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Satellite imagery is advantageously situated to monitor human activities and environmental changes, particularly if the target 

is remote and across large spatial areas. In some instances in-situ data collection is not possible, this is for example if the target 

is isolated or the political stance of the country prevents ground access. Human rights research can faces these obstacles when 

trying to collect and use traditional in-situ data methods. This paper focuses on the human rights and security sector, by 

presenting a systematic framework developed and used to understand and explore the applicability of satellite imagery to 

human rights monitoring. An extensive literature review of research papers and development projects was conducted to identify 

all the capabilities of Earth Observation (EO), by also suggesting relevant missions, supplementary data products, algorithms 

and analytical processes. An outline of the review is presented in the paper through a taxonomy of all relevant satellite 

applications that meet the Office of the United Nations High Commissioner for Human Rights (OHCHR) framework on human 

rights indicators. Overall, this research aims to ensure that this data source is maximized for its full potential in the field, to 

ensure that effective human rights studies are conducted. The vast scope of EO data applications is made clear through this 

paper, however future developments in space technology and future planned missions are also discussed to understand which 

human rights insights can be met in the future with more frequent and higher spatial and spectral resolution information. Despite 

the essential need for EO data in the sector and the advancement of the Space industry, it also comes with its own limitations, 

which are discussed in detail in the paper. 

 

1. Introduction 

The field of collecting satellite imagery is 

expanding rapidly and has already been integrated into 

various applications, with particular emphasis on 

monitoring changes in the environment, including 

deforestation [1], rising sea-level [2], and weather [3]. 

The urgent need to address climate change has driven 

the demand for Earth Observation (EO) satellites, 

which provide crucial data illustrating the evolving 

environment. This encompasses the documentation of 

increasing greenhouse gas emissions [4], the tracking 

of gradual environmental degradation like 

desertification [5] and droughts [6] [7], as well as swift 

responses to natural disasters [8]. Satellite imagery is 

firmly integrated into international reporting and 

environmental frameworks. Notably, the International 

Charter Space and Major Disasters, recognized by the 

UN and numerous international relief organizations, as 

well as the Intergovernmental Panel on Climate 

Change (IPCC), have designated satellite data as a vital 

tool for conducting climate change studies and 

assessing its impacts [9]. 

 

Beyond environmental applications, satellite 

imagery has proven to be an invaluable source of 

information in social and economic studies. It finds 

utility in various domains such as GDP forecasting 

[10], urban planning [11], and poverty mapping [12]. 

Several characteristics make it conducive to societal 

research, including its regular orbital cycle with very 

high to medium spatial resolution. EO satellites 

typically operate in low-earth orbit, enabling them to 

observe nearly the entire Earth's surface during their 

orbits, facilitating data collection in remote and 

inaccessible areas like the Amazon or isolated regions 

like the Arctic. This attribute also renders satellite 

imagery apt for human rights research, where 

information collection can be hindered by political 

restrictions or remoteness. Locating the progression of 

conflicts and human rights abuses has been an 

application of EO data, building upon the concept that 

dates back to reconnaissance planes during World War 

II. The first publicly documented use of satellite 

imagery as evidence in a trial occurred in the 

International Criminal Tribunal for the former 

Yugoslavia (ICTY) [13]. Notable examples also 

include monitoring the expansion of Uyghur 're-

education' camps in China through high-resolution 

imagery [14] [15]. These instances have gained 

prominence in the public-eye as they offer tangible 

evidence of suspected atrocities, corroborating 

eyewitness accounts. 

 

Though there are clearly numerous opportunities 

for Earth Observation (EO) data in human rights 

research, the integration of such data is not consistent 

across all human rights institutions, and there is 

currently no overarching framework bridging these 

seemingly disparate domains. Notably, the Office of 

the United Nations High Commissioner for Human 

Rights (OHCHR) has devised a comprehensive 

framework encompassing all human rights indicators 

categorized under the 16 fundamental human rights 
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principles. These indicators are employed by the 

OHCHR to assess compliance with human rights 

commitments, monitor developmental progress, and 

compile reports on potential rights violations [16]. 

While this framework primarily finds utility within the 

United Nations, which also hosts the Satellite Centre 

(UNOSAT), enabling streamlined utilization of 

satellite imagery for investigations, it possesses 

broader applicability. Third-party investigators can 

adopt OHCHR indicators, and organizations can 

develop internal indicators, particularly in cases where 

the full potential of satellite imagery remains untapped. 

Consequently, this paper embarks on an exploration, 

outlining the extensive potential inherent in EO data 

for human rights research. It does so by delineating a 

taxonomy that equips researchers, non-governmental 

organizations (NGOs), and the interested public with a 

comprehensive understanding of how EO data can be 

seamlessly integrated into their endeavours. 

 

Similar work has been conducted by the UN but in 

regard to the UN’s Sustainable Development Goals 

(SDG). The goals serve as a blueprint for member 

states to improve the health and prosperity of people 

and the planet. Comprising 17 distinct SDGs, they 

encompass all paths that countries need to take to make 

systemic changes to society and the environment from 

reducing inequalities to preserving our oceans and 

forests. In 2020, 5 years after the publication and 

adoption of the SDGs, the European Space Agency 

(ESA) formulated a framework outlining how various 

types of satellite imagery can contribute to measuring 

progress towards these SDGs [17]. This framework 

categorizes the relevance of EO data based on several 

factors, including the maturity of EO technologies, 

scalability, technical capabilities, and other pertinent 

indicators and considerations.  

 

The primary focus of the following research is to 

establish key data sources and important assimilation 

techniques through the taxonomy while 

acknowledging any potential limitations in their 

application. The requirements for utilising satellite 

imagery in the study are broken down into distinct 

points including analysing the completeness of the 

application, dissecting the trends across each imagery 

type, addressing related additional information 

required and spatial resolution requirements. To 

illustrate the points, selected OHCHR indicators are 

analysed in the context of each section. 

 

It is worth noting that the OHCHR framework 

makes reference to numerous SDGs in its own set of 

indicators, resulting in some overlap between the 

research conducted by O'Conner in 2020 and the 

present study [17]. Nevertheless, even in cases where 

indicators are linked to the SDGs, the report establishes 

connections to EO research that may not have been 

previously explored. 

 

2.  Background 

 

2.1 OHCHR Framework 

In 2012, the Office of the United Nations High 

Commissioner for Human Rights (OHCHR) developed 

a set of indicators with the primary aim of facilitating 

standardized and robust investigative procedures in 

cases of suspected human rights violations. The 

OHCHR delineated these indicators across the 16 

distinct Human Rights, resulting in a total of 514 

unique indicators spanning all these rights. However, 

these indicators are not evenly distributed among the 

rights, and certain indicators are duplicated across 

multiple rights. For instance, the indicator 'Life 

expectancy at birth or age 1' is applicable to both the 

Right to the enjoyment of the highest attainable 

standard of physical and mental health and the Right 

to life, albeit with a slight variation as the former right 

includes 'health-adjusted life expectancy.' To enhance 

the clarity of the taxonomy organization, each 

duplicated indicator is assigned to the right with which 

it shares a closer correlation to, although we 

acknowledge the relevance of all rights when assessing 

the impact of EO data on each right individually. Each 

indicator was labelled to simplify referencing in the 

paper (Appendix A lists selected referenced 

indicators). 

