum–minimum temperature, wind speed, relative
humidity and net solar radiation) through the use of Self-Organizing Map and clustering,
it was concluded that 15-day accumulated precipitation is the most influential factor for
landslides under observation [8]. A similar observation was reached during hierarchical
and K-means clustering of rainfall data at different time scales (1 h, 3 h, 6 h, 24 h, 48 h
and 72 h before the landslide event) against historical landslide data from the Metropoli-
tan Region of Recife at Pernambuco State in Brazil, obtained from six gauges and three
geotechnical stations for a period from 2005 to 2021, showing that rainfall accumulation
thresholds are critical for issuing landslide warnings [9]. Ref. [10] focused on environmental
factors related to heat exchange, such as thermoelasticity, permafrost and snow insulation,
that were identified as triggering factors for landslide failures, concluding that a range of
meteorological observations can be linked to and used to predict slope failure.

Machine learning approaches have been also used for landslide zonation mapping
generation, for either susceptibility [11] or hazard assessment. A multivariate learning
approach, taking advantage of XGBoost, incorporating parameters such as rainfall intensity,
soil moisture, temperature and snowfall, was proposed for generating a unified Landslide
Hazard Indicator to describe the seasonality of landslides based on National Climate
Assessment—Land Data Assimilation System and Pacific Northwest Landslide Inventory
data, where it was concluded that rainfall, soil moisture and temperature are the most
important predictors of landslides [12].

One of the most critical aspects in the attempt to predict landslide failure is to select
predictors according to their relative importance. The choice of parameters used as predic-
tors according to their relative importance can vary greatly, since factors that have a high
contribution for one prediction model may be useless for another [13]. At the same time,
not all the selected factors have good predictive ability and in several cases can create noise
and reduce prediction quality [14], and so the choice of unrepresentative variables in the
model can lead to poor prediction capabilities [15]. Several machine learning-based studies
highlight the importance of feature selection for landslide susceptibility map generation
through ML methods, since the use of important factors such as rainfall, slope degree and
elevation lead to prediction accuracy [16]. In another study, the selection of elevation, lithol-
ogy, Normalised Difference Vegetation Index (NDVI), slope degree, solar radiation, Terrain
Ruggedness Index (TRI) and distance to roads among 15 conditioning factors resulted in
accepted results for susceptibility mapping via an ML approach [17].
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1.1. Literature Review

Machine learning has been increasingly used for landslide displacement prediction
to provide early warning of landslide failure. In this subsection, we review machine
learning-driven landslide displacement prediction studies most relevant to our work.

In [15], a combination of groundwater level (GWL)-derived features and precipita-
tion measurements with a climatological index for only two years of landslide displace-
ment data were used for the prediction of rainfall-induced landslide movements. Using
RF, the maximum absolute prediction error of 0.68 mm/day is achieved for daily relative
displacement prediction and less than 5.5 mm daily cumulative prediction within periods
up to 30 days. In [18], seven deep learning architectures were examined for the prediction
of relative displacement on four landslides with different geographic locations, geologi-
cal settings, time step dimensions and measurement instruments. The results obtained
using 3, 4, 5 and 13 years of continuous recordings of displacement, precipitation and, in
some cases, GWL fluctuation measurements, show that the Multiple Layer Perceptron
(MLP), long short-term memory (LSTM) and gated recurrent unit (GRU) architectures
achieved similar relative displacement prediction, ranging from an RMSE of 0.706 mm
and R2 = 0.5928 to RMSE = 13.555 mm and R2 = 0.6562. In [19], landslide movement
prediction was implemented via the decomposition of cumulative displacement and
separate prediction of trend and periodic parts; polynomial approximation was then
used for predicting the trend, and a Two-stage Combined Deep Learning Dynamic
Prediction Model (TC-DLDPM) for the periodic part. The dataset contained 5 years of
recorded displacement used for training and 1 year for testing, while rainfall and water
level on various accumulating periods were used as influencing factors. The prediction
of cumulative displacement resulted in an MAE of 8.93 mm. Ref. [20] compares five
machine learning methods on three case studies of landslides for cumulative displace-
ment prediction, based on GWL and rainfall, for six years of continuous monitoring
(5 years training and 1 testing). The best mean prediction accuracy and most stable re-
sults were obtained by particle swarm optimisation–support vector machine (PSO–SVM)
and particle swarm optimisation–least squares support vector machine (PSO–LSSVM),
that led to mean RMSE = 12.4420mm-R2 = 0.9483; RMSE = 45.9456 mm-R2 = 0.9710 and
RMSE = 17.2830 mm, R2 = 0.9750. Ref. [21] compared Support Vector Machine Regres-
sion, XGBoost and deep learning-based RNN models for displacement prediction on
a landslide region located in China, where the authors recorded monitoring data of
precipitation, soil moisture and slope displacement during and after rainfall events.
XGBoost algorithm outperformed the other two regression models due to XGBoost’s
ability to better capture the nonlinear information with a small number of data samples
provided for the prediction of large short-term displacements (time history prediction
for approximately 6.5 unseen hours).

In summary, the above studies have demonstrated that ensemble algorithms perform
best with relatively small training datasets for daily relative and cumulative landslide
displacement prediction, with a good performance of up to 30 days. This motivates our
approach to explore ensemble algorithms in more detail with up to 30-day accumulation
time windows for displacement prediction. However, most of the above studies are limited
in that they use only precipitation and GWL measurements as indicators of displacement
for prediction.

1.2. Summary of Contributions

While the above reviewed studies demonstrate the value of machine learning in pre-
dicting landslide displacement, they do not investigate the optimal set of physical indicators
needed to provide accurate prediction while minimising measurement, data collection and
processing effort. In this study, we use a data-driven machine learning approach to explore
the nonlinear relationships between the large range of near-surface (including meteorolog-
ical) and subsurface measurements taken at the active and heavily instrumented Hollin
Hill Landslide Observatory (HHLO), which experiences ongoing slope movements. We



Geosciences 2024, 14, 220 4 of 22

propose a methodology that tackles multi-modal instrumentation measurements, collected
at relatively low spatial and temporal resolution to shed light on our currently limited
understanding of temporal and spatial causalities between precipitation and displacement
and enable development of robust data-driven complex engineering solutions to mitigate
the devastating effect of slope instabilities. Unlike [15,18–20], we make predictions of
landslide movements through the exploration of a wide variety of 18 influencing factors,
including rarely measured ground parameters, such as soil moisture from multiple sensors,
soil temperature at multiple depths, soil heat flux and solar net radiation, but also air
pressure, air temperature, wind speed and wind direction, in an attempt to discover the
optimal subset of parameters that lead to high prediction accuracy. Unlike [8], our work
includes ground parameters, such as soil moisture, soil temperature and soil heat flux.
Our data-driven contribution towards understanding the relationship between influencing
factors of slope stability with respect to displacement and slip explosiveness leverages
upon feature selection providing a physics-based explanation of the influencing factors
associated with indicators measured on a landslide zone.

