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A B S T R A C T

Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep
tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS
methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical
framework but also by the broad range of component options and system architectures. To facilitate new entry to
this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave,
frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new
applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs
with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis
tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the
future directions is provided, to offer effective guidance to embark on DCS research.

1. Introduction

Blood flow (BF) in a healthy person ensures stable delivery of oxygen
and energy substrates (glucose and lactate) to and timely removal of
metabolic waste products from organs (Zauner et al., 2002). Specifically,
well-regulated cerebral blood flow (CBF) ensures healthy brain func-
tions (Uludağ et al., 2004; Durduran and Yodh, 2014), brain metabo-
lisms (Kaiser and During, 1995; Devor et al., 2012), and supports
metabolic responses to external stimuli (Cheung et al., 2001; Quaresima
et al., 2012). The average CBF for an adult human is around 50 ml/(100
g min) (Fantini et al., 2016) and 10-30 ml/(100 g min) for a newborn
(Rhee et al., 2018). Irregular CBF can cause brain damage through
ischemic injury or stroke (Campbell et al., 2013; Durduran et al., 2009).

Effective real-time BF monitoring can aid in the diagnosis and
management of broad range of medical conditions such as stroke,
traumatic or hypoxic-ischemic encephalopathy (HIE) (Weigl et al.,
2016; Durduran et al., 2004), neurological disorders, cardio-cerebral

diseases, cancer treatment strategies, tissue perfusion in peripheral
vascular diseases (Ma et al., 2019), brain health/functions (Duncan
et al., 1996), wound healing, sepsis and shock (Becker et al., 2004),
skeletal muscle (Gurley et al., 2012) injuries or tissue viability during
surgeries.

Available real-time BF measurement tools are predominantly
Doppler ultrasound based. However, Doppler ultrasonography requires
a highly-skilled operator at the bedside and is operator-dependent
(Tupprasoot and Blaise, 2023). Cerebral perfusion can be mapped
using medical imaging scanners, including positron emission tomogra-
phy (PET) (Vaquero and Kinahan, 2015), single photon emission
computed tomography (SPECT) (Ljungberg and Pretorius, 2018),
xenon-enhanced computed tomography (XeCT) (Yonas et al., 1996),
dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI)
(Kwong et al., 1992), and arterial spin labelling MRI (ASL-MRI) (Barbier
et al., 2001; Durduran et al., 2010; Yu et al., 2007). However, these
techniques only provide ‘snapshot’ observations, are inappropriate for
continuous monitoring, and typically require moving patients to
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imaging suites, which is unpractical for many patients. Additionally, a
supine scan is necessary for MRI, PET and CT techniques. Further, PET,
SPECT, and CT present additional risks of radiation exposure. Laser
Doppler flowmetry (LDF) (Shepherd and Öberg, 2013) is another
perfusion technique, but it can only measure superficial tissue blood
flow; thus, tissue samples must be thin to permit adequate sampling.
Thus, there is a critical need to develop bedside techniques that are free
from the limitations mentioned above and can noninvasively monitor

microvascular BF in deep tissue at the bedside with a high sampling rate
and at a low cost. For a thorough comparison of the modalities
mentioned above, readers can refer to previous reviews (Durduran and
Yodh, 2014; Fantini et al., 2016; Wintermark et al., 2005).

In the late 1970s, Jöbsis observed a spectral window in the near-
infrared (low optical absorption, μa and reduced scattering, μś, ∼ 650-
950 nm) wherein photons can penetrate deep/thick tissues up to
several centimetres (Jöbsis, 1977; Jöbsis-vanderVliet and Jöbsis, 1999;

Glossary

DCS diffuse correlation spectroscopy
DCT diffuse correlation tomography
SPAD single-photon avalanche diode
APD avalanche photon diode
PMT photomultiplier
SNSPD superconducting nanowire single-photon detector
DL deep learning
BF blood flow
BFi blood flow index
CBF cerebral blood flow
PET positron emission tomograph
SPECT single photon emission computed tomograph
XeCT xenon-enhanced computed tomography
MRI magnetic resonance imaging
DSC-MRI dynamic susceptibility contrast magnetic resonance

imaging
LDF laser Doppler flowmetry
NIR near-infrared
NIRS near-infrared spectroscopy
DOS diffuse optical spectroscopy
CBV cerebral blood volume
FCS fluorescence correlation spectroscopy
DLS dynamic light scattering
QELS Quasi-elastic light
CHS coherent hemodynamics spectroscopy
RBC red blood cells
AI artificial intelligence
CMOS complementary metal-oxide-semiconductor
CW continuous wave
TD time domain
FD frequency domain
RTE radiative transfer equation
PDE photon diffuse equation (Section 2); Photon detection

efficiency of detectors (Section 3)
CTE correlation transport equation
CDE correlation diffusion equation
MRI-ASL MRI-based arterial spin labelling
RF radio-frequency
ANSI American National Standards Institute
MPE maximal permissible exposure
LSCA laser speckle contrast analysis
LSCI laser speckle contrast imaging
DSCA diffuse speckle contrast analysis
SCOS speckle contrast optical spectroscopy
DWS diffusing wave spectroscopy
DUS Doppler ultrasound
PDT photodynamic therapy
TCD transcranial Doppler ultrasound
pO2 oxygen partial pressure
CMRO2 cerebral metabolic rate of oxygen
FPGA field programmable gate arrays
D core diameter of multimode fiber

d speckle diameter
SNR signal to noise ratio
g anisotropy factor
μs scattering coefficient
μś reduced scattering coefficient
〈
Δr2(τ)

〉
mean square displacement of moving scatterers

DB effective diffusion coefficient for moving particles
V2 mean square velocity
r1 distance between the detector and an approximated

positive isotropic imaging source for a semi-infinite
geometry

r2 distance between the detector and an approximated
negative isotropic imaging source for a semi-infinite
geometry

G1/g1 unnormalized/normalized electric field autocorrelation
function

G2/g2 unnormalized/normalized intensity autocorrelation
function

λ wavelength
k0 wavenumber in the medium
n refraction index
α fraction of scattering events due to dynamic
β coherent factor
τ correlation delay time
Reff effective reflection coefficient
ρ distance between source and detection fibers
J0 the zeros order Bessel function of the first kind
s0 point-like monochromatic light source
lc coherence length
Δλ the optical bandwidth
w frequency corresponding to time in Fourier domain
q the radial spatial frequency
p layer number of tissues
ω the source modulation frequency
T the correlator bin time interval
Tint integration time (measurement duration) or the

measurement time window
τc decay constant
〈M〉 average number of photons within bin time T
I detected photon count
m bin index
s photon pathlength
ToF time-of-flight
t photon time-of-flight
NL Nth-order
SVR support vector regression
EEG electroencephalogram
ECG electrocardiogram
2DCNN 2-dimentional convolution neural networks
3D three-dimensional
LSTM long short-term memory
RNN recurrent neural network
StO2 cerebral tissue oxygenation
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Jöbsis-vanderVliet, 1999). Subsequently, near-infrared spectroscopy
(NIRS) or diffuse optical spectroscopy (DOS) was applied to study deep
tissue hemodynamics, including cerebral oxygenation and cerebral
blood volume (CBV), as early as the mid-1980s (Benaron et al., 1992;
Pope and Stevens, 1953). However, traditional NIRS primarily measures
blood oxygenation saturation and hemoglobin concentrations, instead
of tissue blood flow. Although NIRS can estimate tissue perfusion, this
requires injecting exogenous contrast agents (such as indocyanine
green) (Habazettl et al., 2010; Hawrysz and Sevick-Muraca, 2000; Keller
et al., 2003), limiting its applications in continuous monitoring.

Diffuse light correlation techniques, on the other hand, are rooted in
the fundamental principles of dynamic light scattering (DLS). These
methods, sometimes called ‘quasi-elastic light (QELS) scattering’ tech-
niques (Berne and Pecora, 1990; Chu, 1991; Clark et al., 1970; Van de
Hulst, 1981), measure light intensity fluctuations scattered from sam-
ples to observe motions of sample constituents, e.g., Brownian motions
of particles or macromolecules. Conventionally, DLS can provide
detailed information about the dynamics of scattering media by using
photon correlation techniques to analyze scattered light fluctuations
(Berne and Pecora, 2000). However, QELS belongs to the
single-scattering regime (Clark et al., 1970; Fuller et al., 1980) and is
unsuitable for turbid media in which the incident light is scattered
multiple times. In 1987, Maret and Wolf (Maret and Wolf, 1987) re-
ported experimental measurements of the intensity autocorrelation
function in the multiple-scattering regime and suggested a simple

method for analyzing the measurements. One year later, Stephen
derived a theoretical framework that extends QELS to the
multiple-scattering regime (Stephen, 1988).

Near-infrared diffuse correlation spectroscopy (DCS), also known as
diffusing wave spectroscopy (DWS) (Pine et al., 1990; Maret and Wolf,
1987) relates multi-scattered light’s fluctuations to the underlying dy-
namics of scattering media. Despite the name, DCS is not a traditional
spectroscopic technique (Liu et al., 2019; Liu et al., 2018; Liu et al.,
2020) that uses multiple wavelengths; instead, it is a laser speckle
method that analyzes light scattered over long distances through tissue.
DCS, LDF (Fredriksson et al., 2007; Vo-Dinh, 2014), laser speckle
contrast imaging (LSCI) (Briers et al., 2013), and diffuse speckle contrast
analysis (DSCA) (Bi et al., 2013b; Bi et al., 2013a; Bi et al., 2024) are all
based on laser speckles. The term ‘DCS’, first coined by Yodh’s group in
2001 (Cheung et al., 2001), has gained popularity as it provides a
theoretical framework that describes the underlying phenomenon using
the popular diffuse approximation to the radiative transfer equation.
Notably, a comprehensive diffuse correlation theory of diffuse speckle
fields for predicting particle motions in highly scattered media was first
introduced by Boas and Yodh in 1995 (Boas et al., 1995; Boas et al.,
1996). The DCS theoretical model can be used to estimate deep-tissue
microvascular blood flow index (BFi), which is a good surrogate for in
vivo BF (Boas et al., 2016). In the last two decades, DCS technologies
have been further developed (Boas et al., 1996; Boas et al., 1995; Boas
and Yodh, 1997), validated, and employed for non-invasive BF

Fig. 1. (a) The roadmap of DCS historical development; (b) the number of published DCS papers based on PUBMED (*value for 2024 extrapolated as of the date of
writing); (c) blood flow sampling rate vs measurement depths. PDCS: parallelized DCS, iDCS: interferometric DCS.
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measurements in deep tissue (up to ∼ 2 centimeters (Kreiss et al., 2024;
Zhou et al., 2021; Mattioli della Rocca et al., 2024)), such as skin, muscle
(Yu et al., 2007; Yu et al., 2005; Belau et al., 2010; Shang et al., 2010; Yu
et al., 2011; Munk et al., 2012; Guoqiang Yu, 2013; Quaresima et al.,
2019), breast tumor (Yazdi et al., 2017; Grosenick et al., 2016; He et al.,
2015; Choe et al., 2014; Chung et al., 2015; Zhou et al., 2007; Durduran
et al., 2005) and the brain (Durduran et al., 2009; Durduran et al., 2004;
Cheung et al., 2001; Culver et al., 2003; Li et al., 2005; Zhou et al., 2006;
Kim et al., 2010; Buckley et al., 2009). In 2001, the combination of DCS
with NIRS/DOS was first introduced for cerebral monitoring in rats
(Cheung et al., 2001) and then in adult brains in 2004 (Durduran et al.,
2004). This combination allows for simultaneous monitoring of tissue
BF and oxygenation.

A diagram of the history of DCS development is shown in Fig. 1(a).
Fig. 1(b) displays the number of DCS publications over the past 20 years,
with more than 400 publications to date (we only counted articles
containing “DCS”). Fig. 1(c) presents DCS measurements from human
brain tissue, organizing current studies by ρ (x-axis) and the blood flow
sampling rate (y-axis). It highlights the trend of using parallel or mul-
tispeckle and interferometric DCS for higher sampling rates at a larger ρ
and indicates the required penetration depth.

Fig. 2 illustrates the principle of DCS. Briefly, a long-coherence laser
emits NIR light through an optical fiber to the tissue, Fig. 2(a), and the
recorded light intensity exhibits temporal fluctuations, Fig. 2(b). These
fluctuations are attributed to the motion of moving scatterers, such as
red blood cells (RBC). To quantify the motion of RBC, a hardware or
software correlator calculates the normalized intensity autocorrelation,
g2(τ) as shown in Fig. 2(c). Typically, DCS systems are implemented in a
reflection geometry, where a source and a detector are placed at a finite
distance, ρ. Photons travelling from the source to the detector follow a
“banana-shaped”, stochastic scattering profile, as shown in Fig. 2(d),
where the penetration depth of these DCS instruments is roughly be-
tween ρ/3 ∼ ρ/2)(Buckley et al., 2014). Fig. 2(c) and (e) show that the
g2(τ) curves decay faster with increased flow or ρ. The slope or the decay
rate provides information about the optical properties and the motion of
the scatters. The largest ρ in the current state-of-the-art is 4 cm, corre-
sponding to a depth of about 2 cm (Kreiss et al., 2024; Mattioli della

Rocca et al., 2024).
Although there have been around 15 review DCS papers (Durduran

and Yodh, 2014; Fantini et al., 2016; Buckley et al., 2014; Mesquita
et al., 2011; Yu, 2012; Yu, 2012; Zhou et al., 2022; Ayaz et al., 2022; Li
et al., 2022; Carp et al., 2023; James and Munro, 2023; Durduran et al.,
2010; Lee, 2020; Shang et al., 2017; Bi et al., 2015) in the last two de-
cades, new approaches have emerged, including theoretical layered
models, artificial intelligence (AI) methods for DCS analysis, and the use
of novel sensors like highly integrated complementary
metal-oxide-semiconductor (CMOS) single-photon avalanche diodes
(SPAD) cameras. These aspects were not covered in previous reviews,
which is why this review summarizes and systematically compares
various analytical layered models, including continuous-wave (CW)-,
time-domain (TD)-DCS, AI-enhanced DCS analysis methods, as well as
the use of SPAD cameras in DCS. Furthermore, we also derived analyt-
ical models for the frequency domain (FD)-DCS, which was newly
introduced in 2022 (Moka et al., 2022). The main contributions of this
review include:

• We thoroughly derive and compare different layered analytical
models used in CW-, TD-, and FD-DCS, highlighting their strengths
and applications (Section 2).