 

 

2.2 Remote Sensing Principles 

Remote sensing is a process of capturing 

electromagnetic (EM) radiation from the Earth’s 

surface and its surrounding atmosphere. The rays are 

typically reflected rays from the Sun, otherwise known 

as ‘passive sensors’. The most common form of 

passive sensors is  multispectral imagery, which most 

commonly collects visible (red, green, blue) and near-

infrared (VNIR) EM radiation, but many missions also 

expand their capabilities to collect across additional 

infrared (IR) and microwave (MW) bands. This form 

of imagery is very versatile as it can be used to 

visualise an area of interest, but also be processed to 

for numerical analysis in a variety of ways, including 

index calculations and machine learning algorithms.  

 

Hyperspectral imagery shares similarities with 

multispectral imagery, as it captures passive EM 

radiation across VNIR, IR and MW spectra. However, 

hyperspectral instruments collect across a larger 

number of finer spectral bands, on the order of 10-100. 

This form of technology is particularly useful for 

recording the spectral signature of a site, allowing for 

finer identification and analysis. There are instances 

where hyperspectral missions are tuned to a particular 

feature, including gases in the atmosphere. This is 

versatile across a number of gases including 

greenhouse gases CO2, CH4 and trace gases SO2, NOx, 

CO.  
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In contrast to passive sensors, 'active' sensors 

function by emitting electromagnetic radiation toward 

the Earth's surface and then capturing the reflected 

radiation. Synthetic Aperture Radar (SAR) is a form of 

active sensing because it emits radar pulses to measure 

changes on the Earth's surface. SAR systems operate at 

various frequencies, influencing their ability to 

penetrate surfaces and impacting their spatial 

resolution. For instance, X-band SAR sensors exhibit 

limited penetration but offer high spatial resolution, 

making them valuable for detecting surface changes on 

land or in water bodies. Conversely, P-band SAR, with 

its lower frequency and enhanced penetration 

capabilities, finds application in biomass and soil 

studies.  

 

Satellite-based meteorological missions are also a 

widely used dataset because they provide a plethora of 

information on the climate at a regional to global scale. 

Precipitation satellites, such as the Tropical Rainfall 

Measuring Mission (TRMM) and the Global 

Precipitation Measurement Mission (GPM), are 

ubiquitous, playing pivotal roles in diverse 

applications encompassing weather forecasting, 

natural disaster prediction, and agricultural 

investigations. These meteorological satellites 

amalgamate a diverse array of sensors, including 

visible, near-infrared (VNIR), microwave technology, 

and radar imaging imagery, thereby enabling the 

identification of crucial elements within weather 

phenomena.  

 

Beyond the individual satellite missions that 

closely monitor weather patterns, there exist 

comprehensive meteorological datasets that 

amalgamate satellite imagery with ground-based 

station data, offering an enriched source of 

meteorological information. Noteworthy examples of 

such datasets include the Climate Hazards Center 

InfraRed Precipitation with Station Data (CHIRPS) 

and the Multi-Source Weighted Ensemble 

Precipitation (MSWEP) dataset. Both of these datasets 

integrate daily gauge observations with satellite-

derived imagery to deliver high-performance 

precipitation products, enhancing the accuracy and 

utility of meteorological data. Given the distinctive 

derivation process of meteorological data, it warrants 

classification as a distinct imagery type for the 

purposes of this paper. 

 

 

3. EO-OHCHR Taxonomy 

The following research adopts a similar approach 

to O’Conner (2020), where the research analysed if EO 

can suitably be applied to monitor the goal of each 

SDG indicator. However, the research puts focus on 

the type of imagery that are best suited to meeting the 

needs of the specific goal. The selected EO types for 

taxonomy are as follows are multispectral (VNIR), 

multispectral (MW), hyperspectral,  SAR, and 

meteorological data. Of the 16 human rights outlined 

by the OHCHR, 12 have the potential to ingest satellite 

imagery for human rights investigations albeit to 

varying degrees. Therefore, the taxonomy has outlines 

the degree to which EO data can meet the goal of each 

indicator, by assessing whether it can ‘fully’ or 

‘partially’ contribute.  

 

Although EO imagery can impact 75% of the 

OHCHR rights, it is determined that 52 specific 

indicators can be monitored with satellite imagery, 

weighted mostly to indicators featured in right to 

adequate food, right to enjoyment of highest attainable 

standard of physical and mental health (will refer to as 

‘right to health’), right to adequate housing, right to 

life and right to water. A clear connection between 

these rights, and their associated indicators is they have 

a spatial determinant, which is key for satellite 

imagery. Since the imagery collects EM information 

over large swathes of land, this lends itself well to 

monitoring surrounding environment, which many 

directly or indirectly impact communities in that 

vicinity. The environment could include a natural 

landscape, such as water bodies or forests, or built-up 

settlements, such as cities.  

 

3.1 Full vs. Partial applications 

Each indicator is assessed whether the goal can be 

fully or partially met with EO and this primarily 

considers the objective of said indicator. For example, 

OHCHR 1.4.5 has the objective to measure the 

‘proportion of agricultural area under productive and 

sustainable agriculture [2.4.1]’. The main objective of 

this indicator is to quantify the amount agriculture land, 

and to determine whether the farming practices ensure 

healthy and resilient crops. Multispectral imagery is a 

key contributor, as seen in table 1, because it can fulfil 

both objectives, including detecting and classifying 

agricultural land. Land use and land cover (LULC) 

classification is the method of determining the type of 

landscape in an image and a variety of techniques that 

can be employed to classify landscapes include manual 

labelling [18] or machine learning algorithms [19] 

[20]. This methodology lends itself well to indicator 

1.4.5 because it can classify by land types based on its 

spectral signature, by separating agricultural land from 

over landcover types [19] [20] [21] and even separating 

agricultural land based upon type of crop grown [22] 

[23]. SAR is another data source that is used in LULC 

and crop classification of agricultural land because it is 

sensitive to changes on the ground and is not obscured 

by weather events, such as cloud. However, this form 

of data is normally integrated with multispectral 

imagery because it is not able to differentiate classes of 

land or crop on its own [19] [23] [24]. 

 

The next aspect of the indicator is the quantify if 

the land is tended with sustainable methods. 