The contributions of this paper can be summarised as follows:

• Statistical analysis of a comprehensive database of 18 influencing factors in the form of
multivariate time series recordings, exploring the correlation between pairs of record-
ings and removing multicollinearity from multiple correlated recordings. The objective
is to identify a unique set of distinct features (Section 3).

• Feature extraction and embedded feature selection of the 18 influencing factors in
order to determine which subset of recordings are most important in predicting time
series displacement via three types of regression: Lasso, Random Forest and XGBoost.
Regression performance is compared with features obtained from statistical correlation
analysis above (Section 4).

• Unsupervised predictive agglomerative clustering to identify distinct types of displace-
ment from the features identified above and visualised via a dendogram. Clustering
also explains visually why no one feature in isolation (inc. precipitation) is sufficient
to characterise types of displacement (Section 5).

This paper is organised as follows. In Section 2, we introduce the dataset and data
pre-processing steps needed for continuous data analysis. This is followed by our three
contribution sections, as described above, before discussing key findings in Section 6 and
concluding in Section 7.

2. Dataset from Hollin Hill Landslide Observatory

Hollin Hill is a moisture-induced landslide zone [2] that lies to the north of York
in UK. It is several hundred metres wide and extends two hundred metres downslope.
Located on the south-facing side of a degraded Devensian ice-margin drainage channel, the
slope has an angle of approximately 12°. The slope at HHLO consists of Redcar Mudstone
and Whitby Mudstone at the base, with an outcrop of the Staithes Sandstone Formation
(‘Middle Lias’) running across the middle section of the slope. See [22,23] for a more
detailed description of the site and the map.

Table 1 lists the full set of sensors deployed at the site together with the resolution of
recordings provided. Placed heat flux plates, G1 and G2, measure soil heat flux at a depth
of 3 cm (Model: Hukseflux HFP01SC self-calibrating heat flux plate). Near-surface soil
temperature (STP) is measured at five depths (2, 5, 10, 20 and 50 cm) using a profile of
thermocouples (Model: Hukseflux STP01, selfcalibrating heat flux plate. Soil moisture
sensors (Model: Acclima Digital TDT Soil Moisture Sensor) at depth of 10 cm use the time
domain transmissometry (TDT) technique and provide absolute volumetric water content
(TDT1VWC and TDT2VWC) and soil temperature (TDT1SOIL and TDT2SOIL). The soil
moisture data are not calibrated to the site specific soil type, but rely on generic calibration
information. Automatic weather station measures air temperature and relative humidity
by a probe situated within a naturally aspirated radiation shield (Model: Rotronic HC2A-
S3 within the Gill MetPak Pro Base Station). Precipitation is measured through Digital
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weighing rain gauge (Model: OTT Pluvio), which provides data on the amount and intensity
of solid and liquid precipitation, Tipping bucket rain (TBR) gauge (Model: EML SBS 500),
which gives data on the amount of liquid precipitation at 0.2 mm resolution and Tipping
weighing rain gauge (Model: Lambrecht Raine), which provides greater data reliability
when the Pluvio rain gauge data is offline. Wind speed and wind direction are measured
through a 3D sonic anemometer (Model: Gill WindMaster 3D Sonic Anemometer), which
monitors wind speeds of 0–50 m/s (0–100 mph) while an integrated sonic anemeometer is
used for high-accuracy wind speed and direction measurement with automatic weather
station (Model: Gill Integrated WindSonic). Finally, a four-component radiometer measures
the individual radiation components using upward and downward facing pyranometers
and pyrgeometers (Model: Hukseflux four-component radiometer).

Table 1. Time series recordings considered from the Hollin Hill Landslide Observatory. Refer to [24]
for a detailed description of each of the sensors 1 to 18 and [22,25] for Displacement.

No. Variable Physical Quantity Units Sensor Resolution

1 PRECIP Precipitation mm Rain gauge 30 min
2 RN Net Radiation Wm−2 Radiometer 30 min
3 G1 Soil Heat flux 1 Wm−2 Soil heat flux plate 30 min
4 G2 Soil Heat flux 2 Wm−2 Soil heat flux plate 30 min
5 PA Atm. Pressure hPa Cosmic-Ray Neutron Sensor (CRNS) 30 min
6 TA Air Temperature ◦C Automatic weather station 30 min
7 WS Wind Speed ms−1 Integrated 2D sonic anemometer 30 min
8 WD Wind Direction deg Integrated 2D sonic anemometer 30 min
9 RH Relative Humidity % Automatic weather station 30 min

10 TDT1TSOIL Soil Temperature ◦C Soil temperature sensor at 10 cm 30 min
11 TDT1VWC Soil Moisture % Point soil moisture sensor 30 min
12 TDT2TSOIL Soil Temperature ◦C Soil temperature sensor at 10 cm 30 min
13 TDT2VWC Soil Moisture % Point soil moisture sensor 30 min
14 STPTSOIL2 Soil Temperature ◦C Soil temperature sensor at 2 cm 30 min
15 STPTSOIL5 Soil Temperature ◦C Soil temperature sensor at 5 cm 30 min
16 STPTSOIL10 Soil Temperature ◦C Soil temperature sensor at 10 cm 30 min
17 STPTSOIL20 Soil Temperature ◦C Soil temperature sensor 30 min
18 STPTSOIL50 Soil Temperature ◦C Soil temperature sensor at 50 cm 30 min
19 DISP Displacement mm Leica System 1200 RTK 60 min

In this paper, we used all timestamped recordings during the period from 25 March
2014 to 9 March 2022, during which there were two catastrophic landslides presenting
explosive landslide movement, as shown in Figure 1 (at the start of 2016 and 2018) obtained
from DISP measurements (Table 1). The Leica System measuring displacement [22,25],
consists of a grid of sensors, and in this paper, only “sensors-9”, placed at the eastern lobe
of the hill were used, since they showed the stages of failure most prominently.

As seen in Figure 1, two periods of mass or explosive movement and three periods
of intermittent movement can be identified through the displacement recordings. Indeed,
the first period of explosive movement lasted from mid December 2015 to mid April 2016,
while the second period of explosive movement lasted from the end of November 2017 to
the end of April 2018.