• Section 3.3 examines new applications of CMOS SPAD cameras and
compares them with existing sensors used in DCS..

• Section 3.5 compares TD-DCS and CW-DCS systems and emphasizes
the benefits of TD-DCS and its potential for future development.

• We discuss novel AI-enhanced DCS analysis strategies, addressing
their effectiveness and potential (Section 4).

• Discussion and outlooks are provided in Section 6.

This review aims to serve as a practical information resource for
researchers and newcomers venturing into the field, offering a clearer
understanding of the evolving DCS landscape and equipping them with
the necessary knowledge to navigate it effectively.

Fig. 2. The DCS principle for blood flow measurements. (a) The schematic of DCS measurements in the semi-infinite geometry. Highly coherent laser light is used to
illuminate the sample via optical fibers. The source and detector fibers are placed on the tissue surface within a distance ρ; (b) the scattered light intensity fluctuates
due to moving scatterers (e.g., red blood cells); (c) two intensity autocorrelation curves (g2(τ)) showing different flow rates. (d) Photons scattered from moving
particles travel along “banana-shaped” paths between source and detection fibers; (e) Autocorrelation functions for different ρ.

Q. Wang et al. NeuroImage 298 (2024 ) 120793 

4 



2. Theory background

The propagation of light in highly scattering media such as biological
tissues can be characterized by an absorption coefficient μa and a
reduced scattering coefficient μʹ

s using the radiative transfer equation
(RTE) (Durduran et al., 2010). Similarly, to study the photon propaga-
tion under dynamic scatterers, the correlation transport equation (CTE)
(Durduran and Yodh, 2014; Mesquita et al., 2011) is adopted to obtain
the field (electrical) autocorrelation function G1(τ) under general con-
ditions of photon migration. The primary difference between the CTE
and RTE lies in the fact that CTE describes the time-dependent specific
intensity, reflecting an angular spectrum of the mutual coherence
function. In the NIR spectral window, the unnormalized G1(τ) can be
expressed as, GT1(r, Ω̂,τ) = 〈E(r, Ω̂,t)⋅E∗(r, Ω̂,t + τ)〉, where 〈⋅⋅⋅〉 denotes a
time average. E(r, Ω̂, t) is the electric field at the position r and time t
propagating in the Ω̂ direction, inside the tissue that can be described by
CTE (Ackerson et al., 1992; Dougherty et al., 1994; Boas and Yodh,
1997) applicable for CW systems analogous to RTE:

∇⋅GT
1(r, Ω̂,τ)Ω̂+μtGT

1(r, Ω̂,τ)= S(r, Ω̂)

+μs
∫

GT
1(r, Ω̂

ʹ
,τ)gs1(Ω̂, Ω̂

ʹ
,τ)f(Ω̂, Ω̂

ʹ
)dΩ̂

ʹ
,

(1)

where μt = μs + μa is the transport coefficient. S(r, Ω̂) is the source dis-

tribution; gs1(Ω̂, Ω̂
ʹ
, τ) is the normalized field correlation function for

single scattering; and f(Ω̂, Ω̂
ʹ
) is the normalized differential cross-sec-

tion.
For a time dependent source, Eq. (1) becomes:

∇⋅GT
1(r, Ω̂, τ, t)Ω̂ + μtGT

1(r, Ω̂, τ, t) + 1
v

∂
∂tG

T
1(r, Ω̂, τ, t)

= S(r, Ω̂, t) + μs
∫

GT
1(r, Ω̂

ʹ
, τ, t)gs1(Ω̂, Ω̂

ʹ
, τ, t)f(Ω̂, Ω̂

ʹ
)dΩ̂

ʹ
, (2)

where v is the light speed in the medium.
DCS BF measurements can be analyzed using the correlation diffu-

sion equation (CDE) (Durduran and Yodh, 2014; Boas et al., 1995),
derived from CTE using the standard diffusion approximation. The
derivation procedure is summarized in Fig. 3.

Furthermore, DCS instruments can be divided into three categories
according to the light illumination strategy. The most straightforward
approach is employing a CW laser, as the instrumentation is relatively
simple. The frequency-domain approach utilizes an amplitude-
modulated laser, with the modulation frequency set to a radio-
frequency (RF) ranging (from tens to a thousand MHz). In contrast,
the time-domain (TD) approach uses a short pulse laser and measures
the delayed and temporally broadened output pulse. Time domain
measurements have the most information content; however, they are
more complex and expensive than the other two methods.

The depth sensitivity of the DCS measurements can be improved
using advanced techniques, such as TD- and FD-DCS. However, it may
not be sufficient to minimize the superficial layer contamination. For

this aim, different analytical models have been introduced to account for
the contribution of the individual layers. These models typically include
parameters of the optical system (e.g., the wavelength) and pre-
sumptions of optical tissue properties (e.g., μa, μʹ

s, n) to fit mathematical
models to the measurements. A summary of the analytical models
commonly used in DCS analysis is shown in Fig. 4.

2.1. CW Semi-infinite homogenous (one layer) model

In traditional DCS systems, the tissue is commonly considered a
homogenous semi-infinite medium, as shown in Fig. 4(a). Under the
standard diffusion approximation (Boas, 1996), we reduce Eq. (1) to
CDE as:
(

−
D(r)
v

∇2 + μa +
1
3

αμʹ
sk
2
0
〈
Δr2(τ)

〉
)

G1(r, τ) = S(r), (3)

where G1(r, τ) ≡
〈
E→(r, τ)⋅ E→

∗

(r, t+τ)
〉
is the electric field autocorrela-

tion function. D(r) = v/
(
3μʹ

s
)
is the photon diffusion coefficient, v is the

speed of light in the medium, and μʹ
s = μs(1 − g) is the reduced scattering

coefficient, where g ≡ 〈cosθ〉 (ranging from -1 to 1) is the scattering
anisotropy factor. k0 is the wavenumber in the medium, α represents the
probability that a light scattering event is with a moving scatterer (e.g., a
flowing red blood cell (RBC)), and

〈
Δr2(τ)

〉
represents the mean square

displacement of moving scatterers, and is commonly described using
two different models, including the Brownian motion and random bal-
listic models in biological tissues. For the Brownian motion,

〈
Δr2(τ)

〉
=

6DBτ (Maret and Wolf, 1987), where DB is an ‘effective’ diffusion co-
efficient for moving particles. For random ballistic flow,

〈
Δr2(τ)

〉
=

6V2τ2, where V2 is the mean square velocity of the scatterer in the
vasculature. The relationships between the RBC movements and the
flow models (random ballistic flow and Brownian motion) have already
been investigated (Boas et al., 2016; Zhu et al., 2020; Sie et al., 2020).

In particular, for a semi-infinite, homogenous system with a point
source S(r) = S0δ(r), G1(r, τ) is the solution of Eq. (3), obtained using an
image source approach following Kienle and Patterson (Kienle and
Patterson, 1997) as,

G1( r→, τ) = 3μʹ
sS0
4π

[
exp(− Kr1)

r1
−
exp(− Kr2)

r2

]

, (4)

where K =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3μʹ
sμa + αμʹ2

s k
2
0〈Δr2(τ)〉

√

, r1 and r2 are the distances between

the detector and the source/image source, respectively. r1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ2 + z02

√

and r2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2 + (z0 + 2zb)2
√

; z0 = 1/μʹ
s is the depth at which a collimated

source on the tissue surface can be approximated as a point source; zb =

2
(
1 + Reff

)
/3μʹ

s
(
1 − Reff

)
and Reff = − 1.440n− 2 + 0.71n− 1 + 0.668+

0.0636n is the effective reflection coefficient, n = ntissue
nair ≈ 1.33. Typically,

αDB is referred to as the blood flow index (BFi) in biological tissues
(Durduran, 2004). In practice, the Brownian model can fit the observed
correlation decay curves better over a wide range of tissue types,
including rat (Culver et al., 2003; Zhou et al., 2006; Cheung et al., 2001;
Carp et al., 2010), piglet (Zhou et al., 2009; Forti et al., 2023), human
brains (Durduran et al., 2004; Jaillon et al., 2007; Dietsche et al., 2007;
Koban et al., 2010; Zirak et al., 2010; Edlow et al., 2010), mouse tu-
mours (Yu et al., 2005; Sunar et al., 2007), human skeletal muscles (Yu
et al., 2007; Yu et al., 2005; Belau et al., 2010; Shang et al., 2010; Shang
et al., 2009), and human tumors (Durduran et al., 2005; Sunar et al.,
2006; Yu et al., 2006; Dong et al., 2012).

2.2. CW two-layer model

We have stated above that the DCS theory is based on the correlation
transport (Boas et al., 1995; Ackerson et al., 1992; Dougherty et al.,Fig. 3. Green’s function for DCS derivation process.
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1994), approximated by CDE (Boas and Yodh, 1997, Boas, 1996). By
assuming that light propagates in a homogenous medium, the simple
solution of Eq. (3) has been widely used in the DCS community
(Durduran, 2004). However, biological tissues (Kienle et al., 1998) are
usually layered encompassing unique physiological and optical prop-
erties (Gagnon et al., 2008b, Lesage et al., 2008). For example, the
simple two-layer model is useful in cerebral blood flow monitoring in
newborns, especially preterm infants, because their skull and scalp are
relatively thin, allowing clear differentiation between the superficial
scalp layer and the deeper brain tissue layer. Gagnon et al. (2008a) first
proposed a two-layer analytical model, based on Kienle et al.’s model for
reflectance spectroscopy with the two-layered geometry in Fig. 4(b).

We assume that an infinitely thin beam shines the turbid two-layered
medium. The first layer of the two-layer medium has a thickness Δ1, and
the second layer is semi-infinite. The beam is scattered isotropically in
the upper layer at a depth of z = z0, where z0 = 1/

(
μa1 + μś1

)
. We also

assume that the Brownian movement is independent in each layer,
meaning that the particles can not move from one layer to another in the
medium. The incident light is perpendicular to the surface of the turbid
medium (on the x-y plane). Then Eq. (3) becomes:
(

− D1∇2+ μa1+
1
3
k20μʹ

s1
〈
Δr12(τ)

〉
)

G1
1(x, y, z, τ) = S(x, y, z − z0), 0 ≤ z

≤ Δ1,

(5)
(

− D2∇2+ μa2+
1
3
k20μʹ

s2
〈
Δr22(τ)

〉
)

G2
1(x, y, z, τ) = 0, Δ1 ≤ z, (6)

where Di = 1/3
(
μa(i) +μʹ

s(i)
)
is the diffusion constant of Layer i. The

mean-squared displacement
〈
Δri2(τ)

〉
= 6DB(i)τ for Layer i.

Although Kienle et al.’s derivations (Kienle et al., 1998; Kienle and
Glanzmann, 1999; Kienle et al., 1998) are initially for diffuse reflectance
spectroscopy (DRS), we re-derive them for DCS following the same
procedure and obtain the solution of Eqs. (5) and (6) at z= 0 (Layer 1) in
the Fourier domain by

G̃
1
1(q, z, τ) =

sinh[ℶ1(zb + z0)]
D1ℶ1

×
D1ℶ1cosh[ℶ1(Δ1 − z)] + D2ℶ2sinh[ℶ1(Δ1 − z)]
D1ℶ1cosh[ℶ1(Δ1 + zb)] + D2ℶ2sinh[ℶ1(Δ1 + zb)]

−
sinh[ℶ1(z0 − z)]

D1ℶ1
, (7)

where ℶ2
j =

(
Djq2 + μaj + 2cμʹ

sjk20DBj
)
/Dj, j =1 and 2, q is the radial

spatial frequency and

zb =
1+ Reff
1 − Reff

2D1. (8)

And G1
1(ρ, z= 0, τ) at r = {ρ, z= 0} on the medium surface is then

obtained from the inverse spatial Fourier transform as,

G1
1(ρ, z=0, τ) = 1

2π

∫∞

0

G̃
1
1(q, z=0, τ)qJ0(qρ)dq, (9)

where J0 stands for the zeroth order Bessel function of the first kind
computed by the MATLAB function besselj.

2.3. CW three-layer model

Also, in the three-layer DCS model (Li et al., 2005; Verdecchia et al.,
2016; Zhao et al., 2021; Wang et al., 2024), G1(r, z, τ) can be modelled
similarly by CDE. A turbid medium consisting of 3 slabs was considered
as shown in Fig. 4(c). Each slab has a thickness Δp = Lp − Lp− 1, p =1, 2,
3. To solve G1(r,z,τ), Eq. (3) can be revised for the three-layer model as:
[
∇2 −

(
3μ(p)

a μʹ(n)
s +6k20μʹ2

s D
(p)
B τ
)]
G1(r, z, τ) = − s0δ(r − rʹ), (10)

where s0 is a point-like monochromatic light source located at
ŕ = {ρ́ = 0, ź } inside Layer 1; ρ represents the transverse coordinate.
The field autocorrelation at the tissue surface, G1(r, z = 0, τ), can be
obtained by solving Eq. (10) in the Fourier domain with respect to ρ as:

Ĝ(q, z, τ) =
∫

d2ρG1(r, τ)exp(iq⋅ρ), (11)

where q is the radial spatial frequency. Thus, in the Fourier domain Eq.
(10) can be rewritten:
[

∂2

∂z2 − κ2(q, τ)
]

Ĝ(q, z, τ) = − s0δ(z − ź ), (12)

where κ2
(p)(q, τ) = 3μ(p)

a μ
ʹ(p)
s + 6k20μʹ2

s D
(p)
B τ+ q2.

We divided the top layer into two sublayers: Sub-layer 0 (0 < z < ź )
identified by p = 0, and Sub-layer 1 (ź < z < L1), identified by p here-
after. The solution of Eq. (12) at Layer p (p = 1, 2, 3) can be written as:

Ĝp(q, z, τ) = Apexp
(
κ(p)z

)
+ Bpexp

(
− κ(p)z

)
, (13)

where Ap and Bp are constant factors for Layer p determined by the
boundary conditions:

Fig. 4. Analytical models including the source and the detector for DCS (a) homogenous semi-infinite model, (b) two-layer analytical model, (c) three-layer
analytical model. Here, μa(n)and μʹ

s(n) are the absorption and reduced scattering coefficients in the n-th layer, respectively. Δi is the thickness of Layer i.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝ0(q, z, τ) − z0
∂
∂zĜ0(q, z, τ) = 0, z = 0

Ĝ0(q, z, τ) = Ĝ1(q, z, τ), z = ź
∂
∂zĜ0(q, z, τ) =

∂
∂zĜ1(q, z, τ) + 3μʹ1

s , z = ź

Ĝp(q, z, τ) = Ĝp+1(q, z, τ), z = Lp, p = 1, 2

Dp
∂
∂zĜp(q, z, τ) = Dp+1

∂
∂zĜp+1(q, z, τ), z = Lp, p = 1, 2

Ĝ3(q, z, τ) + z3
∂
∂zĜ3(q, z, τ) = 0, z = L3

(14)

where z0 ∼ 1/μʹ1
s and z3 ∼ 1/μʹ3

s are the extrapolation lengths taking into
account internal reflections at external (z = 0 and z = L4) boundaries.