‘Sustainable agriculture’ can have many interpretations 

and so a variety of methodologies can be applied to 
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quantify it. Multispectral imagery can be used in a 

number of ways to meet this purpose, such as by 

quantifying the productivity [19] [25] and 

susceptibility to drought [6] [7]. Other forms of 

imagery can also play a role in monitoring the health 

and productivity of crops, whether as sole data source, 

such as hyperspectral imager [26] [27] [28] and SAR 

[29] imagery, or in combination with other assimilated 

data such as meteorological data [6].  

 

 

 

 

 

 

 

 

 

Under evaluation of the expectations of the 

indicator and considering all possible EO research 

opportunities to meet its needs, each imagery types for 

indicator 1.4.5 are either is either labelled as fully or 

partially observable under the taxonomy in Table 1, 

with green and yellow respective labelling. Since 

multispectral imagery (VNIR) can be used to measure 

the area of land and also determine if the land is under 

sustainable practices, thus achieving all requirements 

for this indicator and so is labelled as full observable, 

whereas the other applicable imagery types are labelled 

as partial because they can be only used for one of the 

requirements of the indicator, or both to a limited 

degree.  

 

 

 

 

Table 1: Referenced OHCHR indicators, with selected indicators for EO research highlighted  

RIGHT TO ADEQUATE FOOD 
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.5
 

1
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1
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1
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1
.4
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1
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1
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1
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1
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1
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1
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1
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1

 

1
.5
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1
.5

.2
 

1
.5

.3
 

1
.5

.4
 

1
.5

.5
 

1
.5

.6
 

1
.6

.1
 

1
.6

.2
 

RIGHT TO ADEQUATE FOOD RIGHT TO ADEQUATE HEALTH 

1
.7

.1
 

1
.8

.1
 

1
.8

.2
 

1
.9

.1
 

1
.9

.2
 

1
.9

.3
 

1
.1

0
.1

 

1
.1

0
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2
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2
.1
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2
.1
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2
.2
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2
.2
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2
.2
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2
.2
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2
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2
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2
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.1
0
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.1
1

 

2
.3

.1
 

2
.3

.1
 

2
.3

.2
 

2
.3

.3
 

2
.3

.4
 

2
.3

.5
 

2
.3

.6
 

2
.3

.7
 

2
.3

.8
 

2
.3

.9
 

2
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0

 

RIGHT TO ADEQUATE HEALTH (CONT)  

2
.4

.1
 

2
.4

.2
 

2
.4

.3
 

2
.4

.4
 

2
.5

.1
 

2
.5

.2
 

2
.5

.3
 

2
.5

.4
 

2
.5

.5
 

2
.5

.6
 

2
.5

.7
 

2
.5

.8
 

2
.5

.9
 

2
.6

.1
 

2
.6

.2
 

2
.6

.3
 

2
.6

.4
 

2
.7

.1
 

2
.7

.2
 

2
.7

.3
 

2
.8

.1
 

2
.8

.2
 

2
.8

.3
 

2
.8

.4
 

2
.8

.5
 

2
.9

.1
 

2
.9

.2
 

2
.9

.3
 

2
.9

.4
 

2
.9

.5
 

2
.9

.6
 

3
.1

.1
 

3
.1

.2
 

RIGHT NOT TO BE SUBJECTED TO TORTURE OR TO CRUEL, INHUMAN OR DEGRADING TREATMENT OR PUNISHMENT  

3
.1

.3
 

3
.2

.1
 

3
.2

.2
 

3
.2

.3
 

3
.1

.3
 

3
.2

.1
 

3
.2

.2
 

3
.2

.3
 

3
.2

.4
 

3
.3

.1
 

3
.3

.2
 

3
.3

.3
 

3
.4

.1
 

3
.4

.2
 

3
.4

.3
 

3
.4

.4
 

3
.4

.5
 

3
.4

.6
 

3
.4

.7
 

3
.5

.1
 

3
.5

.2
 

3
.5

.3
 

3
.5

.4
 

3
.6

.1
 

3
.7

.1
 

3
.7

.2
 

3
.7

.3
 

3
.7

.4
 

3
.7

.5
 

3
.8

.1
 

3
.8

.2
 

3
.8

.3
 

4
.1

.1
 

RIGHT TO PARTICIPATE IN PUBLIC AFFAIRS RIGHT TO EDUCATION 

4
.2

.1
 

4
.2

.2
 

4
.2

.3
 

4
.2

.4
 

4
.2

.5
 

4
.2

.6
 

4
.3

.1
 

4
.3

.2
 

4
.3

.3
 

4
.3

.4
 

4
.3

.5
 

4
.3

.6
 

4
.4

.1
 

4
.4

.2
 

4
.4

.3
 

4
.4

.4
 

4
.4

.5
 

4
.5

.1
 

4
.5

.2
 

4
.6

.1
 

4
.6

.2
 

4
.6

.3
 

4
.7

.1
 

4
.7

.2
 

5
.1

.1
 

5
.1

.2
 

5
.1

.3
 

5
.2

.1
 

5
.2

.2
 

5
.2

.3
 

5
.2

.4
 

5
.2

.5
 

5
.2

.6
 

RIGHT TO EDUCATION (CONT) 

5
.2

.7
 

5
.2

.8
 

5
.2

.9
 

5
.3

.1
 

5
.3

.2
 

5
.3

.3
 

5
.3

.4
 

5
.3

.5
 

5
.3

.6
 

5
.3

.7
 

5
.3

.8
 

5
.4

.1
 

5
.4

.2
 

5
.4

.3
 

5
.4

.4
 

5
.4

.5
 

5
.4

.6
 

5
.5

.1
 

5
.5

.2
 

5
.5

.3
 

5
.5

.4
 

5
.5

.5
 

5
.5

.6
 

5
.5

.7
 

5
.6

.1
 

5
.6

.2
 

5
.6

.3
 

5
.7

.1
 

5
.7

.2
 

5
.7

.3
 

5
.8

.1
 

5
.9

.1
 

5
.1

0
.1

 

 RIGHT TO ADEQUATE HOUSING 

5
.1

1
.1

 