Pre-Processing: Data Cleaning, Gaps, Interpolation and Downsampling of the Data

All the non-cumulative weather data were downsampled from half-hour recordings to
mean values per day, while for displacement, we used the daily cumulative displacement
value obtained by summing all recordings collected hourly in a day. As per [18], we
downsampled the data to one measurement per day, to reduce noise and smooth short-
term fluctuations, as well as achieve computational efficiency, while also being able to
obtain a higher-level overview of data patterns.
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The displacement recordings were transformed to absolute values by substitution of
the first recorded point (reference) from the Leica System and then interpolated (where
small data gaps were present in the recordings) to capture continuous and differentiable
stages of failure. After the absolute displacement was interpolated, the relative velocity time
history (or daily differential displacement) is extracted through numerical differentiation,
and is a generated indicator feature that we consider in addition to absolute displacement.

Figure 1. Displacement recordings transformed to absolute plane vectorial displacements (x-
coordinate + y-coordinate) for eastern and western lobes of the slope.

Before performing feature selection of the data points in Section 4, we normalised
recorded values to zero mean and unit variance. Before performing agglomerative cluster-
ing in Section 5, for visualisation, we scaled the data, so that all features belong to the same
range of values.

3. Methodology for Exploring Statistics of Multivariate Time Series Recordings

The first approach towards understanding the multivariate measurements is to per-
form statistical analysis across these measurements. We explore: (1) Correlation Heat Map,
which quantifies the correlation values between pairs of time series measurements, and
(2) Variational Inflation Factor, which provides a global view across all multivariate time
series measurements, removing multicollinearity from multiple correlated variables.

3.1. Correlation Analysis

The correlation between pairs of all influencing factors is shown in Table 1, and the
correlation between each influencing factor and the displacement and velocity indicators
(daily differential displacement) is calculated using the correlation coefficients, and is
shown in Figure 2. The correlation matrix shows the strength (closer to magnitude 1) and
direction of the correlation as a value between −1 and 1, where a negative value indicates
that as one variable increases, the other decreases, whereas a positive value indicates
positive correlation.

It is worth noting that, firstly, the displacement (disp) and velocity (vel) indicators are
only weakly correlated to the influencing factors, hinting that these indicators are functions
of multiple influencing factors that should be considered jointly. Secondly, as expected,
there are many subsets of highly correlated influencing factors, e.g., all the variables related
to temperature or all the variables related to energy (e.g., net radiation and soil heat flux)
are highly mutually correlated. Hence, the dimensionality of the influencing factors to
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be measured could potentially be reduced without losing relevant information. Note
that we can identify six distinct, less correlated with others, groups of influencing factors.
These are: (1) precipitation, atmospheric pressure, (2) wind speed, (3) wind direction,
(4) relative humidity, (5) net radiation, soil heat flux, air temperature and soil temperature
and (6) soil moisture.

Figure 2. Heat map of correlation values between pairs of influencing factors. The color bars’ values
on the right side of the Figure indicate how strongly the factors are correlated.

Variational Inflation Factor (VIF)

While the correlation matrix provides an indication of correlation between pairs of
variables, VIF takes a more global view across variables and removes the multicollinearity
that arises from multiple correlated variables [26]. Given n independent variables (influenc-
ing factors—the first 18 rows of Table 1), Xi, the VIF algorithm in each iteration, sets one
independent variable as a target, and builds a predictor as a weighted linear combination
of all other independent variables

Xi = β0 + ∑
k,k ̸=i

βkXk. (1)

Finally, the amount of multicollinearity is quantified by calculating VIF for the inde-
pendent variable i as

VIFi = 1/(1 − R2
i ) (2)
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where R2
i represents the coefficient of determination for regressing the ith variable on

all other independent variables, as shown in (1). If variable Xi is uncorrelated to other
variables, R2

i = 0 and VIFi = 1. VIF below 5 is usually accepted as small-to-moderate
multicollinearity, which is how we selected the five features that VIF considers the most
distinct globally, as shown in Table 2. These are precipitation (PRECIP), wind speed (WS),
net radiation (RN) and soil heat flux for eastern (G1) and western lobes (G2). Whilst
precipitation and wind speed were identified as unique in Figure 2, VIF stresses the
additional uniqueness of soil temperature/humidity in the forms of net radiation and soil
heat flux. However, the VIF analysis does not indicate correlation between these factors
and displacement, causing a danger that some of the 13 variables that are removed could
be more correlated to displacement than the 5 retained features.

Table 2. VIF iterations showing influencing factors selected. “X” indicates the factors that are removed
at each iteration.

Feature
VIF VIF VIF VIF VIF VIF VIF VIF VIF VIF VIF VIF VIF VIF
1st
it.

2nd
it.

3rd
it.

4th
it.

5th
it.

6th
it.

7th
it.

8th
it.

9th
it.

10th
it.

11th
it.

12th
it.

13th
it.

14th
it.

PRECIP 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.30 1.30 1.30 1.27 1.24 1.23 1.21
RN 6.22 6.22 6.2 6.0 6.0 5.9 5.8 5.19 3.96 3.94 3.94 1.24 2.45 1.91
G1 7.6 6.7 6.6 6.3 5.4 5.0 4.5 4.36 4.32 4.24 4.21 4.17 4.17 4.12
G2 9.2 9.0 8.9 6.3 7.0 6.9 5.6 5.17 4.79 4.75 4.46 4.33 4.29 4.18
PA 233.2 233.0 230.4 6.3 213.5 213.5 212.1 X X X X X X X
TA 68.8 68.8 68.5 65.5 63.8 63.8 63.6 63.57 14.26 14.25 8.85 7.09 X X
WS 6.0 5.9 5.9 5.9 5.8 5.8 5.8 5.44 4.95 4.88 4.88 4.72 4.04 1.67
WD 12.3 12.3 12.2 12.2 12.2 12.1 12.1 10.97 10.96 10.85 10.62 X X X
RH 131.5 131.3 128.1 123.8 123.5 123.3 119.5 46.77 39.64 37.42 X X X X
TDT1TSOIL 4333.2 4300.5 4134.7 3553.5 X X X X X X X X X X
TDT1VWC 50.1 49.8 49.7 49.6 49.0 49.0 45.9 44.72 44.64 20.36 8.17 5.90 5.33 X
TDT2TSOIL 7541.2 7500.5 7027.5 3278.0 2669.4 X X X X X X X X X
TDT2VWC 50.0 49.5 50.0 50.0 49.6 49.5 48.5 47.05 46.47 X X X X X
STPTSOIL2 287,868.1 13,947.1 2804.8 2560.9 1760.6 488.5 90.5 85.92 X X X X X X
STPTSOIL5 1,301,313 X X X X X X X X X X X X X
STPTSOIL10 827,317 110,355.7 X X X X X X X X X X X X
STPTSOIL20 130,527 73,352.3 15,947.3 X X X X X X X X X X X
STPTSOIL50 4538.0 4048.9 1666.8 853.1 771.9 500.2 X X X X X X X X

4. Methodology for Feature Extraction and Selection for Predicting Landslide Movements

Whilst the correlations between pairs of influencing factors and across influencing
factors have shown unique variables in the form of precipitation and wind speed (meteo-
rological measurements) and soil heat flux, and the VIF analysis identified the five most
distinct factors, these findings do not consider the importance of each of these factors in
relation to displacement.