Substituting Eq. (13) into Eq. (14), we can obtain Ap and Bp (p = 1,
2, 3). The Fourier transform Ĝ0(q, z, τ)measured at z= 0 (the surface of

the slab) is then obtained by substituting A0 and B0 into Eq. (13) under
Δ3→∞ to obtain:

Ĝ0(q, z, τ) =
Num
Denom

, (15)

where Num and Denom when p = 3 and Δ3→∞ are:

Num = 3μʹ1
s z0(κ1D1cosh(κ1(Δ1 − ź ))(κ2D2cosh(κ2Δ2)+ κ3D3sinh(κ2Δ2))

+ κ2D2(κ3D3cosh(κ2Δ2)+ κ2D2sinh(κ2Δ2))sinh(κ1(Δ1 − ź ))),
(16)

Denom = κ2D2cosh(κ2D2)
(
κ1(D1+ κ3D3z0)cosh(κ1D1)

+
(
κ3D3 + κ21D1z0

)
sinh(κ1D1)

)
+
(
κ1
(
κ3D1D3 + κ22D

2
2z0
)
cosh(κ1D1)

+
(
κ22D

2
2 + κ21κ3D1D3z0

)
sinh(κ1D1)

)
sinh(κ2Δ2).

(17)

Fig. 5. (a) Representative g1(τ) simulated from a sample with ρ = 10 mm (blue solid line) and = 30 mm (green solid line), varying DB from 1 ×10− 6mm2 /s to 1
×10− 8mm2/s (blue and green dot lines), μa = 0.013mm− 1, μś = 0.86mm− 1, λ = 785nm. (b) Representative g1(τ) simulated from a sample with ρ = 10 mm (blue solid

line) and = 30 mm (green solid line), characterized with μ(1)
a = 0.013mm− 1, μ

ʹ(1)
s = 0.86mm− 1, Δ1 = 10mm, D(1)

B = 1 × 10− 6mm2/s, (Parameters for the top layer);

μ(2)
a = 0.018mm− 1, μ

ʹ(2)
s = 1.11mm− 1, varying D(2)

B from 1 × 10− 6mm2/s to 1 × 10− 8mm2/s (Parameters for the bottom layer; blue and green dot lines); (c)

Representative g1(τ) simulated from a sample with ρ = 10 mm (blue solid line) and = 30 mm (green solid line) characterized with μ(1)
a = 0.013mm− 1, μ

ʹ(1)
s =

0.86mm− 1, D(1)
B = 1 × 10− 8mm2/s, Δ1 = 5mm (Parameters for the first layer); μ(2)

a = 0.018mm− 1, μ
ʹ(2)
s = 1.11mm− 1, D(2)

B = 1 × 10− 6mm2/s, Δ2 = 7mm (Parameters

for the second layer); μ(3)
a = 0.03mm− 1, μ

ʹ(3)
s = 1.19mm− 1, varying D(3)

B from 1 × 10− 6mm2/s to 1 × 10− 8mm2/s (Parameters for the third layer), the spatial frequency
q ∈ (0, 30]mm− 1. All graphs are plotted using homemade software using MATLAB (Mathworks, Inc.).
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By performing the inverse Fourier transform of Eq. (15) with respect
to q, Ĝ0(q, z, τ) can be obtained as:

G0(r, τ) = 1
(2π)2

∫

d2qĜ0(q, z = 0, τ)exp(− iq⋅ρ)

=
1
2π

∫

dqĜ0(q, z = 0, τ)qJ0(ρq),
(18)

where J0 denotes the first-kind zero-order Bessel function.
This three-layered solution has been tested with Monte Carlo simu-

lations and used to analyze in vivo measurements (Verdecchia et al.,
2016; Zhao et al., 2021; Zhao et al., 2023). The three-layer model can be
used in monitoring cerebral blood flow in adults, particularly in clinical
settings such as during surgery or in intensive care units because it is
necessary to account for scalp, skull, and brain tissues, which can
significantly affect light propagation and DCS signals.

Fig. 5(a), (b), and (c) show g1 curves for semi-infinite, two-, and
three-layer analytical models, respectively. Typically, in DCS data
analysis, the measured g2 is fitted with one of the models shown in Fig. 4,
using the Siegert relation g2(τ) = 1+ βg21(τ). Usually, the homogenous
semi-infinite analytical model is used in data analysis, assuming free
diffusion for speckle decorrelation, giving rather poor agreement with
experimental scenarios. This is because homogeneous fitting is more
sensitive to the dynamic properties of the superficial layers. Compared
with the semi-infinite model, two- and three-layered models can sepa-
rate the signal between the superficial and brain layers. The layered
models can mitigate the discrepancies between the one-layer model and
realistic tissues. The accuracy of the three-layer analytical model has
been investigated in previous studies (Mesquita et al., 2011; Li et al.,
2005; Zhao et al., 2021). Although multi-layered models provide a su-
perior fit to measured data and are more accurate, they are susceptible
to measurement noise, and much longer BFi estimation time is needed
(Wang et al., 2024).

2.4. TD semi-infinite (one layer) model

For TD-DCS systems, G1( r→, τ, t) obeys the time-dependent correla-
tion equation:
(

−
D(r)
v

∇2 + μa +
1
3

αμʹ
sk
2
0

〈
Δr2(τ)

〉
+
1
ν

∂
∂t

)

G1(r, t, τ) = S(r, t). (19)

For a semi-infinite medium, it is straightforward to obtain the
analytical solution of Eq. (19) under the boundary condition (Farrell
et al., 1992). Thus G1(ρ, t, τ) on the tissue surface (z = 0) is (Sutin et al.,
2016):

G1(ρ, t, τ) = c
(
3μʹ

s
4πct

)3
2
exp
[
−
(
μa +2μʹ

s DBk
2
0τ
)
ct
]
exp
(

−
3μʹ

sρ2
4ct

)

×

[

exp
(

−
3μʹ

s z20
4ct

)

− exp

(

−
3μʹ

s(z0 + 2zb)2

4ct

)]

. (20)

Thus, g1(τ, s) for a photon pathlength s can be written as:

gsingle1 (τ, s) = G1(ρ, t, τ)
G1(ρ, t, τ = 0)

= exp
(
− 2μʹ

sDBk
2
0sτ
)
.

(21)

However, it is not easy to measure the pathlength of a photon in
tissues. Therefore, the total scattered electric-field autocorrelation
function g1(τ, s) is obtained by incoherently summing the contributions
over all s (Maret and Wolf, 1987; Yodh et al., 1990). Thus g1(τ, s) is a
weighted average over all possible pathlengths as:

g1(τ) =
∫∞

0

P(s)gsingle1 (τ, s)ds

=

∫∞

0

P(s)exp
(
− 2μʹ

sDBk
2
0sτ
)
ds.

(22)

where P(s) represents the probability that an incident photon travels a
distance s before emerging from the medium; it can be calculated as
(Kienle and Patterson, 1997):

P(s) =
v

(4πDs/v)3/2
exp(− μss) ×

[

exp
(

−
r21
4Ds

)

− exp
(

−
r22
4Ds

)]

, (23)

where the variables are the same as in Eq. (4) and s = vt, with t being the
photon time-of-flight (ToF) and v the speed of light in the medium.

By employing a sufficiently narrow time gate, Eq. (22) can be
simplified, and the normalized time-gated g1(τ) is modelled by a single
exponential term:

g1(τ) = exp
(
− 2μʹ

s k
2
0vtDB

)
, (24)

Then g2(τ) can be linked to g1(τ)through the Siegert relation:

g2(τ) = 1+ β|g1(τ)|2. (25)

2.5. TD two-layer model

For the second layer model, Eq. (19) can be rewritten:
[

∇2 −
(
3μ(p)

a μʹ(p)
s +6k20μʹ2

s D
(p)
B τ
)
−
3μʹ

s
v

∂
∂t

]

G(r, τ, t) = − 3μʹ
sδ(r − ŕ ). (26)

Similarly, we can derive the Fourier transform of G(r, τ, t) for the real
space (ρ,z), as well as time t, and then solve Eq. (26) in the Fourier space
(q, z,w).

Ĝ(q, z,w, τ) =
∫

dtexp(iwt)
∫

d2ρG(ρ, z, t, τ)exp(iq⋅ρ), (27)

yielding
[

∂2

∂z2 −
(

3μ(p)
a μ’(p)

s +6k20μ’2
s D

(p)
B τ− 3μ’(p)

s ⋅
iw
c

)

− q2
]

Ĝ(q,z,w,τ)=− 3μ’
sδ(z− z

’).

(28)

The solution of Eq. (28) can be written as:

Ĝ(q, z,w, τ) = γpexp
(
Ψpz
)
+ φpexp

(
− Ψpz

)
, (29)

where Ψp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

3μ(p)
a μ

ʹ(p)
s + 6k20μʹ2

s D
(p)
B τ − 3μ

ʹ(p)
s ⋅iwc

)

+ q2
√

, γp and φp are

constant for Layer p (p = 1, 2), determined by the boundary conditions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝ0(q, z,w, τ) − z0
∂
∂zĜ0(q, z,w, τ) = 0, z = 0

Ĝ0(q, z,w, τ) = Ĝ1(q, z,w, τ), z = ź
∂
∂zĜ0(q, z,w, τ) =

∂
∂zĜ1(q, z,w, τ) + 3μʹ1

s , z = ź

Ĝp(q, z,w, τ) = Ĝp+1(q, z,w, τ), z = Lp, p = 1,2

Dp
∂
∂zĜp(q, z,w, τ) = Dp+1

∂
∂zĜp+1(q, z,w, τ), z = Lp, p = 1, 2

Ĝ3(q, z,w, τ) + z3
∂
∂zĜ3(q, z,w, τ) = 0, z = L3

(30)

Thus, we can obtain the solution of Eq. (28):
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The inverse Fourier transform for G(ρ, z, t, τ) at z = 0 is:

2.6. TD three-layer model

We start from Eq. (26), but derive similarly with Section 2.3 and
Δ3→∞, to obtain derive G(ρ, z, t, τ) for the three-layer model as the same
with Eq. (32), where Ĝ0(q,z = 0,w,τ) = Num

Demo, where Num and Demo are
shown below respectively,

Num=3μʹ
sz0[Ψ1D1cosh(Ψ1(Δ1 − zʹ))(Ψ2D2cosh(Ψ2D2)+Ψ3D3sinh(Ψ2D2))

+Ψ2D2(Ψ3D3cosh(Ψ2D2)+Ψ2D2sinh(Ψ2D2))sinh(Ψ1(Δ1 − zʹ)).

(33)

Demo = Ψ2D2cosh(Ψ2Δ2)
[
Ψ1(D1 +Ψ3D3z0)cosh(Ψ1Δ1)+

(
Ψ3D3 +Ψ1

2D1z0
)
sinh(Ψ1Δ1)

]
+
[
Ψ1
(
Ψ3D1D3 +Ψ2

2D2
2z0
)
cosh

(Ψ1Δ1)+
(
Ψ2

2D2
2+Ψ1

2Ψ3D1D3z0
)
sinh(Ψ1Δ1)

]
sinh(Ψ2Δ2).

(34)

Fig. 6. (a) Simulated g1(τ) with Eq. (24) g2(τ) with (25), with ρ = 10 mm, DB = 1.09 × 10− 8mm2/s, μa = 0.013mm− 1, μʹ
s = 0.86mm− 1, λ = 785nm, s = 135 mm (ToF

= 450 ps, data provided by Samaei (Samaei et al., 2021)); (b) Simulated g1(τ) from Eqs. (31) and (32) with μ(1)
a = 0.013mm− 1, μ

ʹ(1)
s = 0.86mm− 1, Δ1 = 10mm, D(1)

B =

1 × 10− 6mm2/s, μ(2)
a = 0.018mm− 1, μ

ʹ(2)
s = 1.11mm− 1, D(2)

B = 1 × 10− 6mm2/s, q ∈ (0, 30], w ∈ (0 20]Hz and t = 4.67 × 10− 10s and t = 9.34 × 10− 10s. We adopted

these parameters from Ref. Li et al. (2017) (c) g1(τ) with μ(1)
a = 0.013mm− 1, μ

ʹ(1)
s = 0.86mm− 1, D(1)

B = 1 × 10− 6mm2/s, Δ1 = 2mm, μ(2)
a = 0.018mm− 1, μ

ʹ(2)
s =

1.11mm− 1, D(2)
B = 1 × 10− 7mm2/s, Δ2 = 5mm, μ(3)

a = 0.03mm− 1, μ
ʹ(3)
s = 1.19mm− 1, D(3)

B = 1 × 10− 6mm2/s, q ∈ (0, 30]mm− 1, w ∈ (0 20]Hz, and t = 4.67 ×10− 10s
and t = 1.40 × 10− 9s. The settings are the same with Ref. Li et al. (2017).

Ĝ0(q, z = 0,w, τ) = 3μ’
sz0[Ψ1D1cosh(Ψ1(Δ1 − z0)) + Ψ2D2sin(Ψ1(Δ1 − z0))]

Ψ1(D1 + Ψ2D2z0)cosh(Ψ1Δ1) + (Ψ2D2 + Ψ1
2D1z0)sinh(Ψ1Δ1)

. (31)

G0(ρ, z = 0, t, τ) = 1
2π

∫

dwexp( − iwt)
1

(2π)2
∫

d2qĜ0(q, z = 0,w, τ)exp( − iq⋅ρ) = 1
(2π)2

∫

dw
∫

dqĜ0(q, z = 0,w, τ)qJ0(ρq)exp( − iwt). (32)
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G0(q, z= 0, t, τ) measured on the top of the surface (z = 0) of the slab is
the inverse Fourier transform of Ĝ0(q,z = 0,w, τ),

G0(q, z = 0, t, τ) = 1
(2π)2

∫

dw
∫

dqĜ0(q, z = 0,w, τ)qJ0(ρq)exp( − iwt).