6
.1

.1
 

6
.1

.2
 

6
.1

.3
 

6
.1

.4
 

6
.1

.5
 

6
.2

.1
 

6
.2

.2
 

6
.2

.3
 

6
.2

.4
 

6
.2

.5
 

6
.2

.6
 

6
.2

.7
 

6
.3

.1
 

6
.3

.2
 

6
.4

.1
 

6
.4

.2
 

6
.4

.3
 

6
.5

.1
 

6
.5

.2
 

6
.5

.3
 

6
.5

.4
 

6
.6

.1
 

6
.6

.2
 

6
.6

.3
 

6
.6

.4
 

6
.7

.1
 

6
.7

.2
 

6
.7

.3
 

6
.7

.4
 

6
.7

.6
 

6
.8

.1
 

6
.8

.2
 

 RIGHT TO WORK  

6
.9

.1
 

7
.1

.1
 

7
.1

.2
 

7
.1

.3
 

7
.1

.4
 

7
.2

.1
 

7
.2

.2
 

7
.2

.3
 

7
.2

.4
 

7
.2

.5
 

7
.2

.6
 

7
.3

.1
 

7
.3

.2
 

7
.3

.3
 

7
.4

.1
 

7
.4

.2
 

7
.4

.3
 

7
.5

.1
 

7
.5

.2
 

7
.5

.3
 

7
.5

.4
 

7
.5

.5
 

7
.6

.1
 

7
.6

.2
 

7
.6

.3
 

7
.6

.4
 

7
.6

.5
 

7
.7

.1
 

7
.7

.2
 

7
.7

.3
 

7
.8

.1
 

7
.8

.2
 

7
.8

.3
 

RIGHT TO WORK 

(CONT) 
RIGHT TO SOCIAL SECURITY 

7
.8

.4
 

7
.9

.2
 

7
.9

.3
 

7
.9

.4
 

7
.1

0
.1

 

8
.1

.1
 

8
.1

.2
 

8
.1

.3
 

8
.1

.4
 

8
.1

.5
 

8
.1

.6
 

8
.2

.1
 

8
.2

.2
 

8
.2

.3
 

8
.2

.4
 

8
.3

.1
 

8
.3

.2
 

8
.3

.3
 

8
.4

.1
 

8
.4

.2
 

8
.4

.3
 

8
.5

.1
 

8
.5

.2
 

8
.5

.3
 

8
.5

.4
 

8
.6

.1
 

8
.6

.2
 

8
.7

.1
 

8
.7

.2
 

8
.7

.3
 

8
.7

.4
 

8
.8

.1
 

8
.9

.1
 

 RIGHT TO FREEDOM OF OPINION AND EXPRESSION RIGHT TO A FAIR TRIAL 

8
.1

0
.1

 

9
.1

.1
 

9
.1

.2
 

9
.1

.3
 

9
.1

.4
 

9
.2

.1
 

9
.2

.2
 

9
.2

.3
 

9
.2

.4
 

9
.2

.5
 

9
.2

.6
 

9
.2

.7
 

9
.3

.1
 

9
.3

.2
 

9
.3

.3
 

9
.3

.4
 

9
.3

.5
 

9
.3

.6
 

9
.4

.1
 

9
.4

.2
 

9
.4

.3
 

9
.5

.1
 

9
.6

.1
 

9
.6

.2
 

9
.7

.1
 

9
.8

.1
 

1
0

.1
.1

 

1
0

.1
.2

 

1
0

.1
.3

 

1
0

.2
.1

 

1
0

.2
.2

 

1
0

.2
.3

 

1
0

.2
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3.1.1.   Broad indicator requirements 

The taxonomy presented in table 1 demonstrates 

the variety of applications that satellite imagery in 

documenting potential violations of human rights. 

However, an aspect that that is clear from the table is 

that satellite imagery only provides partial information 

for the majority of indicators. Some indicators listed 

cover many broad features, such as OHCHR 13.8.4, 

which outlines ‘Prevalence of and death rates 

associated with communicable and non-communicable 

diseases (e.g., HIV/AIDS [3.3.1], malaria, tuberculosis 

[3.3.2], [3.3.3], and hepatitis b [3.3.4])’. The indicator 

does list some possible disease that need to be mapped, 

but this is not a of possible communicable and non-

communicable diseases that need to be covered. 

Satellite data is very effective for predicting the 

occurrence of some diseases, predominately derived 

from nature e.g. malaria [30] [31], cholera [32], 

tuberculosis [33] and meningitis [34]. These diseases 

are predictable for satellites imagery as they are 

dependent on their surrounding environment, such as 

malaria with is correlated with heavy rainfall in dry 

climates. There are some instances where the 

improvement of satellite technology and processing 

techniques can open up more possibilities in 

epidemiology research, such as the improvement of 

aerosol optical depth measurements from sensors [35], 

which in turn will improve the measurements of 

particulate matter monitoring in cardiac and respiratory 

research [36]. However, in many instances diseases are 

not traceable. 

 

 

 

 

 

 

 

Table 1 (continued): Referenced OHCHR indicators, with selected indicators for EO research highlighted 
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Table 3: Taxonomy of OHCHR indicators mapped to applicable EO imagery.                                    

 Right to adequate food Right to health *1 *2 Right to adequate housing  
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3.1.2. Combination with other data sources 

Indicator 13.8.4 has a broad range of requirements 

for the indicator and so it cannot be fully monitored 

with satellite data, but it also demonstrates the general 

limitation of satellite technology in  this field because 

of its reliance to integrate other data sources for a 

meaningful result. The specific indicator requires a 

range of different data sources, including health 

records [31] [32] [34] and survey data [33] to 

substantiate the hypothesis.  Other indicators also 

adopt other forms of data to train models [37] refine 

models with expert knowledge [38] with forms of data 

that include in-situ measurements, official statistics or 

eye witness accounts. This, however, is a limitation of 

all forms of data, where it can only provide information 

on one perspective. The think-tank ‘Betterplace Labs’ 

states that human rights research requires ‘both 

quantitative and qualitative research methods’ and so 

there will always be a need to collect information from 

many resources to conduct a thorough investigation 

[39]. 

 

An alternative way of viewing satellite imagery is 

it another type of data that can assist in delivering 

further insights that were not possible. When 

describing the role that remote sensing can play in 

modern slavery investigations, Jackson (2019) outlines 

that EO cannot be used for all types slavery studies, but 

can provide information ‘in remote areas which may 

have previously been inaccessible, or even unknown’. 

This is demonstrated in OHCHR 3.5.2,  ‘Reported 

cases of inhuman methods of execution and treatment 

of persons sentenced to death /incarcerated in the 

reporting period’. The basis for this indicator’s analysis 

is taken from research into reports of North Korea’s 

inhumane detention centres. North Korea isolates itself 

from most of the world, with  personal accounts of 

brutality and extremism, which include illegal 

imprisonments and brutal killings Satellite imagery 

presents a unique vantage to validate the testimonies of 

escaped population. Son (2020) explores the work 

done by NGO ‘the Mapping project’, which aims to 

report on the alleged atrocities the North Korean 

Government has put on its people. The work uncovers 

the location of burial sites of victims of state-sponsored 

killings. They describes that satellite imagery improves 

the quality of the interviews because the images can 

‘contextualise the testimony’ [40] [41] [42]. Clearly 

there is relevance of mixed methods analysis is vital for 

this research because it help identify common patterns 

[43]. 