The objective of our study is to identify, via feature extraction and embedded feature
selection for regression, which sensor recordings have the strongest influence on relative
displacement prediction. In particular, Linear Discriminant Analysis, as a supervised
dimensionality reduction approach, is used for feature extraction, since it can transform
the feature space in relation to displacement. Since our aim is to effectively predict time
series displacement, we leverage on popular Lasso, RF and XGBoost embedded feature
selection from the 18 time series recordings and demonstrate their effectiveness during
displacement prediction. RF and XGBoost are widely adopted in the literature for landslide
displacement prediction, as per the review in Section 1.1. Both are generally popular
ensemble regression algorithms that are robust to relatively smaller training sets compared
to deep learning neural networks. This makes them ideal for our study. We also included
Lasso regression because it is a relatively less complex model with fewer parameters and
shorter execution time.
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4.1. Predictive Performance Evaluation Metrics

The quantified predictive performance analysis has been performed using the follow-
ing metrics: root mean squared error (RMSE), mean absolute error (MAE) and coefficient
of determination (R2) as presented in Equations (3)–(5), respectively.

RMSE =

√
∑i=1,N(xi − x′i)

2

N
(3)

MAE =
∑i=1,N |xi − x′i |

N
(4)

R2 =
(∑i=1,N((xi − xim)(x′i − x′im)))

2

∑i=1,N(xi − xim)2 ∑i=1,N(x′i − x′im)
2 (5)

where N is the number of samples, xi and x′i are the measured and predicted value,
respectively, xim and x′im are the average measured and predicted value, respectively.

4.2. Linear Discriminant Analysis for Feature Extraction

Linear Discriminant Analysis (LDA) is a method mostly used in statistics that searches
linear combinations of features to better explain a large dataset, and is often used for
dimensionality reduction purposes. LDA is a supervised approach that exploits eigenvalue
decomposition to find the projection of the data that minimises the inter-class variance and
maximises the distance between the projected means of the classes [27].

As in earlier work [28] where feature extraction was studied in depth for this dataset,
each measured data point is labelled into the following 5 classes of stages of failure: 1st
intermittent (from 25 March 2014 until 29 December 2015), 1st explosive (from 30 December
2015 until 15 April 2016), 2nd intermittent (from 16 April 2016 until 28 December 2017),
2nd explosive (from 29 December 2017 until 2 April 2018) and 3rd intermittent (from
3 April 2018 until 9 March 2022) (as per Figure 1). In [28], three dimensionality reduction
methods were compared, namely, LDA, 2-dimensional Principal Component Analysis
(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), in their ability to separate
the 5 classes. It was concluded that LDA better differentiated the data points (see Figure 3)
compared to other two methods. Furthermore, the two LDA components led to the best
prediction performance for the residual part of the cumulative displacement time series
after decomposition of the initial signal into periodic, trend and random parts and using
XGBoost regression [28].

Note that LDA uses displacement for class labelling, hence capturing the correlation
between the measurements and the target, but by projecting the data onto a new coordinate
system, loses the information about initial sensor recordings.
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Figure 3. A 2D representation with 2 LDA components of 5 patterns of failure movement [28].

4.3. Feature Selection

Lasso is a popular embedded feature selection method, widely used to improve predic-
tions of regression algorithms. It uses a control parameter, α, in the L1 penaliser to control
the number of selected features, whereby the higher the value of the control parameter, the
fewer features selected [29]. For our model, the α parameter was selected to be equal to
0.00001, extracted through GridSearchCV that was used for hyperparameter tuning. RF
constructs and fits a number of decision trees on various sub-samples of the dataset and
uses mean average prediction of the individual trees to improve the predictive accuracy
and control over-fitting [30,31]. For our RF model, the following parameters were set:
n_estimators = 1000, random_state = 42, criterion = squared_error, min_samples_split = 2,
min_samples_lea f = 1. XGBoost is another ensemble learning algorithm that is particular
suited for efficient performance for regression tasks for large datasets. For our XGBoost
model, the following parameters were set: objective = reg:squarederror, n_estimators = 1000,
nthread = 24. Figure 4 shows the obtained relative feature importance scores. Since there
is a relatively large importance gap between the 4th and the 5th most important features
for Lasso, we draw a line at 0.35, where the influencing factors TDT1TSOIL, TDT2TSOIL,
STPTSOIL2 and STPTSOIL10 are selected for relative displacement prediction. For RF,
similarly to the Lasso case, we draw the line at 0.05, selecting the influencing factors PRE-
CIP, PA, TDT1VWC, TDT2VWC as the most important for daily differential displacement.
These represent precipitation, atmospheric pressure and soil moisture for daily differential
displacement. With XGBoost, we draw the line at 0.05, selecting the influencing factors
PRECIP, PA, WD, TDT1VWC and TDT2VWC. These represent precipitation, air pressure,
wind direction and soil moisture. These selected features together with those selected
by VIF are summarised in Table 3, and are used next for displacement prediction. It is
interesting to note that precipitation was selected by VIF, RF and XGBoost. This is inline
with previous studies. As expected, both ensemble methods selected the same set of fea-
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tures (precipitation, atmospheric pressure and soil moisture) as important except for wind
direction. Lasso and VIF do not have any features in common.

Table 3. Features selected by each method represented by black dots.

Feature VIF Lasso RF XGBoost

PRECIP • • •
RN •
G1 •
G2 •
PA • •
TA
WS •
WD •
RH
TDT1TSOIL •
TDT1VWC • •
TDT2TSOIL •
TDT2VWC • •
STPTSOIL2 •
STPTSOIL5
STPTSOIL10 •
STPTSOIL20
STPTSOIL50

Figure 4. Left to right: Lasso feature importance ranking, RF regression feature importance ranking
and XGBoost regression feature importance ranking, with respect to relative displacement.

4.4. Prediction Performance

In order to validate the effectiveness of the above feature extraction and feature selec-
tion methods, the following experiments are performed during displacement prediction:

1. Regression using Lasso, RF and XGBoost with training/testing split ratio of 70/30%. We
output feature importance scores and select only the most important, i.e., the highest
scoring features; we compare the accuracy of landslide movements with the selected
features vs. the case when all 18 features are used for daily prediction on unseen
movements of the last intermittent failure only. The results are shown in Table 4 along
the 70/30 rows.