(35)

Fig. 6 displays the numerical simulation g1 for time-domain DCS
from the semi-infinite, two-, and three-layer analytical models. Fig. 6(a)
is g1(τ) for the early gate and late gate; Fig. 6(b) is corresponding g2(τ)
for the early gate and late gate and Fig. 6(c) is the g2(τ) at different gate
and lag time. Fig. 6(d) is performed for ρ = 10 mm, two pathlengths are
selected, t = 4.67 × 10-10 s and t = 9.34 × 10-10 s. Similarly, Fig. 6(e) is
performed for ρ = 10 mm, two pathlengths are selected, t= 4.67× 10-10

s and t = 1.40 × 10-9 s.

2.7. Frequency domain semi-infinite model

We also obtain G1(ρ, ω, τ) when modulated illumination is used,
G1(ρ, ω, τ) follows a slightly different CDE as:
[

∇2 − 3μʹ
s

(

μa +2μʹ
s k

2
0DBτ − iω

v

)]

G1(ρ, ω, τ) = − 3μʹ
s s0e

− iωt , (36)

where ω is the source modulation frequency and s0e− iωt is the modulated
source term. For a semi-infinite homogeneous tissue, the solution of Eq.
(36) is given by

G1(ρ, ω, τ) = 3μʹ
s

4π

[
exp( − KD(ω, τ)r1)

r1
−
exp( − KD(ω, τ)r2)

r2

]

, (37)

where KD(ω, τ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3μś
(

μa + 2μś k
2
0DBτ − iω/v

)√

is the frequency-

dependent wave vector. The other parameters are the same as before.
Fig. 7 shows g1(τ) for the FD semi-infinite model. By fitting the mea-
surement data from FD-DCS systems to Fig. 7, we can extract optical
properties (μa and μś) and blood flow simultaneously by multi-frequency
measurements. In contrast, the traditional CW-DCS system is only used
for blood flow measurements. Another merit is that the laser source for
FD-DCS is much cheaper than CW-DCS and TD-DCS systems. There are

two reasons: 1) FD-DCS removes the necessity for collocating the source
and phase-sensitive detectors; 2) FD-DCS can be executed by simply
substituting the source of a traditional DCS system with an intensity-
modulated coherent laser.

Although the two- and three-layer theoretical DCS models shown in
Fig. 4 have improved the SNR, those with regular tissue boundaries
(including the simi-infinite model) may lead to BFi estimation errors in
small-volume tissues with large curvatures. To address this, Shang et al.
developed an Nth-order linear model that can accurately extract BFi
without tissue volume and geometry restrictions. They demonstrated the
algorithm’s accuracy with computational simulations and in vivo ex-
periments. Interested readers can consult the referenced studies (Shang
et al., 2014; Shang and Yu, 2014; Zilpelwar et al., 2022) for more details.

Fig. 7. Numerical simulated FD g1(ρ,ω, τ) at ρ = 25mm with various modulation frequency. Image adopted from Ref. Moka et al. (2022).

Fig. 8. Simulated g2(τ) curves with ρ = 30mm on a homogeneous sample with
μa = 0.01mm− 1, μś = 1.2mm− 1, λ = 785 nm, β = 0.5, and DB = 2 ×

10− 9mm2/s. The curves include a noise-free scenario (red solid line) and with
realistic noise added using Eq. (38), assuming an 8.05 kcps at 785 nm (Carp
et al., 2010), at different noise levels with Tint = 1 s (green line) and Tint = 10 s
(blue line).
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2.8. Noise model

In most simulation reports (Dong et al., 2013; Carp et al., 2020;
Mazumder et al., 2021; Irwin et al., 2011), a proper estimate of mea-
surement noise is needed to reflect practical scenarios. A noise model
suitable for photon correlation measurements was previously developed
for a single scattering limit (Schätzel, 1983; Koppel, 1974). Later on, the
noise model developed by Koppel (Koppel, 1974) for fluorescence cor-
relation spectroscopy (FCS) in the single scattering limit was introduced
into DCS in 2006 (Zhou et al., 2006). In DCS, the noise comes from
photon counting statistics (Schätzel, 1983), and it has been derived
(Zhou et al., 2006) with the standard deviation of (g2(τ) − 1), σ(τ)
estimated as:

where T is the frame exposure time (equal to the correlator bin time
interval). Tint is the integration time (measurement duration) or the
measurement time window. τc is the speckle correlation time. 〈M〉

(〈M〉 = IT, where I is the detected photon count rate) is the average
number of photons within bin time T, m is the bin index. To obtain τc,
g2(τ) usually approximated with a single exponential function as g2(τ) ≈
1+ βexp(− τ/τc) under the Brownian motion model (Zhou et al., 2006).
Once τc is obtained, we can obtain σ(τ). This noise model was then
adopted by (Sie et al., 2020; Cheng et al., 2021; Helton et al., 2023;
Zhang et al., 2018).

Fig. 8 shows noise (orange line) and noiseless (blue line) g2(τ). The
noise model predicted standard deviations for g2(τ) at each τ was applied
by randomly sampling a normal distribution, where the Tint = 1s and 10
s and the delay time 1 × 10− 6 s ≤ τ ≤ 1 × 10− 1s (128 data points) was

used. Considering realistic photon budgets, the photon count rate at 785
nm was assumed to be 8.05 kcps (Carp et al., 2020) at ρ of 30 mm. In
Fig. 8, the DCS measurement noise decreases as τ increases.

3. Instrumentation

A DCS system consists of a laser source, source/detection fibers and
sensors. Fig. 9 shows a schematic of the representative systems for CW-,
TD-, FD-, and Hybrid DCS systems. Fig. 9(a) and (b) are for CW- and TD-
DCS systems, respectively. The primary difference lies in the pulsed laser
(Ti:Sa laser) in the TD system. Fig. 9(c) showcases the schematic of FD-
DCS system, representing the latest DCS technology in the frequency
domain. Lastly, Fig. 9(d) presents a typical hybrid DCS system. To date,

very few companies have initiated commercialization of DCS systems,
including HemoPhotonics S.L. (http://www.hemophotonics.com), and
ISS Inc. (https://iss.com/biomedical/metaox).

3.1. Lasers

There are three types of laser used in DCS: CW, modulated, and
pulsed lasers corresponding to CW-, FD-Moka et al., 2022), and TD-DCS
systems. As was mentioned above, the estimated BFi is derived from
intensity fluctuations of the speckle pattern of back scattered light from
the tissue surface, and the bright and dark patterns arise because pho-
tons emerging from the sample have travelled along different paths that
interfere constructively and destructively at different detector positions
(Durduran and Yodh, 2014; Durduran et al., 2010; Maret and Wolf,
1987). Consequently, one of the main challenges is to select a laser with

Fig. 9. (a) A typical CW-DCS system, adopted from https://www.becker-hickl.com/applications/dcs-diffuse-correlation/, (b) Parfentyeva et al.’s TD-DCS system
(Parfentyeva et al., 2023), (d) Sadhu et al.’s FD-DCS system (Moka et al., 2022), (d) Carp et al.’s hybrid DCS system (Carp et al., 2017).

σ(τ) =
̅̅̅̅̅̅̅
T
Tint

√ [

β2
(
1+ e− T/τc

)(
1+ e− τ/τc

)
+ 2m

(
1 − e− T/τc

)
e− τ/τc

1 − e− T/τc
+ 〈M〉

− 2( 1+ βe− τ/2τc
)
+ 2〈M〉

− 1β
(
1+ e− τ/τc

)
]1/2

, (38)
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a long coherence length (Maret and Wolf, 1987), lc, designated by Eq.
(39) assuming that the measured power spectral density has a Gaussian
profile (Bigio and Fantini, 2016),

lc =
λ2

Δλ
(39)

where λ is the central wavelength and Δλ is the optical bandwidth. The
diffusion theory and Monte Carlo simulations of light transport show
that the minimum coherence length must be longer than the width of the
photon path-length distribution (Bellini et al., 1991), typically around
5ρ ∼ 10ρ (e.g., 100 mm for ρ = 10mm) (Biswas et al., 2021). For
homodyne measurements, the coherence length needs to be substan-
tially longer than the spread of pathlengths in tissue (which is within an
order of ρ), and in heterodyne, care needs to be taken that the difference
in length of the reference vs. sample arms, when summed with the ex-
pected pathlength variation, should also be substantially lower than the
laser coherence length. Therefore, generally, the minimum coherence
length is recommended as lc, min≫10ρ ∼ 15ρ, and since most practical
DCS systems utilize ρ ∼ 3 cm (Durduran and Yodh, 2014; Carp et al.,
2020; Kim et al., 2010), the coherence length should be 35∼ 50 cm,
accounting for the variations of differential pathlength distances (Delpy
et al., 1988).

For clinical applications, the laser power should comply with the
American National Standard for Safe Use of Lasers (ANSI) (Institute,
2007) limit for safe skin exposure with an proper irradiance. Spacers or
prisms (Biswas et al., 2021; Zavriyev et al., 2021; Wu et al., 2023; Lee
et al., 2019) are often between source fiber and sample to illuminate a
larger area, which allows a higher laser power (more photons) while
maintaining the same maximal permissible exposure (MPE) limit for
intensity. Typically, lasers with wavelengths of 670 nm (Liu et al.,
2021), 760nm (Samaei et al., 2021), 785 nm (Biswas et al., 2021; Huang
et al., 2016), 850 nm (James and Munro, 2023; Zauner et al., 2002;
Maret and Wolf, 1987; Carp et al., 2017), or 1064 nm(Carp et al., 2020)
are employed. Although NIR wavelengths provide a higher number of
photons for the same output power (P = E/t = h c / λ, E is photon en-
ergy), a higher MPE (more photons) and a deeper penetration depth, the
photon detection efficiency (PDE) of most detectors is typically reduced
for longer wavelengths. As a result, 785 nm and, more recently, 850 nm
lasers are the most prevalent choice for most DCS techniques. This
trade-off between the laser and the detector PDE is discussed in detail
below.

Regarding TD-DCS, we can pinpoint the photons (either through
gating or time-correlated single-photon counting (Wahl and GmbH,
2009)) that exhibit a similar path length in the tissue to provide
depth-resolved information. This allows relaxing the requirement for a
high coherence length compared with the scenario in which all the
photon paths are considered. Moreover, the laser pulse width limits the
maximum coherence length for a pulsed laser. Usually, a narrow laser
pulse is preferable for precise depth-resolved measurements, however, a
narrow pulse means a lower lc, meaning a g2 curve is closer to the noise
floor. Therefore, there is a trade-off between lc and the pulse width
(Tamborini et al., 2019). In fact, g2ʹsmaximum amplitude depends on lc,
with β ranging from 0 for incoherence light to 1 for linearly polarized
light (Ferreira et al., 2020) (0.5 for unpolarized light) with lc longer than

the longest photon path. Therefore, the main limitation of the broad use
of TD-DCS is the availability of an ideal pulsed laser considering power
settings, pulse width, coherence, stability, and robustness. To obtain a
more in-depth investigation, readers can check Refs. Samaei et al.
(2021), Tamborini et al. (2019), Ozana et al. (2022). In Table 1, we
extend the conclusions made by Samaei et al. (2021), Ozana et al. (2022)
and Tamborini et al. (2019) to show the relevant parameters of pulse
lasers.

3.2. Source and detection fibers

In DCS experiments, a pair of source and detection fibers are stra-
tegically placed on the tissue surface, with a separation of ρ (ranging
from millimeters to centimeters). The laser emits long-coherence light
through the source fiber into tissues, and the fiber collects the scattered
light to a sensor. This distance ρ then defines the extent of the scattering
paths of all detected photons, and thereby, the maximal measurement
depth of DCS, as illustrated above in Fig. 2(d). The diagrams in Fig. 10
(a)–(c) illustrate three fibers with distinct modes, namely single-mode,
few-mode, and multi-mode. Usually, a multi-mode fiber (core diam-
eter D = 62.5, 200, 400, 600, 1000 μm) (Dong et al., 2012; Ozana et al.,
2022; Shang et al., 2011; Lin et al., 2012) is used for the source side.
Here, it should be noted that a larger diameter fiber translates to a larger
illumination area allowing a higher laser power (more photons) at the
same MPE limit for intensity (see Section 3.1). For the detection, pre-
viously published DCS systems used single-mode (e.g., 5 μm) (Gurley
et al., 2012; Zhou et al., 2007; Dong et al., 2012; Shang et al., 2011;
Cheng et al., 2012; Han et al., 2015; Stapels et al., 2016; Farzam et al.,
2017; Sathialingam et al., 2018; Poon et al., 2020, Cortese et al., 2021;
Cowdrick et al., 2023; Nakabayashi et al., 2023), few-mode (Li et al.,
2005), or multi-mode fibers (Sie et al., 2020; Liu et al., 2021; Wayne
et al., 2023; Samaei et al., 2022). Single-mode fibers are usually directly
coupled to the respective detector. For parallelized DCS with SPAD ar-
rays, multi-mode fibers are used for detection. In that case, the fiber is
placed at a distance z to the detector, to match the speckle diameter (d)
to the diameter of the detector’s active area, according to Ref. Freund
(2007)

d =
λ z
D

(40)

where D is the core diameter of the detection fiber. Thus, adjusting the
distance between fiber and detector (z) allows controlling the speckle
size on the detector and therefore the number of measured speckles per
pixel. Using single-mode fibers limits the measured light intensity
because only the fundamental mode of light can be transported, limiting
ρ’s dynamic range. Unlike conventional fibers, few-mode fibers allow
not only the fundamental mode but also a few higher-order modes of
light. Expanding the fiber diameter and numerical aperture (NA) in few-
mode fibers to encompass multiple speckles enhances the detected
signal intensity, consequently enhancing the signal-to-noise ratio (SNR).
However, the multiple speckles detected by the few-mode fibers exhibit
uncorrelated behaviour, and the decrease in β effectively counteracts the
SNR enhancement. Finally, this flattens the autocorrelation function
curve, potentially diminishing the sensitivity of DCS flowmeasurements

Table 1
Parameters of laser source used in TD-DCS, adopted from Samaei et al. (2021), Ozana et al. (2022) and Tamborini et al. (2019).