 

3.1.3 Spatial resolution requirements 

The OHCHR indicators cover a wide range of 

spatial scales, from discerning individual buildings to 

aggregating on a national level. Therefore, the satellite 

mission spatial resolution needs to match the level of 

detail required in the investigation. With some 

commercial satellite missions achieving resolution 

down to 20cm, this broadens the possibility for 

ingesting EO data in human rights research. This level 

of resolution is greatly needed for indicators that 

require find details. OHCHR 13.6.2, 13.9.2 and 13.10.2 

all relate to determining the proportion of people killed 

by execution, from imprisonment or conflict, such as 

war. In instances of extreme violations like war crimes 

or illegal executions, mass graves are likely to be the 

method of disposal of bodies, and their mere detection 

can serve as compelling evidence in human rights 

investigations. While satellite imagery cannot provide 

an exact count of victims of such heinous acts, it can 

supply timely information regarding the location, 

timing, and frequency of these graves [41] [44] [45] 

[46].  

 

Lavers (2009) emphasizes the preference for high-

resolution satellite imagery in human rights research 

whenever feasible [47]. There is a variety of options in 

multispectral VNIR imagery options from commercial 

missions that reach with resolutions <1m, but there are 

options to use open-source imagery that can achieve 

resolution at approximately 10m, such as ESA’s 

Copernicus programme or NASA’s Landsat 

programme. Throughout the taxonomy, both options 

are explored and referenced wherever possible, such as 

OHCHR 6.2.3 which estimates reclaimed hazardous 

sites. Soil contamination can render a site hazardous, 

and multispectral imagery can detect and quantify this 

by identifying distinct spectral signatures in 

contaminated soil compared to healthy soil. This 

application can be served using commercial imagery, 

open-source data [48], or a combination of both [49], 

with open-source imagery sometimes offering suitable 

resolutions, albeit contingent on the size of the 

monitored land. In contrast to multispectral VNIR 

imagery, SAR imagery, although relatively newer in 

comparison, also has the capability to achieve very 

high spatial resolutions.  

 

In an ideal situation, the highest resolution satellite 

imagery is optimal because it can provides the most 

detail in an image and so more accurate results can be 

obtained [50]. However, attaining such resolution may 

prove unfeasible in many circumstances because the 

user will always be limited by storage and budgetary 

restrictions. These limitations are prominent in many 

areas of the public and charity sector, which is also 

where these investigations take place. For commercial 

satellite imagery that can reach equal or less than 1m 

spatial resolution currently cost on average $22.5/km2 

[51], which becomes expensive if generating a time-

series analysis across a large area. This type of imagery 

is necessary for studies that require this level of detail, 

but there are many open-source data options that can 

provide high spatial and spectral resolution, including 

the Sentinel-2, Sentinel-3 (ESA), Landsat, Terra and 

Aqua (NASA) missions. Furthermore, non-
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commercial research can also obtain VHR imagery is 

available with no cost if applying to specialised grants.  

 

Not all imagery forms have as many options as 

multispectral VNIR and SAR, including passive 

microwave satellites that are limited in varieties and 

abundance. Table 1 demonstrates that passive 

microwave radiometers are primarily applicable in 

research related to the health of natural and agricultural 

landscapes because it interacts uniquely with water, 

which occur over large scales and so very high-

resolution imagery is not required. Nevertheless, 

studies are limited to AOI that can be resolved within 

the current standards of satellite. NASA’s Soil 

Moisture Active-Passive Mission (SMAP) is one of the 

leading passive (and active) microwave satellites and 

achieves a resolution of 9 km after resampling, limiting 

chosen FOV to areas that can be resolved at this 

resolution. Studies on air pollution and weather also 

bare this problem where they are limited by the 

resolution of data. Monitoring capabilities of GHG 

gases is expanding due to the demand of industries to 

meet net-zero targets. GHGSat, commercial satellite 

data provider, offers data down to 50m, but at a cost. 

Unlike multispectral imagery, there is a large gap in 

capabilities between commercial data and open-source 

data, as ESA’s Sentinel-5 provides resolution at 

approximately 5.5 x 3.5 km.  

 

3.2 Comparison of sensors  

 3.2.1 Multispectral imagery 

Based on the findings of the taxonomic analysis, 

multispectral VNIR imagery emerges as the most 

pertinent tool for addressing the specified OHCHR 

indicators. This makes it extremely important to 

identify important features in human rights studies, 

such as mass graves or destroyed landscapes.  Manual 

identification is a well-used method because it is the 

easiest to interpret and so can be widely understood by 

the general public. This makes it extremely important 

for identifying important features in human rights 

studies, such as mass graves or destroyed landscapes. 

Notably, organizations like the UN Satellite Centre 

(UNOSAT) have relied on this method, utilizing it, for 

instance, in their efforts to verify the presence of mass 

graves in Libya's Marqub District [52]. This method is 

effective in detecting very slight disturbances to the 

Earth’s surface, where details are very fine fine or if a 

training dataset is not available. However, manual 

classification can be unreliable as it includes human 

error and is time consuming [53]. 

 

Spectral indices constitute another prominent 

aspect of multispectral (VNIR/MW) research, 

primarily because they enable the selective 

enhancement of specific target features through the 

choice of complementary wavelengths. Spectral 

indices typically involve the computation of 

differences between distinct wavelengths, such as the 

Difference Vegetation Index (DVI) which is the 

difference between the near-infrared (NIR) and red 

bands. The Normalised Difference Vegetation Index 

(NDVI) is a slight variation on the DVI, but is 

important to compare vicinity and health of vegetation 

and so is used widely in taxonomy in a number of ways 

including assessing irrigation on arable land [54] [55] 

[56], disease mapping [57] and identifying locations of 

labour exploitation [58].  

 

Machine learning (ML) algorithms are another 

form to process satellite imagery, and can be applied to 

many applications in human rights investigations. ML 

classification algorithms are notably used in LULC 

because they can compute varied and complex data 

sources for fast and digestible output. This is 

particularly important in the context of human rights 

research where ML LULC algorithms can be applied 

to research including agricultural land under 

sustainable practices [19] [20], water quality 

parameters [59], and urban environments [60]. ML 

classification also has applications in identifying 

specific features such as roads [61] [62], impoverished 

communities [63] or damaged houses after a disaster 

[64]. 

 

Multispectral imagery is also an important tool in 

assessing the concentration of particulate matter, 

particles that are a by-product of combustion, in the 

atmosphere and so are prevalent in urban areas or near 

industrial activities. The particles have severe effects 

on health, particularly on heart [65]and respiratory 

disease [66]. Indicator 2.3.9 addresses it by specifying 

monitoring capabilites of particulate matter (‘Annual 

mean levels of fine particulate matter (e.g. PM2.5 and 

PM10) in cities (population weighted) [11.6.2]’). 