2. We predict unseen landslide movements, in the form of relative displacement points,
of the last intermittent failure and second major failure of 2018 by reducing the
training/testing split ratio to 50/50%, with and without feature selection as per
Table 4 for the three regression methods, and in the case of RF-LDA, with 4 and
2 extracted features. The results are shown in Table 4 along the 50/50 rows.
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3. Based on the accuracy of the predictability of the models trained on relative displace-
ment, we attempt to indirectly predict the absolute displacements on various time
windows (i.e., 1 days, 5 days, 10 days, 15 days and 30 days) by training on daily reso-
lution and summing the predicted daily differential displacements and comparing
them across the 3 regression methods. The results are shown in Table 5 and Figure 5.

The results of predicting relative displacement with and without feature selection for
all 3 regression methods for 70/30% and 50/50% train/test set split ratios can be found
in Table 4. The most significant observation is that, for all feature selection and regression
methods, performance was improved with feature selection (‘selected’) compared to using
all 18 features. Multicollinearity is known to limit the accuracy of predictive models by
increasing model complexity and causing overfitting. Results for all 3 methods are similar,
with RF negligibly better than the other methods.

Table 4. Daily prediction of relative displacement: performance of Lasso, RF and XGBoost with
embedded feature selection, LDA feature extraction and displacement-agnostic VIF feature selection
(denoted as ‘selected’) vs. all 18 features for regression (denoted as ‘all’). The units of RMSE and
MAE are both mm/day. Values in bold represent best performance.

Features Lasso RF XGBoost RF-LDA RF-VIF

SPLIT RATIO RMSE|MAE RMSE|MAE RMSE|MAE RMSE|MAE RMSE|MAE

all 70/30 0.75|0.51 0.57|0.29 0.57|0.31 0.57|0.30 -|-
selected 70/30 0.60|0.37 0.56|0.30 0.57|0.33 0.54|0.29 0.66|0.37

all 50/50 0.87|0.52 0.89|0.49 0.97|0.52 0.78|0.35 -|-
selected 50/50 0.82|0.42 0.81|0.44 0.91|0.48 0.78|0.34 0.86|0.41

Table 5. Performance and complexity in terms of training and test time of Lasso, RF and XGBoost
for prediction of cumulative displacement over t = 1, 5, 10, 15, 30 days of accumulation. The units
of RMSE and MAE metrics are mm/(t ∗ days) for both metrics. The indication 70|50 on the 2nd
row of the Table refers to the size of the training set (of relative displacements) that is used in order
the model to be fitted and be able to predict the cumulative displacement time series in the various
time windows.Values in bold represent best performance.

Time Window Metric Lasso RF XGBoost

train time: 2154 ms train time: 28,080 ms train time: 3106 ms
test time: 1583 ms test time: 2160 ms test time: 1745 ms
train sizes: 70|50 train sizes: 70|50 train sizes: 70|50

RMSE 65.496|90.971 37.047|118.178 36.168|87.924
1 d MAE 52.884|72.349 26.712|70.743 25.636|53.854

R2 0.895|0.797 0.966|0.657 0.968|0.810

RMSE 65.438|90.197 28.576|113.564 16.082|112.793
5 d MAE 52.376|71.350 22.306|70.166 11.163|83.407

R2 0.895|0.800 0.980|0.683 0.994|0.687

RMSE 65.300|89.897 37.441|173.928 47.703|132.402
10 d MAE 52.016|70.927 33.391|121.930 39.389|101.678

R2 0.895|0.801 0.966|0.256 0.944|0.569

RMSE 65.857|88.730 30.847|170.488 94.797|121.531
15 d MAE 51.459|69.427 27.584|120.744 90.365|103.779

R2 0.893|0.806 0.977|0.285 0.779|0.637

RMSE 62.334|99.616 60.608|214.624 63.358|146.955
30 d MAE 50.819|77.573 50.051|150.633 49.667|104.832

R2 0.904|0.755 0.909|0.139 0.901|0.466

The dimensions of the original dataset are 18 × 2709. After feature selection, this is
reduced to 4 × 2709 for Lasso and RF, and 5 × 2709 for VIF and XGBoost. The transformed
feature space with all LDA components has a dimension of 4 × 2709, and is reduced to
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2 × 2709 for ‘selected’ features. The 70/30% train/testing split ratio is the most commonly
used ratio in machine learning as it provides a significant amount of the data for training
without compromising on sufficient data for testing. In our experiments, the performance
with 60/40%, 70/30% and 80/20% split ratios are similar. In contrast, when reducing
the training set and increasing the testing set through adoption of the 50/50% ratio, we
demonstrate the robustness of the regression algorithms to reduced training sets as well
as demonstrating prediction for the second unseen major failure of 2018 via prediction of
explosive movements.

As expected, we observe that performance with 70/30% training/testing split ratio
is better across all experiments for performance with 50/50% training/testing split ratio.
While RF and XGBoost have similar performance (but better than Lasso) for the larger
training set, we observe that RF is more robust to a relatively smaller training set (like Lasso)
compared to XGBoost. Overall, RF has the best performance; therefore, we use RF to com-
pare the effect of physical feature selection vs. feature extraction in the LDA transformed
domain, as well as VIF-selected features which are independent of displacement. Note that
in the case of RF-LDA ‘all’, all 4 LDA components were used as features vs. 2 for ‘selected’
as shown in Figure 3. Performance of RF with embedded feature selection vs. LDA feature
extraction are similar for the 70/30% training/testing split ratio, but the former is more
explainable since we know the physical features used. However, as observed by better
performance of RF-LDA compared to RF for the 50/50% training/testing split ratio, we
conclude that LDA feature extraction captures marginally better the displacement with
a smaller training set than embedded feature selection. RF with VIF-selected features,
being agnostic of displacement, has worse performance than with LDA or embedded RF
feature selection.

Figure 5. Cont.
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Figure 5. Horizontal axis on all the graphs shows time [days], while vertical shows cumulative
displacement [mm]. Split ratio 70/30 (left); split ratio 50/50 (right). Lasso 1st row, RF 2nd row and
XGBoost 3rd row are presented for recorded–predicted cumulative displacement on various time
windows (1 d, 5 d, 10 d, 15 d, 30 d).

As shown in Figure 1, five distinct regions of displacement patterns can be observed
according to the recorded gradient. That is, from 2014 to late 2015, the first intermittent
failure can be observed, followed by the first major failure (explosive region) in early 2016,
the second intermittent failure from 2016 to late 2017, the second major explosive failure
in early 2018 and finally, from 2018 to 2022, the third intermittent region of displacement.
The 70/30% train/test set split predicts only the last intermittent failure. Generalisation to
different types of failures is shown by the 50/50% split which predicts the second explosive
failure in addition to the last intermittent failure. Table 4 shows that in this case the
performance drop in predicting the second explosive failure is negligible for all 3 methods.
As above, results for all 3 methods are similar, with RF being negligibly better.