Laser Central wavelength
(nm)

Temporal Coherence length
(mm)

Spectrum bandwidth
[nm]

Pulse width
(ps)

Average output power
(mw)

VIRIS-500 767 38 N.A 550 50
LDH-P-C-N-760 (Samaei et al., 2021) 760.4 6.1 0.095 106 12
Ti: Sapphire (Samaei et al., 2021) 763.8 6.3 0.093 185 50
VisIR-765-HP “STED” (Tamborini et al.,
2019)

765.7 38 N.A 535 <1500

PicoQuant GmbH (Ozana et al., 2022) 1064 60 N.A 600 100
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(Zhou et al., 2006, Zhou, 2007). To further increase the detected light
intensity, multi-mode fibers with a larger core diameter have been used
to accommodate larger sensor arrays (e.g., 5 × 5, 32 × 32, 192 × 128,
500 × 500, 512 × 512 SPAD arrays). Usually, these SPAD arrays are set
up in a way (Eq. (40)) that each pixel measures a single speckle on
average. However, these detectors only have fill factors of 1-15% so
there can be mismatches in the position.

Additionally, the PDE of SPAD arrays is often lower than single de-
tectors, reducing SNR (Sie et al., 2020; Liu et al., 2021; Wayne et al.,
2023; Johansson et al., 2019; Mattioli della Rocca et al., 2023). For more
details on large SPAD arrays, see Section 3.3. He et al. (He et al., 2013)
compared single-mode, few-mode, and multi-mode fibers on the detec-
tion side, and concluded that few-mode and multi-mode detection fibers
can improve SNR compared with single-mode fibers, but it reduces β.

3.3. Sensors

Detectors are pivotal in DCS systems for accurate BF measurements,
with the advances being intricately connected to the adoption of new
high-efficiency massively parallel detectors.

In early DCS systems, photomultipliers (PMTs) were commonly
employed for detecting single photons (Boas and Yodh, 1997; Boas et al.,
1995). However, PMTs are bulky, so early systems only contain a few
channels. Additionally, driving these PMTs requires a high bias voltage,
at least hundreds of volts, to start the electron multiplication process.
These requirements pose challenges for developing compact and
portable devices.

In the last two decades, avalanche photon diodes (e.g., APDs, such as
the SPCM series, Excelitas, Canada) (Irwin et al., 2011; Han et al., 2015;
He et al., 2013) were used nearly exclusively in DCS systems, replacing
PMTs. APDs, known for their high sensitivity, leverage an internal
avalanche multiplication effect for capturing single photons. These de-
tectors offer several benefits compared with PMTs, including lower cost,
simpler operations, and a smaller size. Although APDs offer high
quantum efficiency, they are prone to higher dark current and noise in
low-light conditions (Lawrence et al., 2008). Additionally, these de-
tectors are typically single-channel devices. In DCS, each speckle grain
carries independent information about the dynamic scattering process.
By averaging the autocorrelation signals from multiple speckles, we can
enhance the SNR. However, advances in CMOS manufacturing

Fig. 10. Different optical fibers: (a) a single-mode fiber (SMF), (b) a few-mode fiber, (3) a multi-mode fiber.

Fig. 11. SNR-vs-pixels plot adopted from Wayne et al. (2023), with different SPAD sensors employed in DCS systems.
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technologies have enabled the integration of large SPAD arrays on a
single chip, offering highly parallel single-photon detection.

Highly integrated CMOS SPAD arrays were boosted first by 3D/time-
resolved fluorescence imaging applications (Niclass et al., 2005; Stoppa
et al., 2007; Mosconi et al., 2006), and later Richardson et al.’s low-noise
SPAD structures (Richardson et al., 2009) emerged from the EU6
MEGAFRAME project (EU6 MEGAFRAME, 2024). These SPAD arrays
contain either time-correlated single-photon counting (TCSPC) or
time-gating modules for time-of-flight or traditional photon counting
measurements (Mattioli della Rocca et al., 2023; Li et al., 2010;
Richardson et al., 2009; Veerappan et al., 2011; Le Francois et al., 2021;
Xiao et al., 2021; Morimoto et al., 2020).

Using SPAD arrays in a multispeckle approach directly enhances
SNR, with an enhancement of the square root of the number of inde-
pendent speckle measurements. Using such new sensors in DCS experi-
ments is straightforward without increasing the setup complexity.

Dietsche et al. (2007) verified this method by grouping 28 individual
SPADs, enhancing SNR by

̅̅̅̅̅̅
28

√
. Johansson et al. (2019) first developed a

5 × 5 SPAD DCS system to demonstrate an improved SNR on milk
phantoms and in vivo blood occlusion tests, followed by 32 × 32 (Liu
et al., 2021; Sie et al., 2020; Xu et al., 2022), 192 × 128 (Mattioli della
Rocca et al., 2023), 500 × 500 (Kreiss et al., 2024; Wayne et al., 2023),
and 512 × 512 (Mattioli della Rocca et al., 2024) (not shown in Fig. 11).
These systems significantly improve SNR by a factor of

̅̅̅̅
N

√
, where N is

the number of individual pixels. Fig. 11 highlights the evolution of
SPAD-based DCS systems (from APD to the state-of-the-art large SPAD
arrays 512 × 512) with an enhanced SNR gain from 1 to ~500.

Besides SNR and PDE, the exposure time of SPAD arrays is another
critical consideration, as it defines the interval between two adjacent
time lags Δτ of the autocorrelation curves. Especially for fast decay rates
(e.g., at large source-detector separations or for high flow rates), the
relatively slow frame rate of large SPAD arrays (3 μs for 32 × 32(Liu

Fig. 12. A schematic layout of the SPAD array with representative raw data of temporal light intensity fluctuations from single pixels and the corresponding intensity
autocorrelation curves. The blue and red lines in the rightmost figure represent the autocorrelation curves of a single pixel and the whole SPAD array (1024 pixels),
respectively. Data and plots are adopted from Liu et al. (2021).

Table 2
Existing DCS systems using SPAD array and other representative sensors.

Approaches Detector Laser,
wavelength (nm)

Npixel Applications PDE Fill
factor

Frame rate
(kHz/kfps)

ρ
(cm)

year Refs.

CW SPAD 785 5 × 5 Phantom, blood
perfusion

8% 1.5% 1000 2.5 2019 (Johansson et al.,
2019)

CW SPAD 785 32 × 32 Food, skin 8% 1.5% 333 1.1 2020 (Sie et al., 2020)
CW SPAD 670 32 × 32 Phantom, in vivo 16% 1.5% 333 2.1 2021 (Liu et al., 2021)
CW SPAD 785 500 ×

500
Milk phantom,
rotating diffuser

15% 10.6% 92.2 3.3 2023 (Wayne et al., 2023)

CW SPAD 785 192 ×

128
rotating diffuser 8% 13% 26 N.A. 2023 (Mattioli della Rocca

et al., 2023)
CW SPAD 785 500 ×

500
128 ×

500

Human forearm and
brain, in vivo

15% 10.6% 100 for arm,
300 for brain

4 2024 (Kreiss et al., 2024)

iDCS SPAD 785 1 × 1 Intralipid phantom 61% N.A. N.A. 3.6 2020 (Robinson et al.,
2020)

LW-iDCS InGaAs
Linescan
camera

1064 2048 × 1 Human brain, in vivo N.A. N.A. 300 3.5 2023 (Robinson et al.,
2023)

iDWS CMOS 852 512 × 2 Human brain, in vivo N.A. N.A. 333 2.5 2018 (Zhou et al., 2018)
fiDWS Line-scan CMOS 852 512 × 2 Human brain, in vivo >35% N.A. 333 4 2021 (Zhou et al., 2021)
πNIRS CMOS 785 1024 ×

1024
Forearm, forehead,
human brain

80% N.A. 16 2.5 2022 (Samaei et al., 2022)

TD SNSPD 785 N.A. Phantom, in vivo 99% N.A. N.A 1 2023 (Parfentyeva et al.,
2023)

Notes: iDCS stands for interferometric diffuse correlation spectroscopy; iDWS is interferometric diffusing wave spectroscopy; fiDWS presents functional interferometric
diffusing wave spectroscopy; πNIRS is abbreviation of parallel interferometric near-infrared spectroscopy, ρ is source-detection separation; SNSPD stands for super-
conducting nanowire single-photon detectors; PDE is photon detection efficiency.
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et al., 2021; Sie et al., 2020; Xu et al., 2022) or 10 μs for 500 × 500
(Wayne et al., 2023)) can be a limiting factor in in vivo experiments.
Another limitation of the SPAD arrays, though, is the difficulty in light
coupling and the thinner active areas – thus an element of the SPAD
array has a sensitivity lower than a dedicated SPAD. Nevertheless, the
large number of elements allows one to exceed the performance of in-
dividual SPADs. Fig. 12 shows the primary processing of a Parallelized
DCS (PDCS) system (Liu et al., 2021).

Commercial CMOS cameras are also used in DCS due to their larger
array sizes, higher fill factors, and lower cost. However, they do not have
single-photon sensitivity. To address this, Zhou et al. (2018) employed a
heterodyne detection method to enhance the signal; they also used
MMFs to capture multiple speckle patterns, thereby increasing the
throughput. They successfully conducted pulsatile blood flow mea-
surements. Meanwhile, Liu et al. (2024) integrated a CMOS detector into
a wearable, fiber-free probe, enabling the testing of CBF in neonatal pigs.
Of note, the heterodyne detection approach can also be applied in
SPAD-based DCS systems, where it offers at least a doubling of SNR and
reduced sensitivity to dark counts and environmental light (Robinson
et al., 2020).

Very recently, superconducting nanowire single-photon detectors
(SNSPDs), a relatively new class of photo-detectors, have been used in
TD-DCS systems (Parfentyeva et al., 2023). SNSPD has many advan-
tages, including a high PDE of >80% at longer wavelengths (e.g., 1064
nm), and a better timing resolution (< 20 ps) (Schuck et al., 2013;
Esmaeil Zadeh et al., 2021). Nevertheless, SNSPD detectors come with a
high cost, necessitating cryostats to maintain an operational tempera-
ture of 2 -3.1 K (Esmaeil Zadeh et al., 2021). Moreover, their cooling
time spans several hours, and they are noisy and emit a significant
amount of heat, constraining their practical applicability in clinical
settings. Table 2 summarizes the existing DCS systems with SPAD and
representative non-SPAD sensors.

Table 2 shows the existing SPAD-DCS systems. Some SPAD are
equipped with a TCSPC module, and TD-DCS systems can timetag
detected photons to obtain their ToF, allowing distinguishing early and

late arriving photons from fewer or more scattering events respectively,
thereby enabling depth-resolved evaluation of BFi within tissues.

3.4. Correlators (incl. on-FPGA correlators)

To date, most DCS instruments employ commercial hardware cor-
relators (Durduran et al., 2009; Munk et al., 2012; Cheung et al., 2001;
Durduran et al., 2004; Sunar et al., 2007; Shang et al., 2009) to process
detected signals and record the arrival of a Transistor-Transistor Logic
(TTL) digital pulse for every photon from a photon counting detector. A
commercial correlator (Diop et al., 2011), for example, uses the distri-
bution of arrival times to quantify the temporal fluctuation of detected
intensity. Traditionally, correlators embed a multi-τ processor (Schätzel
et al., 1988; Schatzel, 1990; Schätzel, 1987) to compute the autocorre-
lation functions over a long delay period; this design was derived from
early experiments in DLS (Cipelletti and Weitz, 1999) and diffusing
wave spectroscopy (DSW) (Dietsche et al., 2007), primarily conducted
on non-biological samples.

There are two kinds of hardware digital correlators, linear and multi-
τ correlators, as shown in Fig. 13. Usually, the multi-τ framework is
based on a logarithmic spacing spanning a massive lag-time range with a
small number of channels without substantial sampling errors. Addi-
tionally, the multi-τ scheme significantly reduces the computational
load compared with linear correlators. Although hardware correlators
can operate at a faster sampling speed and offer real-time computing
with a wide lag time dynamic range, they are relatively costly and not

Fig. 13. Diagrams for linear- and multi-tau correlators provided by the CCO of LS Instruments, Dr Ian Block.

Table 3
Existing commercial correlator.

Company Correlator Refs.

LSI Instruments LSI Correlator (lsinstruments.ch, 2024)
Becker & Hickl GmbH SPC-QC-004 (becker-hickl, 2024)
ALV ALV-5000/EPP (alvgmbh.de, 2024)
Photon Force, Ltd. On-FPGA in PF’s MF32 Sensor (photon-force.com,

2024)
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flexible since the fixed number of bits per channel results in a fixed lag
time scale. Meanwhile, software correlators (Magatti and Ferri, 2001;
Magatti and Ferri, 2003) have also been developed. For example, Dong
et al. (2012) proposed a fast Fourier transform (FFT)-based software
correlator in 2012, reaching a sampling rate of ~ 400 kHz. In 2016,
Wang et al. (2016) designed another software correlator using the
shift-and-add method, and the temporal resolution can be 50 ~ 100 Hz.
Compared with Dong’s FFT correlator, Wang’s correlator is less memory
intensive. Although they show comparable performances to commercial
hardware correlators and have notable flexibility, cost-effectiveness and
adaptability advantages, they require high-performance processors for
real-time data analysis. As a result, field programmable gate array
(FPGA) based correlators (Mattioli della Rocca et al., 2023; Moore and
Lin, 2022; Moore et al., 2024) are becoming popular, as they signifi-
cantly increase computational power, making low-cost real-time appli-
cations possible. For most DCS applications with SPAD arrays, the
autocorrelations are usually post-processed (Wayne et al., 2023;
Johansson et al., 2019; Sie et al., 2020; Liu et al., 2021) and on-FPGA
solutions (Mattioli della Rocca et al., 2023) are trendy. Table 3 shows
the existing commercial correlators.

3.5. Comparison between CW-, TD- and FD-DCS

Conventionally, enhancing depth sensitivity in CW-DCS measure-
ments involves using a larger ρ. This allows detecting photons with
longer pathlengths. An inherent drawback of this approach is the
reduced detection of photons at a large ρ, reducing the SNR of g2.
Although Yodh et al. (1990) have demonstrated pathlength-resolved
DCS, their method required nonlinear optical gating and high laser
powers, which are unsuitable for in vivo applications. Sutin et al. (2016)
first reported a novel time-domain (or pathlength-resolved) DCS on
phantoms and a rat brain, showing the potential for clinical applications.
Compared with CW-DCS, there are many advantages in TD-DCS:

Firstly, TD-DCS canmeasure the time point spread function (TPSF) of
the tissue. Consequently, we can apply photon diffusion theories
developed for time-domain near-infrared spectroscopy (TD-NIRS) to
estimate tissue optical properties using the TPSF. Thus, we reduce errors

in estimating dynamical properties, as we do not need to assume optical
property values as traditional CW-DCS systems do (Sutin et al., 2016).