Particulate matter research applies multispectral 

imagery in a unique way, where the aerosol optical 

depth (AOD) or aerosol optical thickness (AOT) is 

used. AOD measures the amount of light lost from 

aerosols in the atmosphere and so this is a key feature 

needed to measure particulate matter. The MODIS 

instrument aboard NASA’s Terra and Aqua satellites is 

the most widely used instrument in these studies [67] 

[68]. Satellite-derived particulate matter estimations 

can also be used in combination with other data 

sources, such as public health data or imagery from 

natural disasters, to derive its direct impact on 

surrounding communities [69] [70] [71]. 

 

3.2.2 Passive microwave  

Passive microwave imagery represents a subset of 

multispectral data, typically distinct from visible near-

infrared (VNIR) multispectral satellite missions. 

However, there are noteworthy exceptions to this 

pattern, exemplified by NASA's Aqua satellite, which 

carries both a microwave radiometer (AMSR-E) and a 

spectro-radiometer designed to monitor the 

VNIR/SWIR spectrum (MODIS). Nevertheless, the 

majority of missions, such as SMOS (ESA), SMAP, 

and HYRDOS (NASA), remain separated due to their 
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specialized applications. These applications primarily 

focus on soil moisture studies, as water content is a 

dominant factor that affects the signal. This 

information is critical for agricultural studies that 

centre on irrigation [72] [73] and crop health [7], but 

can also be extended to applications in human health 

and safety, from vector-borne diseases [74] and natural 

disasters [75]. Therefore, passive MW is a vital 

foundation to right to adequate food, right to health 

and right to housing. 

 

3.2.3 Hyperspectral imagery 

Hyperspectral imagery plays a prominent role in 

various research domains, and its significance is 

particularly pronounced in endeavors aimed at the 

identification of specific substances, whether they are 

situated on land, within aquatic environments, or in the 

atmosphere. Within the realm of agricultural studies, 

hyperspectral imagery stands out due to its capacity to 

tailor wavelength selection for the precise detection of 

crop productivity and health [27] [28] [76]. This 

capability enables a nuanced spectral analysis, setting 

it apart from multispectral remote sensing, which 

exhibits limited spectral diversity [27]. Consequently, 

hyperspectral imagery emerges as an ideal tool for 

addressing indicators related to the right to Adequate 

Food, particularly indicators 1.4.5, 1.4.8, 1.4.10, 

1.4.11, and 1.9.3. 

 

As well as crop studies, hyperspectral imagery is 

capable of determining pollution concentration in soil, 

a critical component of determining habitability of land 

and investigations into poor industrial practices. 
Notably, heavy metals, which pose severe 

environmental threats and often result from industrial 

and mining activities, have been subject to 

hyperspectral analysis, including arsenic [77], 

Chromium [49], Zinc [78], Nickel [78] and Copper 

[78]. Pollution can also infiltrate water supplies and so 

hyperspectral imagery can also measure the water 

quality in instances where water system may be 

compromised [79] [80] [81] [82]. 

 

Some hyperspectral missions are adapted to 

specifically measure gas column-densities in the 

atmosphere, which allows for studies on GHG and 

trace gas emission studies. The term ‘air pollution’ 

encompasses a variety of different gases, of which 

satellites are able to monitor many, including CO2, 

SO2, NOX and CO. OHCHR indicators 2.3.2 and 2.8.2 

directly assess air pollution levels (the former only 

measures CO2 levels) and so the results can be directly 

obtained from emission-specific missions, such as 

Sentinel-5 and OCO-2/3 [83] [84] [85] [86]. Gas 

emissions can also be used as an indirect indicator for 

research in GDP forecasting [87], and wildfire damage 

mapping [88]. 

 

 

 

3.2.4 Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) imagery stands 

out as a widely employed imaging modality in the 

realm of OHCHR investigations. Its versatility, driven 

by a broad spectrum of operating wavelengths and 

spatial resolutions, enables it to have a wide range of 

applications. A distinction attribute of SAR imagery 

that makes it particularly important for human rights 

research, demonstrated through the taxonomy, is its 

sensitivity to different textures as this determines the 

reflectance angle of the radar signal. It is especially 

sensitive to water because it responds to water very 

differently than other materials. This means it is very 

important for studies on the right to water and 

sanitation,  including measuring water content in soil 

[89], locating offshore oil spills [90] [91] and 

wastewater disposal [92]. 

 

SAR sensitivity also extends to impervious 

surfaces, which are typically found in built-up areas 

like towns and cities. Therefore, it’s very useful in 

providing information to indicators found in right to 

adequate housing. Applications of SAR for this 

purpose are detecting the expansion of urban cities [93] 

[94] [95], but also detecting fragilities to infrastructure, 

which could ultimately make buildings unsafe [96] 

[97] [98]. 

 

Notably, SAR sensors exhibit clear sensitivity to 

surface displacements on the Earth's surface. Coupled 

with its capacity to discriminate between surface 

features, SAR imaging emerges as an invaluable tool 

for natural disaster mapping. This attribute aligns with 

the OHCHR indicators 8.5.4 and 8.9.1, which 

necessitate the mapping of disasters to assess direct 

economic losses and the number of individuals directly 

affected, respectively. SAR imagery serves as a potent 

means of quantifying the impacts of both natural and 

man-made disasters by enabling the detection of 

structural changes in buildings before and after such 

events occur [99] [100] [101]. 

  

3.2.6 Meteorology datasets 

Site-specific rainfall measurements are required in 

hydrological studies of agricultural land (addressing 

indicators 1.4.2, 1.4.5, 1.4.10, 1.5.3 and 1.9.3). In these 

applications, data derived directly from satellites, and 

supplemented with site-specific rainfall gauge 

measurements, are applied [102] [103] [73] to refine 

the accuracy at a site-specific level. CHIRPS is an 

alternative dataset that can also be applied in 

agricultural studies, and proves useful if in-situ gauge 

measurements are not manageable [104] [6] [105]. 

There is overlap between passive MW and 

meteorological research as both provide information 

on rainfall and moisture parameters. Therefore, 

meteorological datasets are insightful for studies of 

disease mapping [31] [34] [106], poverty estimates 

[107] [108] and natural disaster management [109] 
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[110], covering right to health, right to housing and 

rights to non-discrimination and equality. 

 

 

4. Future of the field 

This study clearly demonstrates the benefit that 

satellite imagery already contributes to human rights 

research, spanning a wide range applications including 

environmental, health, agriculture and conflict, albeit 

not officially documented. The taxonomy therefore 

provides a framework that interested parties can adopt 

into their own human rights research, whether by 

Government officials, NGOs or public advocacy 

groups. Furthermore, professionals in EO services and 

analytics can use the taxonomy as a tool for 

understanding and expanding the potential for EO to 

feature in more human rights applications in the future, 

as they have the skills enhance and expand upon the 

techniques already discussed.  Lack of trained analysts 

is a potential risk to the sector [111], but transparency 

and awareness of this unique data source will gradually 

mitigate this concern. 