4.5. Prediction of Cumulative Displacement in Accumulation Time Windows of Various Sizes

Motivated by the good predictability of the models trained on relative displacement,
we further attempt to indirectly predict the accumulated displacements on time windows
of various sizes, such as t = 1, 5, 10, 15 and t = 30 days, by training on daily resolution
relative displacement and then summing the predictions. The performance of prediction
for all 4 methods can be seen in Table 5 for the training sizes of 70% and 50% of the total
data. The time window is also used for the accumulation of the influencing factors that are
selected by each of the 3 methods. Once the averaged accumulated relative displacement is
predicted, then the cumulative accumulated displacement is calculated on the time window,
according to the following equation:

disp[i] = t ∗ dispmrel [i] + disp[i − 1] (6)

where disp is the cumulative displacement array, dispmrel is the mean relative displacement
array calculated on the examined time window, and t is the size of the accumulating time
window. The results are shown in Table 5.

For the prediction of cumulative displacement in time windows, RF performed best for
the 70/30% training/testing split ratio for all the provided time windows except the 5-day-
window for which XGBoost outperformed other methods. However, Lasso is more robust
to a smaller training set, consistently outperforming the other two regression methods for
all time windows. Furthermore, Lasso has the shortest run time. Given the focus of our
study on reducing computational effort, we show that relatively simpler models like Lasso
can achieve comparable results to more complex ensemble models adopted in other studies.
The models have been tested on a large multivariate dataset, their performance compared
with different training and testing ratios to demonstrate generalisability for both gradual
and explosive failure prediction.
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Figure 5 shows the same set of results in terms of cumulative displacement vs. time, that
is, the prediction of cumulative displacement over 1-, 5-, 10-, 15- and 30-day periods to verify
how well the 3 regression models capture the unseen slope movements visually. As observed
in Figure 5, for the 70/30% training/testing split ratio, XGBoost does indeed closely follow
the ground-truth (in green) for the 5 day window (in red) and RF for the larger prediction
windows. This is in line with the results in Table 5. Indeed with XGBoost and RF, the different
stages of failure can be predicted more accurately than with Lasso. However, for the 50/50%
training/testing split ratio, RF for all time windows generated 2 major false gradients after
the 2018 failure that do not correspond to recorded explosive movements. XGBoost, on the
other hand, performed better than RF without false gradients for the 50/50% training/testing
split ratio, which is in line with the results of Table 5, accurately capturing failure. Overall,
for both split ratios, both RF and XGBoost accurately capture the magnitude of the total
displacement increment that occurred during the unseen major event for all time windows
except for the 30 d period (the 2nd vertical section in the beginning of 2018, in the graphs
of the 2nd and 3rd rows shown in Figure 5). Whilst Lasso, in terms of quantitative metrics
(Table 5), performed better than other methods for larger time windows (10 d, 15 d, 30 d)
for the 50/50% training/testing split ratio, it captured the trend well, but did not succeed in
predicting any failure patterns of explosive failures and intermittent landslide movements,
as seen in all cases in Figure 5. This is due to Lasso’s tendency to smooth predictions. Visual
explanation of failure prediction results, shows that XGBoost, with a relatively smaller run
time than RF and comparable to Lasso, is the model with highest accuracy in capturing
unseen failure. Therefore, performance metrics are not always a good indicator of particular
events since they average performance, and visual reconstruction is also needed.

5. Methodology for Unsupervised Detection of the Stages of Landslide Displacement

In the previous section, we proposed several feature selection methods and discussed
how effective these methods are for prediction of relative landslide displacement. Next, we
will assess the suitability of the selected features for the task of clustering the data points
in time, for the purpose of grouping the samples to identify different stages of landslide
displacement in an unsupervised manner. To perform clustering of the HHLO recordings,
we use dendrograms and agglomerative or bottom-up hierarchical clustering, as a popular
approach that does not require the number of clusters to be pre-specified.

Hollin Hill Observatory is a landslide zone where failure has been monitored through
the years with heavy instrumentation and occasional visual confirmation. In the landslide
zone no man-made events triggering or leading to failure have purposefully taken place over
the eight years of recordings, which could have influenced failures. Additionally, the site
is remote, far from residential areas and roads and human activity in general. The adopted
data-driven approach aims to provide a framework for failure prediction through continuous
site monitoring not focusing on the material investigation but on the relationship between
environmental recordings and previously recorded slope movement patterns. So, conditions
were considered only through physical explanation of the inter relationships between the
ground parameters and not directly as predictors which serves as the scope of this study.

5.1. Clustering Performance Evaluation Metrics

To assess the performance of clustering methods, Minkowski distance is often used.
This distance determines the similarity of distances between two or more vectors in space,
as is given by

DM(X, Y) = (ΣN
j=1|xj − yj|p)

1
p (7)

where xj, yj are the j-th elements of N-dimensional data vectors X and Y, respectively,
and DM(X, Y) is the distance between them. Minkowski distance is often used with p = 1 or
p = 2, which correspond to the Manhattan distance and the Euclidean distance, respectively.

The agglomerative clustering method predicts subgroups of data within the data. This is
achieved through calculating the distances between each data point (or a cluster of points)
and its (their) nearest neighbors and by linking the closest neighbors. We consider the three



Geosciences 2024, 14, 220 16 of 22

most commonly used distance metrics, namely Euclidean, Manhattan and Cosine distance,
and three ways to merge the closest neighbors, namely, Ward, Average and Complete linkages.

In order to identify the unique subgroups (clusters), we use dendrogram visualisa-
tion, and prune the tree based on a threshold that is set using Silhouette analysis and
Calinski–Harabasz Index. The calculation of silhouette coefficient combines inter- and
intra-cluster distance into a single score. Specifically, for a given observation o, the score
S(o) is calculated as

S(o) =
b(o)− a(o)

max[a(o), b(o)]
(8)

where a(o) is the average distance between observation o and all the other observations in the
cluster that o belongs to, and b(o) is the minimum distance from observation o to all clusters
to which o does not belong to. The Calinski–Harabasz (CH) index [32] evaluates the cluster
validity based on the ratio of the within-cluster variance to the between-cluster variance,
where higher values indicate compact and well-separated clusters, and is given by [33]

CH =
trace(SB)

trace(SW)
∗ N − K

K − 1
, (9)

where N is the total number of data points, K is the number of clusters, trace(SB) is the
trace of the between-cluster scatter matrix that should be maximised and is calculated
by (10), trace(SW) is the trace of the internal scatter matrix that should be minimised and
is computed by (11):

trace(SB) = ∑
k=1,K

(nk × ||Ck − C||2), (10)

trace(SW) = ∑
k=1,K

∑
Xik∈Ck

||Xik − Ck||2 (11)

where nk is the number of observation in cluster k, Ck is the centroid of cluster k, C is the
centroid of the dataset and Xik is the ith observation of cluster k.