Secondly, TD-DCS adds one further variable time, which can be
exploited to select photons to increase the depth sensitivity (Martelli
et al., 2016). Typically, the photons with a longer pathlength travelled
deeper into the medium before reaching the detector. In contrast, those
taking a shorter pathlength from source to detector reach only superfi-
cial tissue layers. Time-of-flight (ToF) measurements can achieve a
higher depth resolution, as the ToF is proportional to the pathlength
through the medium. Consequently, when computing the autocorrela-
tion only with photons showing a ToF below a specific threshold, we can
estimate the dynamic properties of the superficial layers, whereas a
longer ToF allows for assessing deeper layers.

Thirdly, the pulsed laser utilized in the TD-DCS system can be inte-
grated into the TD-NIRS setup (Samaei et al., 2021). This integration
enables simultaneous measurements of NIRS and DCS, providing a
comprehensive understanding of blood flow and hemodynamics varia-
tions. A temporal resolution of approximately one second and a
favourable SNR in dynamic in vivo measurements was validated
(Pagliazzi et al., 2017).

However, the primary obstacle preventing the broad adoption of TD-
DCS is the need for an optimal pulsed laser (in power, pulse width,
coherence, stability, and cost, around 6-fold more expensive than CW
lasers). The effect of each of these factors has been evaluated in different
studies, and various data processing strategies have been introduced to
overcome the destructive influence of the instrument response function
(IRF) (Colombo et al., 2019) and the limited coherence length of the
emitter. Moreover, Colombo et al. (2020) demonstrated the contami-
nation of non-moving scatters on the TPSF using a coherent pulsed laser
utilized in the TD-DCS technique. Samaei et al. (2021) have conducted
the systematic discussion. Another drawback is that using narrow time
gates to calculate the autocorrelation limits the SNR due to the scarcity
of photons. Consequently, its applicability to in vivo experiments on
human tissue is also restricted (Pagliazzi et al., 2017). Although Ozana
et al. (2022) have designed a functional TD-DCS system that combines
an optimized pulsed laser (a custom 1064 nm pulse-shaped, quasi
transform-limited, amplified laser source), it is still costly, primarily due

Table 4
Representative existing time-domain DCS systems.

Year Laser Wavelength
(nm)

Average
power (mW)

Repetition
rate (MHz)

Detection
technique

IRF
FWHM
(ps)

Applications Refs.

2016 DBR 852 50 150 Red-enhanced
SPAD

150 Homogenous liquid phantom
and small animal

(Sutin et al.,
2016)

2017 Ti: Sapphire 785 NA 100 SPAD 100 Two-layer liquid phantoms,
forearm muscle, and adult
human forehead

(Pagliazzi et al.,
2017)

2018 VisIR STED, PicoQuant 767 50 NA Red-enhanced
SPAD

500 Homogenous liquid phantoms (Cheng et al.,
2018)

2018 Ti:Sapphire 785 NA 100 Gated single-
photon avalanche
diode

350 Forearm muscle (Pagliazzi et al.,
2018)

2019 VisIR-500 767 ≤ 1500 ≤ 80 SPAD 550 Homogenous liquid phantoms,
forearm muscle, and adult
human forehead

(Tamborini
et al., 2019)

2019 Ti:Sapphire 785 NA 100 SPAD 400 Homogenous liquid phantoms (Colombo et al.,
2019)

2020 Ti:Sapphire 1000 30 100 InGaAs PMT NA Homogenous liquid phantoms
and forearm muscle

(Colombo et al.,
2020)

2021 LDH-P-C-760, Picquant 760 12 80 SPAD 90 Two-layer liquid phantoms,
forearm muscle, and adult
human forehead

(Samaei et al.,
2021)

2022 Custom-made two-
stage fiber amplified
pulsed laser

1064 100 1-100 SNSPD 150-600 Two-layer liquid phantoms and
adult human forehead

(Ozana et al.,
2022)

2023 Ti:Sapphire 785 NA 100 SNSPD 100-200 Homogenous liquid phantoms
and adult human forehead

(Parfentyeva
et al., 2023)

Note: SPAD stands for Single-Photon Avalanche Diode, and SNSPD stands for Superconducting Nanowire Single-Photon Detectors
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to the SNSPD.
Unlike CW-DCS, both TD- and FD-DCS can retrieve dynamic optical

properties (e.g., BFi) and static optical properties (e.g., μa and μś), which
are typically assumed in the conventional CW-DCS measurements. FD-
DCS eliminates the requirement for collocated sources and phase-
sensitive detectors, promising a portable and cost-effective system.
Through data acquisition at a single ρ, FD-DCS effectively minimizes
partial volume effects. This technology eliminates the need for extensive
calibration in data analysis by acquiring flow and absorption from
intensity-normalized data. FD-DCS shows high-speed acquisition, as
flow and oxygenation information are inherently present in the dataset.
Moreover, the implementation of FD-DCS is simplified by replacing a
traditional DCS system’s source with an intensity-modulated coherent
laser. The detection mechanism remains unchanged, leading to reduced
development time and cost.

Typically, to separate deep from superficial blood flow signals for
CW-DCS, adding more detectors at different ρ to obtain multiple-
distance measurements is needed, which, however, increases the cost.
General linear models (GLM) have been applied to CW-DCS data from
multiple source-detector separations (ρ) to regress out the effect of su-
perficial flow. Therefore, large- ρ DCS data is expressed as a linear
combination of superficial blood flow (measured at a small ρ) and the
desired deep blood flow (Cowdrick et al., 2023), a method derived from
fNIRS (Von Lühmann et al., 2020). Table 4 summarizes representative
existing TD-DCS systems, which use time-gating and TCSPC electronics
to distinguish between photons travelling superficial layers and those
propagating deeper into the tissue.

In contrast to fNIRS, which measures flow volume, DCS directly
measures the BFi, which is related to flow speed. Since the flow speed

differs significantly over different vessel diameters and tissue layers, the
relation between superficial BFi and deep BFi is not linear. Therefore,
new analysis tools that integrate additional data on vasculature struc-
ture are required to derive more accurate deep flow estimation from
such multiple-distance DCS measurements.

4. Data processing

The accuracy and performance of multilayered analytical models
have been extensively evaluated in prior literatures (Gagnon et al.,
2008a; Verdecchia et al., 2016; Zhao et al., 2021; Zhao et al., 2023;
Samaei et al., 2021; Milej et al., 2020; Wu et al., 2022; Forti et al., 2023).
In addition to the analytical models described in Section 2, other data
processing methods have been introduced to distinguish cerebral and
extracerebral information. Baker et al. (2015) introduced a pressure
measurement paradigm combined with the modified Beer-Lambert law
(Baker et al., 2014) and multi-distance measurement to reduce the
extracerebral contamination from the signal associated with the deep
layers. Furthermore, Samaei et al. (2021) extended the bi-exponential
model utilized in interferometric near-infrared spectroscopy (iNIRS)
(Kholiqov et al., 2020) to describe the TD-DCS signals influenced by
scatterers moving at different speeds. They also conducted experimental
validation using layered phantoms and in vivo experiments.

Traditionally, to extract BFi and β, we fit measured g2 with Eqs. (4),
(9), (18), (24), (25), (31), (32) and (35) in Section 2 by minimizing the

cost function χ2 =
∑

i

[
g2,analytical(ρ, τi) − g2,measured(ρ, τi)

]2
. Nonlinear

least square fitting routines, e.g., Levenberg-Marquardt (Li et al., 2005,
Mazumder et al., 2021), fminsearchbnd (Verdecchia et al., 2016) are

Fig. 14. The existing deep learning model applied in DCS, including RNN (Zhang et al., 2019), 2DCNN (Poon et al., 2020), LSTM (Li et al., 2021), ConvGRU (Feng
et al., 2023) and DCS-NET. All of the graphs are re-printed from the published literatures.
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usually used to quantify BFi. These approaches, however, are iterative,
and sensitive to data noise. To address these constraints, the Nth-order
(NL) algorithm (Shang et al., 2014; Shang and Yu, 2014), least-absolute
minimization (L1 norm), and support vector regression (SVR) were
introduced (Zhang et al., 2018). Yet, with the NL framework, the
extraction of BFi is determined by the chosen linear regression approach
(Zhang et al., 2018). Although L1 norm and SVR are novel for processing
DCS data, they are sensitive to signal deviations (Vapnik, 1999). For
example, the computation time for BFi is 28.07 and 52.93 s (Zhang et al.,
2018) (using the Lenovo ThinkCentre M8600t desktop with a 3.4 GHz
CPU and 16GB memory) when employing L1 norm and SVR, respec-
tively, still too slow for real-time applications.

In 1986, Dechter introduced “deep learning” (DL) to the machine
learning community (Dechter, 1986). With rapid advances in computing
technologies, DL has become a game-changer in many fields, including
photonics (Ma et al., 2021), chemistry (Mater and Coote, 2019), biology
(Ching et al., 2018), and medical diagnosis (such as electroencephalo-
gram (EEG) and electrocardiogram (ECG) (Zhang et al., 2020; Liu et al.,
2021)), but is not yet broadly used in DCS. Recently, Zhang et al. (Zhang

et al., 2019) proposed the first recurrent neural network (RNN) regres-
sion model to DCS, followed by 2D convolution neural networks
(2DCNN) (Poon et al., 2020), long short-term memory (LSTM) (Li et al.,
2021) and ConvGRU (Feng et al., 2023). LSTM, as a typical RNN
structure, has proven stable and robust for quantifying relative blood
flow in phantom and in vivo experiments (Li et al., 2021). 2DCNN, on the
other hand, tends to require massive training datasets for complex
structures, demanding memory resources. ConvGRU, the newest deep
learning method introduced to DCS, has also exhibited excellent per-
formances in BFi extraction. Although the training of DL takes a long
time, once it is done, DL is much faster than traditional fitting methods
and more promising for real-time analysis and display. Fig. 14 and
Table 5 summarize existing DL methods applied to DCS. It shows that
DCS-NET’s training is much faster than two-dimensional CNN, approx-
imately 140~fold faster. Although the remaining models, RNN, LSTM
and ConvGRU have fewer total layers, they are limited to a specific ρ
(Wang et al., 2024). Xu et al. (2022) introduced a different DL approach
and trained a deep neural network on DCS data of temporal speckle
fluctuations from 12 fibers at different surface locations to reconstruct
videos of flow dynamics 8 mm beneath a decorrelating tissue phantom.
The reconstructed images had a millimetre-scale spatial resolution and a
temporal resolution of 0.1-0.4 s.

5. Applications

DCS has a broad range of applications, particularly when integrated
with near-infrared spectroscopy (NIRS) (Buckley et al., 2014), Doppler
ultrasound, time-resolved near-infrared technique (TR-NIR) (Diop et al.,
2010, Diop et al., 2010), and frequency-domain NIRS (Shang et al.,
2017). This integration provides valuable insight into tissue oxygena-
tion, blood oxygen metabolism, and hemodynamics (Milej et al., 2020;
Milej et al., 2020), making DCS useful for neuromonitoring, tissue and
skeletal muscle blood flow monitoring, tumor diagnosis and therapy,
and neonatal cardio-cerebrovascular health evaluation (Shang et al.,
2017).

This section includes an overview of DCS applications in animals,
followed by applications in neonates, focusing on perinatal care, cardio-

Table 5
Comparison of existing AI methods for BFi estimation.

Model Training
Parameters

Training
time

Total
layer

ρ
(mm)

Year

RNN (Zhang et al.,
2019)

174080 N/A 20 25 2019

CNN(2D) (Poon
et al., 2020)

75552 ~ 30.5
(hour)

161 27.5 2020

LSTM (Li et al.,
2021)

1161 N/A 2 15 2021

ConvGRU (Feng
et al., 2023)

11557 N/A 10 20 2022

LSTM (Nakabayashi
et al., 2023)

N/A N/A 5 30 2023

DCS-NET (Wang
et al., 2024)

25506 ~ 13
(minute)

18 5 to
30

2024

Notes: the training parameters of RNN and CNN(2D) are not given in the liter-
ature; we calculate them according to the structure shown in the literature.

Fig. 15. (a) Detailed schematics of measurements on sheep, featuring the instrument and its thin fiber optic probe, images adopted from Ref. Mesquita et al. (2013);
(b) The setup for pig experiments. The shaded areas on the pig indicate burns of various depths. Figures were reproduced from Ref (Boas and Yodh, 1997); (c) The
non-contact scanning system set-up for mice. (black lines: outline of the bones; red lines: outline of the graft). Figures were reproduced from Ref. Han et al. (2016);
(d) Experiment setup with the placement of optical fibers and pressure sensor as well as the catheter on the exposed skull of monkey. The traces at the right show an
example of changes in cerebral blood flow (ΔCBF) and ICP. Figures were reproduced from Ref. Ruesch et al. (2020).
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cerebral diseases, and children’s brain health. Finally, it explores DCS
applications in adults, divided into neurovascular assessment, cardio-
cerebrovascular diseases, skeletal muscle health, and tumor diagnosis
and therapy.

5.1. Animals

DCS has been applied to animals since the late 1990s, such as esti-
mating burn depth in pigs (Boas and Yodh, 1997) (Fig. 15(b)) and
probing rat vascular hemodynamics (Cheung et al., 2001) with a hybrid
DCS-NIRS instrument in 2001. Carp et al. used DCS to examine CBF
during hypercapnia-induced cerebrovascular perturbation, with
MRI-ASL as the standard measuring reference (Carp et al., 2010). In
addition, Menon et al. were the first to use DCS for tumor monitoring
(Menon et al., 2003) by assessing tumor oxygenation in mice with
human melanoma xenografts achieved by vascular endothelial growth
factor (VEGF) transfection. They combined DCS with Doppler ultra-
sound (DUS) to investigate microvessel density (MVD), BF, blood vol-
ume (BV), blood oxygen saturation, tissue oxygen partial pressure (pO2),
and oxygen consumption rate.