 

However, it is important to acknowledge a limitation 

of this technology: certain forms of satellite imagery 

may lack the requisite sophistication to capture 

intricate details within a specific scene. Unmanned 

aerial vehicles (UAVs) and aerial imagery represent 

alternative remote sensing technologies that hold 

significance in humanitarian research, particularly in 

contexts such as natural disaster assessment, conflict 

analysis, and pollution monitoring. These imaging 

modalities are often preferred due to their ability to 

provide high-resolution data and flexible flight 

scheduling. Nevertheless, they too encounter 

limitations associated with airspace permissions, 

potentially impeding observations in restricted areas. 

Geostationary satellites offer continuous monitoring 

capabilities but are constrained to the specific areas 

covered by their missions. The pace of technological 

advancement in satellite missions, with private 

missions leading the way in major strides in frequency 

and high spatial resolution, promises ongoing progress. 

Public missions, on the other hand, are instrumental in 

ensuring widespread access through open-source data 

dissemination. The evolution of satellite technology 

will likely continue in parallel with the integration of 

multiple imaging sources, harnessing the advantages of 

each to provide the spatial resolution of UAVs 

combined with the scalability and regularity of satellite 

imagery. This approach has already found application 

in precision agriculture studies   [112] [113] and natural 

disaster assessments [114] [115], aligning with the 

requirements of the OHCHR indicators and holding 

potential for expansion into diverse applications in the 

future.  

 

 
1 Interview with expert witness of satellite imagery in 

court, Online, 24th May 2023 

Following the completion of an investigation, 

findings can be communicated through various 

channels, including official reports and media 

coverage. However, the most significant and 

consequential use of this information lies in legal 

processes aimed at holding perpetrators accountable. 

The International Criminal Tribunal for the former 

Yugoslavia (ICTY) marked a pivotal moment by 

incorporating satellite imagery as evidence to depict 

the extent of devastation caused. Since then, such 

imagery has been introduced in numerous civil, 

national, and international court cases, serving not only 

to set the scene for juries but also as substantive 

evidence. It is important to note that the predominant 

use of satellite imagery in legal contexts has largely 

been confined to visual inspection of high-resolution 

multispectral imagery due to lawyers1 limited 

familiarity with alternative imagery types and 

techniques. Several challenges must be surmounted to 

facilitate the admissibility of EO data as evidence, 

including the standardization of satellite imagery and 

associated techniques. Equally critical is raising 

awareness within the legal community, as a deeper 

understanding of the diverse technologies available can 

bolster lawyers confidence in presenting new 

techniques in court. 

 

5. Conclusions  

The distinctive and indispensable role of satellite 

imagery in human rights investigations arises from its 

capacity for comprehensive and timely coverage of the 

Earth's surface. Despite its adoption in select 

investigations, its full potential remains largely 

untapped. Consequently, the presented taxonomy 

offers a comprehensive overview of the myriad 

possibilities offered by this technology. The 

foundation of this study is built upon the OHCHR 

human rights indicators, chosen for their all-

encompassing nature, widespread adoption, and their 

alignment with the United Nations' Sustainable 

Development Goals—a connection that is extensively 

explored using satellite imagery. 

 

The proposed taxonomy outlines the various types 

of satellite imagery that can aid in fulfilling each 

relevant indicator, while also indicating the extent to 

which such imagery can address the specific demands 

of each indicator. It is worth noting that most 

applications of Earth observation (EO) technology 

only provide partial contributions to the OHCHR 

indicators, as these indicators entail complex 

requirements and both EO data and other data sources 

offer only one perspective. Nonetheless, the taxonomy 

has illuminated the diverse array of applications 

spanning the OHCHR indicators and has shed light on 

how satellite imagery can bridge critical data gaps. 
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Multispectral imagery stands as the most well-

known and widely employed form of satellite imagery 

in human rights-related investigations. This popularity 

stems from its ease of interpretation by the general 

public, its prevalence as the most commonly used 

sensor type aboard satellites in orbit, and the 

availability of numerous algorithms for data 

processing. Nevertheless, the taxonomy underscores 

the spectrum of applications within the OHCHR 

indicators and underscores the capacity of satellite 

imagery to address information deficiencies. 
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Appendix A: Selected Labelled Indicators 

Rights  Indicators Reference 

Right to 

adequate food 

(OHCHR 1) 

Arable irrigated land per person 1.4.2 

Proportion of agricultural area under productive and sustainable agriculture [2.4.1] 1.4.5 

Volume of production per labour unit by classes of farming/pastoral/forestry enterprise 

size [2.3.1] 

1.4.8 

Cereal import dependency ratio in the reporting period 1.4.10 

Proportion of fish stocks within biologically sustainable levels [14.4.1] 1.4.11 

Proportion of targeted population that was brought above the poverty line in the 

reporting period [1.2.1, 1.2.2] 

1.5.3 

Proportion of the rural population who live within 2 km of an all-season road [9.1.1] 1.5.6 

Indicator of food price anomalies [2.c.1] 1.9.3 

Proportion of targeted population that was extended access to safely managed drinking 

water source[6.1.1] in the reporting period 

14.10.2* 

Right to the 

enjoyment of 

the highest 

attainable 

standard of 

physical and 

mental health 

(OHCHR 2) 

Proportion of the target population covered by all vaccines included in their national 

programme, including children immunized against vaccine-preventable diseases [3.b.1] 

2.2.11 

Proportion of population using safely managed drinking water [6.1.1] and sanitation 

services [6.2.1] 

14.10.2* 

CO2 emission per unit of value added [9.4.1] 2.3.2 

Proportion of population or households living or working in or near hazardous 

conditions rehabilitated 

6.6.3* 

Annual mean levels of fine particulate matter (e.g. PM2.5 and PM10) in cities 

(population weighted) [11.6.2] 

2.3.9 

Hazardous waste generated per capita and proportion of hazardous waste treated, by 

type of treatment[12.4.2] 

6.6.4* 

(Improvement in) Density and distribution of medical and paramedical personnel, 

hospital beds and other primary health-care facilities [3.c.1] 

2.5.2 

Coverage of essential health services (defined as the average coverage of essential 

services based on tracer interventions that include reproductive, maternal, new born and 

child health, infectious diseases, noncommunicable diseases and service capacity and 

access, among the general and the most disadvantaged population) [3.8.1] 

2.5.9* 

Mortality rate attributed to household and ambient air pollution [3.9.1] 2.8.2 

Number of deaths, missing persons and directly affected persons attributed to disasters 

per 100,000 population [11.5.1/13.1.1] 

8.9.1* 

Death rate associated with and incidence of new HIV infections per 1,000 uninfected 

population [3.3.1], and incidence of tuberculosis [3.3.2], malaria [3.3.3] and hepatitis B 

[3.3.4] per 1,000 population, by sex, age and key population 

2.9.1 

Right not to 

be subjected 

to torture or 

to cruel, 

inhuman or 

degrading 

treatment or 

punishment 

(OHCHR 3) 