5.2. Clustering Parameter Selection

As the previous two sections have shown, using all 18 features implies multicollinearity,
which adds unnecessary complexity and negatively affects performance. Therefore, we
leverage the best features selected from Sections 3 and 4; namely, we perform predictive
agglomerative clustering for fitting to relative displacement. These are the five features
selected by VIF (PRECIP, RN, G1, G2, and WS) and four by RF (PRECIP, PA, TDT1VWC,
TDT2VWC).

Table 6 shows the results in terms of S and CH for three different distance metrics
and three different linkage methods, and 2, 3 and 4 clusters. The results indicate that the
optimal number of clusters is n = 2 for both VIF-based and RF-based feature selection
methods. Euclidean distance and Ward linkage leads to the most accurate results.

Table 6. Agglomerative clustering results for features selected via VIF and RF. S scores and CH
indices are shown for several combinations of distance metrics, linkage methods and the number of
clusters n = 2, 3, 4. Values in bold represent best performance.

VIF, n = 2 RF, n = 2 VIF, n = 3 RF, n = 3 VIF, n = 4 RF, n = 4

Distance
Metrics

Linkage
Distances S CH S CH S CH S CH S CH S CH

Euclidean Ward 0.86 2596.35 0.87 2971.54 0.80 2060.55 0.82 2615.26 0.44 1889.32 0.76 2431.59
Euclidean Average 0.95 310.54 0.95 337.59 0.90 1219.56 0.92 1416.38 0.87 897.82 0.91 986.19
Euclidean Complete 0.87 2594.02 0.94 726.28 0.86 1710.72 0.81 1835.78 0.70 1507.52 0.77 2191.65
Manhattan Average 0.95 310.54 0.95 337.60 0.90 1260.08 0.92 1416.38 0.87 927.53 0.88 1051.01
Manhattan Complete 0.90 352.97 0.90 2928.77 0.88 1429.78 0.89 1869.05 0.86 1052.41 0.80 1651.85
Cosine Average 0.40 1.29 0.79 1985.32 0.17 131.91 0.65 1273.78 0.21 352.21 0.54 938.35
Cosine Complete 0.20 352.97 0.55 857.54 0.14 237.26 0.56 593.37 0.16 282.88 0.48 1831.04



Geosciences 2024, 14, 220 17 of 22

5.3. Results and Discussion

Hence, we set n = 2, which defines dendrogram thresholds to be equal to 12.5 and
8, for VIF-based and RF-based metrics, respectively, and in the following use Euclidean
distance with Ward linkage.

Figure 6 shows the resulting dendograms using VIF- and RF-selected features. As dis-
cussed, based on Table 6, we prune the tree to obtain n = 2 clusters. We can see that, in both
cases, pruning leads to a very compact cluster (orange) with very low inter-cluster distance,
and another more dispersed and much larger cluster (green).

Figure 6. Clustering of data points to explain daily differential displacement, according to features
selected by VIF (left) and RF (right): dendrogram with thresholds at 12.5 and at 8, as derived in Section 5.

Figure 7 shows the clustering results with the two methods in the daily differential
displacement (in mmday−1) vs. time (in days) plot. It can be seen that both methods led
to similar clustering results, successfully isolating major explosive failures (red triangles
corresponding to the orange cluster in the dendrogram plot) that took place in 2016 and
2018. This suggests that the identified features indeed capture changes in the relative
displacement well, with only few outliers that are similarly positioned in both graphs:
around late 2014, mid 2020 and, with the RF method, early 2021.

Figure 7. Clustering of data points according to features selected by VIF (left) and RF (right): Daily
differential displacement [mmday−1] vs. time [days]. Red indicates clustered data points related to
major explosive movements while black indicates points related to intermittent movements.

Figure 8 shows the clustering results presented as each of the selected feature vs. time.
It can be seen that the areas of explosive failure happened during high peaks in PRECIP.
However, there are a number of outliers, which means that PRECIP alone cannot be used as
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a feature for distinguishing the two types of displacement. Note that parameter RN, i.e., net
solar radiation, expresses the total amount of solar energy that comes into the soil, and is
generally low between autumn and spring. One can see from Figure 8 that major failures
are focused on relatively low values of PA and solar radiation RN, which are associated
with cloudiness and rainy days. G, soil heat flux, expresses the amount of thermal energy
that moves through an area of soil in a unit of time [34]; daytime peak hourly values of
G for a bare dry soil in midsummer could be in excess of 300 Wm−2 and much lower,
in the range of −20, 20 Wm−2, for moistured soils [35,36]. Low values of G during the two
failures indicate moistured soil, as also evidenced by the peaks of soil moisture features.
Overall, one can see the value of using at least two of these features to accurately identify
the two distinct types of displacement, where precipitation, net radiation and soil moisture
have clearer clusters.

Similar observations can be taken from Figure 9, which shows the clustering results
as each of the selected features vs. daily differential displacement. The major movement
occurred mainly, but not necessarily, during high PRECIP (first subfigure, both rows).
The failures correspond to extreme values of soil moisture TDT1VWC,TDT2VWC (third,
fourth figure, bottom), low positive and negative values of RN (second, top, sub-figure)
and low values of G (third, fourth, top subfigures).

Figure 8. Clustering of data points to explain daily differential displacement, according to features
(unitless, normalised per absolute maximum) selected by VIF (top) and RF (bottom): selected
features vs. time, from left to right PRECIP, RN, G1, G2 and WS (top); PRECIP, PA, TDT1VWC,
and TDT2VWC (bottom). Red indicates clustered data points related to major explosive movements
while black indicates points related to intermittent movements.

Figure 9. Clustering of data points to explain daily differential displacement, according to features
(unitless, normalised per absolute maximum) selected by VIF (top) and RF (bottom): selected features
vs. relative displacement, from left to right. Top: PRECIP, RN, G1, G2 and WS; Bottom: PRECIP,
PA, TDT1VWC, and TDT2VWC. Red indicates clustered data points related to major explosive
movements while black indicates points related to intermittent movements.
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While the above conclusions are expected, it can be seen from Figures 8 and 9 that
none of these features alone can be used as a good indicator of a failure. Indeed, while
PRECIP is generally high during failure, extremely low values of PRECIP are also linked to
the explosive failure, and high PRECIP often did not lead to a failure. Similarly, very low
values of RN, G1 and G2, or high moisture TDT1VWC and TDT2VWC did not necessarily
occur only during the failures. This leads to the conclusion that joint consideration of the
selected features is needed to provide good landslide prediction.