Moreover, DCS is pivotal in monitoring tumor blood flow changes in
animal studies related to photodynamic therapy (PDT). Marrero et al.
(2011), Yu et al. (2005), and Busch et al. (2009) have employed DCS to
monitor BF in tumors before, during, and after PDT. Sunar et al. (2007)
also used DCS to assess anti-vascular and ionizing radiation therapies.
Farzam et al. (2017) observed a dropped BFi in the high oxygen satu-
ration tumor region using DCS and DOS after anti-vascular chemo-
therapy. These preclinical investigations have paved the way for human
cancer research and clinical applications.

Ischemia monitoring assesses potential damage to the brain or the
secondary brain injury and paraparesis. Experiments have been con-
ducted to study the perturbation of hemodynamics and cerebral blood
metabolism induced by ischemia brain injury in rats (Culver et al.,
2003), piglets (Diop et al., 2011) and sheep (Mesquita et al., 2013), see
Fig. 15. Notably, Diop et al. developed a method integrating (TR-NIR)
and DCS to quantify the absolute cerebral metabolic rate of oxygen
(CMRO2) (Diop et al., 2011; Verdecchia et al., 2013).

To further investigate vessel hemodynamics, diffuse correlation to-
mography (DCT) has been developed to provide 3D blood flow contrast
imaging by measuring blood flow perturbations caused by optical het-
erogeneities, providing blood flow contrast imaging of the region of
interest (Zhou et al., 2006; Han et al., 2016; Huang et al., 2021). DCT is a
safe and cost-effective imaging technique offering real-time monitoring
and functional information on hemodynamics, complementing other
imaging modalities like MRI, CT, or PET scans.

5.2. Neonates

The cortex of newborns is more easily detectable as the scalp and
skull are much thinner in newborns and more light reaches the cerebral
tissue than in adults. Thus, neonates are an attractive population for
bedside DCS measurements. Generally, DCS is often combined with
NIRS, which can measure human blood metabolism (Villringer and
Chance, 1997; Danen et al., 1998) or transcranial Doppler ultrasound
(TCD), enabling comprehensive measurements of microvascular blood
flow and oxygen metabolism in neonatal human subjects (Buckley et al.,
2014).

5.2.1. Perinatal care
Babies born before 37 weeks of pregnancy are premature, and pre-

term birth is the leading cause of neonatal mortality (Ohuma et al.,
2023). According to the World Health Organization (WHO) 2023 report,
there are around 13.4 million premature babies worldwide (Preterm
birth, 2023). Premature babies are more likely to suffer from brain in-
juries such as HIE, stroke, and periventricular leukomalacia, related to
neurological deficits (Kiechl-Kohlendorfer et al., 2009). Roche-Labarbe

et al. developed a hybrid instrument combining DCS for measuring
CBF and quantitative FD-NIRS for assessing cerebral tissue oxygenation
(StO2) and CBV in premature neonates. The results indicate that the
CBF-CBV correlation is unstable in premature neonates (Roche-Labarbe
et al., 2010). In addition, Germinal matrix-intraventricular hemorrhage
(GM-IVH) in premature neonates can be monitored by measuring CBF
and CMRO2 to identify the vulnerability of potential brain damage in
newborns (Lin et al., 2016). Buckley et al. used DCS for continually
monitoring CBF in the middle cerebral arteries of low birthweight pre-
mature infants during a postural manipulation, discovering a significant
correlation between TCD and DCS measurements (Buckley et al., 2009).
CBF monitoring during the first three days after birth was conducted to
assess the risk of brain injury due to CBF instabilities in preterm infants
(Rajaram et al., 2022). DCS holds a promising potential for preterm
human infants’ brain health care.

5.2.2. Neonatal cardio-cerebral diseases
DCS is also a promising tool for the monitoring of congenital heart

defects in newborns. Durduran et al. used a hybrid NIRS-DCS instrument
to study the changes in oxyhemoglobin, deoxyhemoglobin, total he-
moglobin concentrations, CMRO2, and CBF during hypercapnia. The
validation of CBF and CMRO2 was conducted using MRI-ASL, and the
results showed a good agreement with DCS measurements (R = 0.7, p =
0.01) (Durduran et al., 2010). Buckley et al. (2013) and Shaw et al.
(2023) measured changes in cerebral hemodynamics and oxygen
metabolism during cardiac surgeries using DCS and DOS to evaluate the
risk of surgery duration and surgical procedures, respectively. In addi-
tion, therapeutic hypothermia (TH) for neonatal HIE has also been
studied using hybrid FD-NIRS and DCS (Dehaes et al., 2014; Sutin et al.,
2023). Sutin et al. (2023) revealed the effects presented by therapeutic
hypothermia (TH) on cerebral hemodynamics and blood oxygen meta-
bolism by measuring CBF and CMRO2, indicating that CMRO2 is a good
indicator of TH evaluation and can be measured repeatedly at the point
of care.

5.2.3. Children brain health assessment
Busch et al. (2016) observed CBF attenuation in the brains of chil-

dren (aged 6-16 years) diagnosed with obstructive sleep apnoea syn-
drome (OSAS) and hypercapnia using DCS. Besides, Nourhashemi et al.
(2023) combined EEG, NIRS, and DCS to simultaneously capture
changes in electrical and optical dynamics in children (aged 6-10 years)
affected by absence epilepsy. The outcomes revealed a consistent cor-
relation among EEG, NIRS, and DCS, suggesting that DCS holds promise
in detecting hemodynamic changes of pediatric brain disorders. More-
over, DCS has been employed for real-time CBF measurements during
chronic transfusion therapy for children with autism spectrum disorder
(Lin et al., 2023) and sickle cell diseases (Lee et al., 2019; Cowdrick
et al., 2023; Lee et al., 2022). Fig. 16 shows representative applications
of DCS in neonates.

5.3. Adults

In this section, we focus on DCS applications in human adults and
divide them into four sections: neuroscience study, cardio-
cerebrovascular diseases, skeletal muscle and exercise physiology
study, and tumor diagnosis and therapy evaluation. Fig. 17 shows the
use of DCS in adults.

5.3.1. Neurovascular assessment
Measuring CBF facilitates investigating neurovascular coupling,

brain injuries, stroke, and neurological disorders. Neurovascular
coupling denotes the connection between regional neural activity and
subsequent alterations in CBF. The extent and spatial positioning of
blood flow fluctuations are intricately connected to shifts in neural ac-
tivity through a sophisticated sequence of coordinated processes
involving neurons, glial cells, and vascular elements (Pasley and
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Freeman, 2008). DCS can quantify changes in human cerebral blood
flow in response to various stimuli, including sensorimotor cortex acti-
vation (Durduran et al., 2004), visual cortex activation (Jaillon et al.,
2007; Li et al., 2008), Broca’s area activation (Tellis et al., 2018),
transcranial magnetic stimulation (TMS) (Mesquita et al., 2013), and
vasoactive stimuli (Cowdrick et al., 2023). These studies presented
noninvasive and straightforward means of monitoring cognitive
neuronal activity in human brains. Older adults with mild cognitive
impairment exhibit significantly higher CBF increments during motor
and dual-task activities, whereas their counterparts display normal
cognitive functions (Udina et al., 2022). Another investigation high-
lighted the consistency of CBF with the posture changes within a healthy
population (aged 20 to 78 years). Zavriyev et al. examined the role of
DCS during hypothermic circulatory arrests (HCA) therapy among older
people (mean age 61.8 ± 19.4 years) (Zavriyev et al., 2021). These
findings offer good references for future research on age-related alter-
ations in CBF (Edlow et al., 2010). In addition, DCS has been effectively
applied for assessing cerebral hemodynamics under hypotension
(Shoemaker et al., 2023), obstructive sleep apnea (Busch et al., 2016),
and adult comatose (Johnson et al., 2022). However, most
state-of-the-art DCS setups are relatively limited for measuring blood
flow in deeper cerebral tissue since the most common source-detector
separations only enable measurements at ~1-1.5cm depth, which
barely penetrates the non-cerebral tissues of the scalp and skull.

5.3.2. Cardio-cerebrovascular diseases
Several studies have assessed human artery diseases and treatments.

For example, Carotid endarterectomy (CEA) can lead to hypoperfusion
syndrome and potential cerebral ischemia, making cerebral hemody-
namics monitoring crucial during and after the procedure. Shang et al.
found that DCS measured CBF more responsively to internal carotid
artery clamping compared to EEG (Shang et al., 2011). Furthermore,
Kaya et al. (2022) integrated DCS with NIRS to demonstrate the feasi-
bility of real-time cerebral hemodynamics and oxygen metabolism

monitoring during CEA procedures. Mesquita et al. (2013) also estab-
lished a physiological connection between CBF and oxygenation in pa-
tients with peripheral artery disease. CBF during the cardiac cycle has
been acquired using DCS before and during ventricular arrhythmia in
adults (Lafontant et al., 2022). DCS has also been used for monitoring
CBF (Durduran et al., 2009; Favilla et al., 2014) and critical closing
pressure (CrCP) (Wu et al., 2021) of ischemic stroke patients, intrathecal
nicardipine treatment after subarachnoid hemorrhage (Sathialingam
et al., 2023), and thrombolysis therapy evaluation in ischemic stroke
(Zirak et al., 2014). In neurocritical care, DCS combined with NIRS
serves as an effective bedside tool for managing CBF and head-of-bed
treatment for critical brain injuries (Kim et al., 2010; Kim et al., 2014).

5.3.3. Skeletal muscle health
DCS is valuable for investigating human skeletal muscle physiology

and assessing tissue vascular diseases. Yu et al. compared muscle blood
flow and oxygenation between healthy individuals and those with pe-
ripheral arterial disease during cuff occlusion and plantar flexion exer-
cise (Yu et al., 2005), integrating MRI-ASL with DCS for monitoring BFi
(Yu et al., 2007). Shang et al. studied muscle blood flow, oxygenation,
and metabolism in women with fibromyalgia during exercise (Shang
et al., 2012). Matsuda et al. (2022) evaluated local skeletal muscle blood
flow during manipulative therapy, which enhanced blood flow with
minimal effects on systemic circulatory function (Matsuda et al., 2022).
Nevertheless, conventional technologies like DUS, electromyography
(EMG), and MRI face challenges with motion artifacts, leading to inac-
curate blood flowmeasurements. DCS offers more reliable measurement
(Bangalore-Yogananda et al., 2018), though muscle fiber motion arti-
facts may still result in overestimating BFi changes. Methods such as
dynamometer co-registration (Shang et al., 2010), hardware-integrated
gating (Gurley et al., 2012; Henry et al., 2015), and a random walk
correction model with FD-NIRS (Quaresima et al., 2019) have been
proposed to address this.

Fig. 16. (a) DCS sensor was attached to the infant’s head for blood flow monitoring, figures adopted from Ref. Sunwoo et al. (2022) (b) The high-density EEG cap and
optical probe (NIRS-DCS) and schematic representation of the location of the EEG and optical probes on a child’s head. The figure was reproduced from Nourhashemi
et al. (2023). (c) The hybrid DCS system for neonatal blood flow monitoring, figures reproduced from Ref. Rajaram et al. (2020).
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5.3.4. Tumor diagnosis and therapy evaluation
DCS has been employed in the diagnosis of human breast cancer,

prostate, and neck tumors. Durduran et al. (2005) conducted an initial
comparative analysis of blood flow disparities between tumor and
normal tissues in the human breast. The investigation revealed a note-
worthy increase in blood flow within tumor tissues, paving the way for
noninvasive tumor diagnosis. Choe et al. (2014) confirmed these find-
ings, and non-contacted DCT has enabled 3D visualization of blood flow
in human breast tumors. Yu et al. (2006) combined DCS with NIRS to
measure BF and oxygenation in human prostate cancer and head/neck
tumors (Sunar et al., 2006), assessing treatment efficacy. Also, DCS has
been used to evaluate photosensitizer 2-1[hexyloxyethyl]-2-devinylpyr-
opheophorbide-a (HPPH)- mediated PDT (HPPH-PDT), showing signif-
icant drug photobleaching and reductions in blood flow and
oxygenation (Sunar et al., 2010). Additionally, DCS can evaluate
chemotherapy (Zhou et al., 2007; Chung et al., 2015) or radiation de-
livery (Dong et al., 2012) in human tumors.

However, more extensive patient studies are needed for accurate
clinical applications, as most studies involved only 7 to 11 patients
(Choe and Durduran, 2012) with varying response definitions. Longi-
tudinal studies with larger populations and refined DCS models are
necessary for precise clinical use (Yu, 2012; Shang et al., 2017).

In addition to the applications listed above (Figs. 15–17), DCS has
also been used for critical care (Poon et al., 2022), anesthesiology
(Tagliabue et al., 2023), and thyroid blood flow measurements (Lindner
et al., 2016).