Actual prison occupancy as a proportion of prison capacity in accordance with relevant 

United Nations instruments on prison conditions 

3.2.1 

Proportion of detained and imprisoned persons in accommodation meeting legally 

stipulated requirements(e.g., drinking water, cubic content of air, minimum floor space, 

heating) 

3.2.2 

Reported cases of inhuman methods of execution and treatment of persons sentenced to 

death /incarcerated in the reporting period 

3.5.2 

Incidence and prevalence of death, physical injury and communicable and non-

communicable diseases (e.g., HIV/AIDS [3.3.1], tuberculosis [3.3.2], malaria [3.3.3], 

and mental impairment) in custody 

2.9.1* 

Right to 

education 

(OHCHR 5) 

Proportion of schools with access to (a) electricity; (b) the Internet for pedagogical 

purposes; (c) computers for pedagogical purposes; (d) adapted infrastructure and 

materials for students with disabilities; (e) basic drinking water; (f) single-sex basic 

5.4.1 



74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023. 

Copyright ©2023 by the Mrs. Seonaid Rapach. Published by the IAF, with permission and released to the IAF to publish in all forms. 

IAC-23-B1.5.3                     Page 12 of 18 

 

sanitation facilities; and (g) basic handwashing facilities (as per the WASH indicator 

definitions) [4.a.1] 

(Improvement in) Density of primary, secondary and higher education facilities in the 

reporting period 

5.8.1 

Right to 

adequate 

housing 

(OHCHR 6) 

Proportion of homes(cities, towns and villages) brought under the provisions of building 

codes and by-laws in the reporting period 

6.2.1 

Habitable area (sq. m.) added through reclamation, including of hazardous sites and 

change in land-use pattern, in the reporting period 

6.2.3 

Ratio of land consumption rate to population growth rate [11.3.1] 6.2.5 

Average share of the built-up area of cities that is open space for public use for all, by 

sex, age and persons with disabilities [11.7.1] 

6.2.6 

Proportion of population with sufficient living space (persons per room or rooms per 

household) or average number of persons per room among target households 

6.6.1 

Proportion of households living in permanent structure in compliance with building 

codes and by-laws 

6.6.2 

Proportion of households living in or near hazardous conditions 6.6.3 

Hazardous waste generated per capita and proportion of hazardous waste treated, by 

type of treatment [12.4.2] 

6.6.4 

Proportion of urban population living in slums, informal settlements or inadequate 

housing [11.1.1] 

6.7.1 

Proportion of population using safely managed drinking water [6.1.1], sanitation 

services [6.2.1], electricity [7.1.1] and waste disposal [11.6.1] 

6.7.2 

Proportion of population living in households with access to basic services[1.4.1] 6.7.3 

Proportion of population that has convenient access to public transport, by sex, age and 

persons with disabilities [11.2.1] 

6.7.4 

Proportion of the rural population who live within 2 km of an all-season road [9.1.1] 1.5.6* 

Right to work  

(OHCHR 7) 

Proportion and frequency of enterprises inspected for conformity with labour standards 

and proportion of inspections resulting in administrative action or prosecution 

7.3.1 

Proportion of children in productive activity 7.5.2 

Proportion of workers in precarious employment(e.g.,short-,fixed-term, casual, seasonal 

workers) 

7.6.4 

Number of victims of human trafficking per 100,000 population, by sex, age and form 

of exploitation [16.2.2] 

7.9.3 

Reported cases of violation of the right to work, including forced labour, discrimination 

and unlawful termination of employment and proportion of victims who received 

adequate compensation 

7.9.4 

Right to 

social security 

(OHCHR 8) 

Direct economic loss attributed to disasters in relation to global gross domestic product 

(GDP) [1.5.2] 

8.5.4 

Proportion of population in specific situations of need receiving social assistance for 

food, housing, health care, education, emergency or relief services Number of deaths, 

missing persons and directly affected persons attributed to disasters per 100,000 

population [1.5.1] 

8.9.1 

Proportion of individuals in the formal or informal economy below national poverty line 

before and after social transfers 

8.10.1 

Right to 

freedom of 

opinion and 

expression 

(OHCHR 9) 

Proportion of population with access to TV and radio broadcasts 9.3.3 

Rights to non-

discrimination 

and equality 

(OHCHR 12) 

Proportion of population using safely managed drinking water [6.1.1], sanitation 

services [6.2.1], electricity [7.1.1] and waste disposal [11.6.1] 

6.7.2* 

Proportion of targeted populations below national  poverty line [1.2.1](and Gini indices) 

before and after social transfers 

12.9.1 

Right to life 

(OHCHR 13) 

Proportion of population using safely managed drinking water services [6.1.1] 14.10.2* 

Coverage of essential health services (defined as the average coverage of essential 

services based on tracer interventions that include reproductive, maternal, newborn and 

child health, infectious diseases, non-communicable diseases and service capacity and 

access, among the general and the most disadvantaged population) [3.8.1] 

13.4.7 

Number of deaths in custody per 1,000 detained or imprisoned persons, by cause of 

death(e.g.,illness, suicide, homicide) 

13.6.2 

Prevalence of and death rates associated with communicable and non-communicable 

diseases (e.g., HIV/AIDS [3.3.1], malaria,  tuberculosis [3.3.2], [3.3.3], and 

hepatitis b [3.3.4]) 

13.8.4 

Number of executions (under death penalty) 13.9.2 

Proportion of population using safely managed drinking water services [6.1.1] 14.10.2* 
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Number of conflict-related deaths per 100, 000 population by sex, age and cause 

[16.1.2] 

13.10.2 

Right to water 

and sanitation 

(OHCHR 14) 

Change in water-use efficiency over time [6.4.1] 14.1.2 

Proportion of schools with access to (e) basic drinking water; (f) single-sex basic 

sanitation facilities; and(g) basic handwashing facilities (as per the WASH indicator 

definitions) [4.a.1] 

14.2.1 

Proportion of bodies of water with good ambient water quality [6.3.2] 14.3.3 

Proportion of wastewater safely treated [6.3.1] 14.3.4 

Proportion of health centres, prisons and other institutions with access to safe drinking 

water, sanitation and hand-washing facilities (e.g. with facilities for persons with 

disabilities, older persons) 

14.5.1 

Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene (exposure 

to unsafe Water, Sanitation and Hygiene for All (WASH) services) [3.9.2] 

14.6.1 

Proportion of population using safely managed drinking water services [6.1.1] and 

safely managed sanitation services, including a hand-washing facility with soap and 

water [6.2.1] 

14.10.2 

Right to 

freedom of 

peaceful 

assembly and 

association 

(OHCHR 15) 

Proportion of population covered by a mobile network, by technology [9.c.1] 9.3.4* 
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