6. Discussion of Key Findings

This study bridges the gap that exists in the current literature, between physical
finite analysis models that consider many influencing factors for predicting landslide
displacement and machine learning models that consider a small subset of influencing
factors. Through correlation analysis and embedded feature selection, our study shows
that, among 18 sensor recordings of a range of meteorological and ground parameters, the
following sensor recordings, as summarised in Table 3, have the strongest influence on pre-
diction of relative displacement: precipitation, soil heat flux, atmospheric pressure, and soil
moisture. Note that the literature mostly tends to consider precipitation measurements and
ground water level [18–20].

Furthermore, for completeness, we also consider feature extraction for dimensionality
reduction, although the features extracted are in the transform domain and not physically
interpretable. In order to predict displacement, we leverage ensemble regression methods,
RF and XGBoost, which have been discussed in Section 1.1, as robust for limited training
feature data (5–8 years) as well as Lasso regression, which is a relatively less complex model
with fewer parameters and shorter execution time (as shown in first rows of Table 5).

As shown in Table 4, RF and XGBoost have similar relative prediction performance in
general, but RF, as Lasso, is more robust for the smaller training set compared to XGBoost.
Overall, RF has the best average performance and therefore we use it to compare the effect
of physical feature selection vs. feature extraction in the LDA transformed domain, as well
as with VIF-selected features that are independent of displacement. Key findings are that
LDA feature extraction captures marginally better relative displacement with a smaller
training set than embedded feature selection. As shown in Figure 5, cumulative prediction
over 1, 5, 10, 15 and 30 days for the last intermittent failure and an explosive failure
show that, whilst performance metrics in Table 5 indicate otherwise due to averaging
over the five displacement regions, the reconstruction plots of predicted displacement are
most accurate with XGBoost regression with inputs comprising precipitation, atmospheric
pressure, wind direction and soil moisture. Generalisation to different types of failure is
shown by the 50/50% train/test set split that predicts the second unseen major failure
of 2018 in addition to the last intermittent failure. Our study provided quantitative
prediction results (RMSE = 16.082 mm, MAE = 11.163 mm and R2 = 0.994 for 5 days
accumulation time window) comparable to other studies, using less computationally
expensive models compared to deep learning models, as reviewed in Section 1.1, and small
predictor sets (5 features for XGBoost) for up to 2.2 unseen years of movement. The final
prediction was able to accurately capture the time at which the major event occurred and
the magnitude of the total displacement increment that occurred in the duration of the
particular major event.

Whilst the above methodology introduced a rigorous approach for embedded fea-
ture selection with supervised machine learning for predicting relative and cumulative
displacement, to solve the problem of grouping the selected features into different stages of
failure, an unsupervised hierarchical clustering approach is proposed in Section 5, where
it is concluded that joint consideration of four to five selected features (PRECIP, RN, G1,
G2, and WS with VIF) and (PRECIP, PA, TDT1VWC, TDT2VWC with RF) led to a better
understanding of the underlying mechanisms related to the investigated instability.

The Hollin Hill failure is a moisture-induced and generally slow-moving landslide
with intermediate periods of fast movements. The daily rate of normal movements in
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this site is within the range [6.45 × 10−6 mmday−1, 3.55 mmday−1], while in periods of
major events, movements can accumulate up to 250 mm per event, reaching rates up
to 16.68 mmday−1. The approach adopted in this study forms a framework according
to which, relative and cumulative movements are predicted through the utilisation of
a multiparameter dataset of long-term recordings related to distinct movement patterns.
Since it is focused on daily relative displacement, this methodology is more applicable
to cases of landslides where failure follows a behaviour dominated by periods of fast
and slow movements where those stages can be distinguished. All steps followed across
the process, such as dimensionality reduction, feature selection and the identification of
subgroups within the recordings in an unsupervised manner but also the prediction of
cumulative movements via regression, are generic and suitable for any dataset and type
of sensors used, and so can be utilised in landslide early warning systems. It is worth
mentioning here that the relative importance of features will be dependent on the specific
type of landslide. For example, in the case of slopes with significant vegetation height
(high-rise trees), the feature “wind speed” could play a more decisive role compared to
our case, while gravitational forces that come from dense vegetation (densely located trees
for example) can play a destabilising role in the failure process. In other cases, thawing
permafrost triggers the landslide and so features related to temperature should play the
most decisive role since the warming effect associated with climate change leads to melting
the weakened and highly saturated frozen soil, thus leading to generalised instabilities.

7. Conclusions

Recent years have seen a growth in machine learning approaches to predict landslides
or displacement in general. These require an appropriate choice of features that capture the
influencing factors that have the most importance for learning displacement.

We propose a three-fold methodology whereby a statistical approach based on Vari-
ational Inflation Factor (VIF) is first used to remove multicollinearity among 18 possible
influencing factors that are being monitored on the Hollin Hill Landslide Observatory over
a period of 8 years. However VIF does not consider importance of the selected features in
relation to displacement. Thus, the second proposed approach is to use supervised feature
extraction, with two-component LDA and embedded feature selection tied to three regres-
sion approaches, namely Lasso, Random Forest (RF) and XGBoost. RF feature selection
that identified precipitation, atmospheric pressure and soil moisture as the most important
features, has best overall daily differential displacement prediction performance even with
a smaller training set. However, XGBoost feature selection, which selected precipitation,
atmospheric pressure, wind direction and soil moisture, has the best overall performance
for cumulative displacement prediction.

We also show that standard performance metrics such as RMSE do not always capture
the ability of a regressor to accurately reconstruct the explosive and intermittent stages of
failure, unlike the actual plot with point to point reconstruction. Finally, in order to identify,
in an unsupervised manner, what the key distinguishable stages of displacement are in
relation to daily differential displacement, we propose agglomerative clustering with den-
dogram visualisation. These confirm, through clusters of selected features from VIF and RF
against time and daily differential displacement, that no one feature is sufficient, but rather
joint consideration of selected features is needed to provide good landslide prediction.
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Abbreviations
The following abbreviations are used in this manuscript:

CH Calinski–Harabasz
GWL Ground Water Level
HHLO Hollin Hill Landslide Observatory
Lasso Least Absolute Shrinkage and Selection Operator
LDA Linear Discriminant analysis
LULC Land Use Land Cover
MAE Mean Absolute Error
NDVI Normalised Difference Vegetation Index
PCA Principal Component Analysis
RF Random Forest
RMSE Root Mean Squared Error
SVM Support Vector Machine
TRI Terrain Ruggedness Index
TWI Topographic Wetness Index
VIF Variance Inflation Factor
XGBoost Extreme Gradient Boosting
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