6. Discussion and outlook

Non-invasive DCS techniques have great potential for early diag-
nosis, prognosis, and a broad range of clinical conditions. Although DCS
is simple and cost-effective, human applications still face challenges.
Increasing DCS’s SNR is crucial for effective probing through thick near-
surface tissue layers, especially at larger source-detector separations. A
solution for increasing SNR is simply increasing the amount of light
delivered to tissues under the maximum permissible exposure (MPE)
limited by safety standards (ANSI safety limit (ANS Institute, 2007)) or
using high photon detection efficiency sensors that collect more scat-
tered photons. Additionally, with new CMOSmanufacturing techniques,
the improvement in SNR has been shown in multi-speckle DCS systems
using SPAD arrays with 5 × 5 (Johansson et al., 2019), 32 × 32 (Sie
et al., 2020; Xu et al., 2022; Liu et al., 2021), 192 × 128 (Mattioli della
Rocca et al., 2023), 500 × 500 (Wayne et al., 2023), or 512 × 512
(Mattioli della Rocca et al., 2024) pixels. The latest parallelized DCS
system with a SPAD array of 500 × 500 pixels has already been
demonstrated to boost the SNR by 500, compared to a single SPAD pixel
of the same device. In 2020, a SPAD camera with 1024 × 1000 pixels
was demonstrated (Morimoto et al., 2020), although its relatively low
frame rate of 24 kfps still prevented a practical use in DCS. We believe
this ongoing development of larger and faster SPAD technologies
(Morimoto et al., 2020; Bruschini et al., 2019) will continue to boost the
SNR of DCS, thereby allowing feasible measurements at longer
source-detection separation and effectively enabling the measurement

Fig. 17. (a) Hybrid DCS system applied to the human forehead, image reprinted from Ref. Durduran and Yodh (2014); (b) Experimental configuration with a
contactless probe, figures adopted from Ref. Li et al. (2013); (c) Schematic of hybrid instrument, hybrid Imagent/DCS instrument for simultaneous measurement of
tumor oxygenation and blood flow during chemoradiation therapy, images adopted from Ref. Dong et al. (2016); (d) Drawing of a subject cycling on a stationary
bicycle with a multi-distance FDNIRS-DCS probe attached to the right superficial rectus femoris. The figure was adopted from Ref. Zavriyev et al. (2021); (e) Hybrid
DCS/NIRS device for muscle measurement. Figures were adopted from Ref. Henry et al. (2015); (f) Diagram of DCS working on a breast, figures adopted from
Ref. Choe et al. (2014).
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of deeper blood flow.
Another method that has a similar goal is the interferometric

approach based on a Mach-Zehnder interferometer. Over the past five
years, the interferometric detection for diffusely scattered light in bio-
logical tissues has been investigated (Zhou et al., 2021; Zhou et al.,
2022; Zhou et al., 2018; Robinson et al., 2020; Kholiqov et al., 2020;
James and Powell, 2020; Xu et al., 2020; Zhou et al., 2021; Borycki et al.,
2017; Kholiqov et al., 2022). There are many advantages, including:

1) offering comparable or superior functionality to photon counting but
at a significantly lower cost per pixel (Zhou et al., 2021; Zhou et al.,
2018; Robinson et al., 2020; Zhou et al., 2021);

2) altering the temporal coherence of light proves to be an effective and
adaptable method for attaining Time-of-flight (ToF) resolution or
discrimination within an interferometric arrangement, eliminating
uncertainties for precise signal interpretation (Zhou et al., 2018;
Kholiqov et al., 2020; Borycki et al., 2017; Kholiqov et al., 2022);

3) holding significant promise for analyzing blood flow fluctuations,
whereas conventional DCS is hindered by its expensive nature and
limited throughput (Zhou et al., 2021; Dietsche et al., 2007);

4) insensitive to ambient light, which is a considerable benefit for
practical use cases. Recently, Robinson et al. (2023) proposed long
wavelength (1064 nm), interferometric DCS (LW-iDCS), which out-
performs the long wavelength DCS (LW-DCS) based on SNSPD
(Ozana et al., 2021) in terms of SNR and implementation cost. Safi
et al. (2021) presented a novel coherence-gated DCS instrument
designed for pathlength-resolved measurement of flow and tissue
optical properties, utilizing a CW low-coherence source with an
interferometric approach, in which specialized pulsed/modulated
laser sources with high temporal coherence and speed improvements
to traditional DCS detectors are not required. Similarly, Robinson
et al. (2024) proposed an enhanced DCS method called
pathlength-selective, interferometric DCS (PaLS-iDCS), which im-
proves upon both the sensitivity of the measurement to deep tissue
hemodynamics and the SNR of the measurement using
pathlength-specific coherent gain. Moreover, PaLS-iDCS does not
require expensive time-tagging electronic and low-jitter detectors
because of the interferometric detection. However, the drawback of
the interferometric approach is its relatively complex setup with a
reference arm and higher stability requirements for the platform
accommodating the setup.

One substantial advantage of TD-DCS techniques, as described in
Section 3.5, is their capability to reduce the superficial layer contami-
nation by selecting photons propagated into the deep tissues. Although
TD-DCS measurements are typically conducted at a short ρ, due to the
limited coherence length of the currently available emitters, this feature
overcomes the influence of short ρ measurements and provides a higher
depth sensitivity than CW-DCS methods. Therefore, TD-DCS requires a
pulsed lasers and a TCSPC (or time-gating) module, which increases
cost. To reduce the cost, Moka et al. (2022) proposed FD-DCS. A faster
acquisition speed can be achieved using FD-DCS as BF and oxygenation
information is implicit in the collected data. This can be a good solution
for some traditional DOS and DCS systems. Moreover, implementing
FD-DCS is simplified using an intensity-modulated coherence laser,
which can be cost-effective.

Indeed, large arrays comprising thousands of SPADs equipped either
with in-pixel Time-to-Digital Converters (TDCs) (Villa et al., 2014; Villa
et al., 2012; Gersbach et al., 2012) or with a set of TDCs shared across
various pixels (Jahromi et al., 2015; Charbon, 2014) are being devel-
oped in cost-effective CMOS process. Despite recent advances in SPAD
technologies, state-of-the-art TD-DCS has not yet been implemented
using TCSPC techniques based on TDC techniques (Wang et al., 2024;
Wang et al., 2023). There is no doubt that large SPAD arrays with
embedded TCSPC can be a parallelizable solution for next-generation
TD-DCS, with a potential breakthrough in the SNR of the

measurements and the depth-encoding. We expect this kind of TD-DCS
system to be released in the coming years.

Combining DCS and DRS (Munk et al., 2012; Shang et al., 2009;
Cheung et al., 2001) for concurrent BF and oxygenationmeasurements is
also a trend. Quantifying blood oxygenation, metabolism, and tissue BF
is essential for the diagnosis and therapeutic assessments of vascu-
lar/cellular diseases (Barth et al., 2010; Caprara and Grimm, 2012; Edul
et al., 2011; Schober and Schwarte, 2012; White et al., 2012; Wolf et al.,
2003). However, most relevant instruments assess tissue hemodynamics
and metabolism by employing optical probes in direct contact with tis-
sue surfaces. Contact measurements pose notable challenges, such as an
elevated risk of infection in ulcerous tissues and potential deformation of
delicate tissues (e.g., breasts and muscles) due to probe-tissue contact.
This deformation can lead to distortions in the measured tissue prop-
erties. Thus, noncontact probes have been designed for deep tissues (Lin
et al., 2012; Cheung et al., 2001; Yu et al., 2005).

Regarding data processing, traditional nonlinear fitting methods are
usually based on analytical models (homogenous semi-infinite one-
(Boas et al., 2016), two-Wu et al., 2022; Gagnon et al., 2008a), and
three- layer (Li et al., 2005; Verdecchia et al., 2016; Zhao et al., 2021; Li
et al., 2017) models). However, they are computationally demanding
and less accurate as the SNR decreases, especially for multi-layer fitting
(Wang et al., 2024). Deep learning methods have been proposed in DCS
analysis since 2019(Zhang et al., 2019), including 2DCNN (Poon et al.,
2020), LSTM (Nakabayashi et al., 2023; Li et al., 2021), ConvGRU (Feng
et al., 2023), and DCS-NET (Wang et al., 2024). New AI techniques will
be introduced to DCS applications soon.

Over the past 25 years, we have witnessed the emergence of DCS to
quantify BF dynamics of deep tissues more accurately with a higher SNR.
We expect low-cost, user-friendly DCS technologies will be introduced
and applied soon. Combining NIRS with DCS will provide a better so-
lution for critical bottlenecks in neuroscience and clinical applications.
Although the speckle contrast optical spectroscopy (SCOS) setup,
particularly the fiber-based configuration, is similar to that of DCS, SCOS
can achieve a much higher SNR at a reduced cost (using inexpensive
detectors). Recent studies (Zilpelwar et al., 2022; Robinson et al., 2024;
Kim et al., 2023; Cheng et al., 2024) from Boas’s research group have
used SCOS for measuring human brain functions at a larger ρ, demon-
strating greater sensitivity to CBF, suggesting that SCOS could provide
an alternative approach to functional neuroimaging for cognitive
neuroscience applications.
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Appendix 1. Optical-based blood flow monitoring modalities

The tree diagram in Fig. 18 shows the optical-based blood flow monitoring modalities, including LSCI (Briers et al., 2013), LDF (Fredriksson et al.,
2007; Vo-Dinh, 2014), DCS, SCOS, and DSCA (Bi et al., 2013b; Bi et al., 2013a; Bi et al., 2020), all sharing the advantage of non-invasive measurement
of blood flow using non-ionizing radiation. Goodman developed the fundamental principles linking temporal statistics of fluctuations in laser speckle
patterns in the 1960s (Goodman, 1975). In the 1970s, the study of time-varying speckles, induced by motion, emerged as a focal point for research.
LSCI is an excellent BF imaging technique that transforms a featureless laser speckle image of a tissue surface into a high-contrast BF image, but it is
only suitable for shallow-depth tissue. DSCA methodology has drawn heavily from concepts in LSCI, focusing primarily on measuring average values
rather than imaging BF. Consequently, advances in LSCI can be readily implemented in DSCA with minimal difficulty. After two original papers were
published by Bi et al. (2013b), Bi et al. (2013a), Bi et al., (2015), DSCA has been extensively studied theoretically (Liu et al., 2014; Liu et al., 2017; Liu
et al., 2017) and experimentally (Yeo et al., 2017; Yeo et al., 2016; Choo et al., 2022). DSCA can be categorized into spatial DSCA and temporal DSCA
depending on how the statistics are applied when calculating speckle contrast. LDF relies on measuring the Doppler shift caused by moving red blood
cells to the illuminating coherent light. Since its introduction to the commercial market in the early 1980s, it has maintained a modest yet consistent
and progressively expanding presence (Rajan et al., 2009; Humeau et al., 2007). SCOS, also known as DSCA, was initially introduced in Valdes (Valdes
et al., 2014) et al.’s study. In the research conducted by Kim et al. (2023), they confirmed that SCOS outperforms DCS, delivering over a 10-fold
improvement in SNR at a comparable cost. Notably, fiber-based SCOS offers a viable avenue for functional neuroimaging in cognitive neurosci-
ence and health science domains. Unlike techniques like LDF and LSCI, designed for superficial tissue measurement, DCS is a deep-tissue blood flow
monitoring modality. Initially employing a continuous wave laser source, known as CW-DCS, various approaches have since been developed,
including heterodyne/interferometric, multi-speckle, time-domain, long-wavelength, and Fourier-domain methods. Readers are encouraged to
consult the review papers from Carp et al. (2023), and James and Munro (2023) to delve into the detailed comparisons among these approaches.

Fig. 18. Optics-based blood flow monitoring modalities, including laser speckle contrast imaging (LSCI), laser doppler flowmetry (LDF), diffuse correlation spec-
troscopy (DCS), diffuse speckle contrast analysis (DSCA)/speckle contrast optical spectroscopy (SCOS).

Appendix 2. Other novel representative DCS instruments

We present additional novel representative DCS instrument diagrams not previously shown. Fig. 19(a) depicts the optimized functional TD-DCS
system (Ozana et al., 2022), which integrates a custom 1064 nm pulse-shaped, quasi transform-limited, amplified laser source with a high-resolution
time-tagging system and SNSPD sensors. Fig. 19(b) illustrates the setup of functional interferometric diffuse wave (Zhou et al., 2021), with the
interferometer detection path depicted in horizontal and vertical views. Fig. 19(c) showcases a Fourier domain implementation of the off-axis het-
erodyne parallel speckle detection instrument (James and Powell, 2020). Fig. 19(d) is the schematic of the fiber-based SCOS setup and the corre-
sponding data analysis pipeline (Kim et al., 2023).
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Fig. 19. (a) Schematic diagram of functional TD-DCS at 1064 nm; the figure adopted from Ref. Ozana et al. (2022). (b) Schematic of functional interferometric DWS;
the figure adopted from Ref. Zhou et al. (2021). (c) Schematic of the off-axis heterodyne parallel speckle detection (the Fourier-domain approach); the figure adopted
from Ref. James and Powell (2020). (d) The schematic of the fiber-based SCOS set-up and the corresponding data analysis pipeline (Kim et al., 2023).
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Appendix 3. Correlation between acquisition time and spatial resolution across various BFi measurement modalities

Fig. 20 illustrates the correlation between acquisition time and spatial resolution across various BFi measurement modalities. Although DCS does
not have a high spatial resolution, it outperforms others regarding acquisition speed.

Fig. 20. Available techniques for measuring CBF in terms of the spatial resolution and acquisition time. (Note: SPECT: single photon emission computed tomography;
PET: positron emission tomography; CT: computed tomography; DSC-MRI: dynamic susceptibility contrasts magnetic resonance imaging; ASL: arterial spin labeling;
TCD: transcranial Doppler; TDF: thermal diffusion flowmetry; LDF: laser Doppler flowmetry; DCS: diffuse correlation spectroscopy; NIRS: near-infrared spectroscopy;
CHS: coherent hemodynamics spectroscopy).

Appendix 4. DCS simulation tools

The Monte Carlo (MC) method for simulating light propagation through tissue is a benchmark technique (Wang et al., 1995), extensively discussed
in Zhu and Liu’s review paper (Zhu and Liu, 2013). MC has been widely used in the NIRS and DCS communities. To aid researchers in performing and
documenting more intricate experimental analyses, various analysis platforms and specialized software tools (Hernandez and Pollonini, 2020; Zhao
et al., 2021) have been created. The exhaustive NIRS/DCS MC software tools are listed in another review paper (Ayaz et al., 2022). Here, we only list
the tools commonly used in DCS, as shown in Table 6. MCML, developed by Jacques (1989), is a steady-state MC tool for analyzing multi-layered
turbid media using an infinitely narrow photon beam as the light source. Operating in a 3D environment, it provides outputs including the radial
position, angular dependence of local reflectance and transmittance, and the internal distribution of energy deposition and fluence rate within the
multilayered medium. The program can be easily modified. Alternative software packages like Monte Carlo eXtreme (MCX) (Fang and Boas, 2009) or
mesh-based Monte Carlo (MMC) (Fang, 2010), developed by Fang and his colleagues, can simulate arbitrary optode placements on diverse, intricate
tissue models with heterogeneity. MCX and MMC can record the path lengths and momentum transfer from the detected photons to obtain the electric
field autocorrelation function (Wang et al., 2024; Boas et al., 2016). ScatterBrains, developed by Wu et al. (2023), is an open database of human head
models with companion optode locations of interest and a toolkit designed for generating specifications to execute MC simulations of light propa-
gation, including the code to create input files compatible with MMC. Additionally, an illustration of post-processing techniques for DCS is provided.

Table 6
Existing software tools related to DCS.

Name Language Website

MCML (Wang and Jacques, 1995) Standalone https://omlc.org/software/mc/
MMC (Fang, 2010) Standalone/Matlab http://mcx.space/#mmc
MCX (Fang and Boas, 2009) Standalone/Matlab http://mcx.space/
scatterBrains (Wu et al., 2023) Matlab https://github.com/wumelissa/scatterBrains
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