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Abstract—This paper presents an enabling technique for social
cooperation suitable for variable-length multi-objective direct
optimal control problems. Using this approach, individualistic
mesh-refinement may be performed across a population of
discretised optimal control solutions within a real-coded evo-
lutionary algorithm. Structural homology between individual
solutions is inferred via the exploitation of non-uniform dyadic
grid structures. Social actions, including genetic crossover, are
enabled by identifying nodal intersections between parent vectors
in normalised time. Several alternative crossover techniques are
discussed, where effectiveness is evaluated based on the likelihood
of producing dominating solutions with respect to the current
archive. Each technique is demonstrated and compared using a
simple numerical test case representing the controlled descent of a
Lunar-landing vehicle. Of the examined methods, it is found that
a hybrid one/two-point crossover, biased towards higher levels of
grid resolution consistently outperforms those based on more
traditional, unbiased crossover.

Index Terms—Multi-Objective Optimal Control, Mesh Refine-
ment, Evolutionary Algorithms, Variable-Length Chromosomes

I. INTRODUCTION

A common issue throughout the field of evolutionary al-
gorithms is that the restriction of flexibility in genotype
length/structure required by standard combinatorial operators
naturally precludes their use in more complex design sce-
narios [1]. Indeed, a traditional fixed-length representation
in computational evolution may altogether sacrifice certain
forms of genotypic variation otherwise common in natural
genomes, thus potentially compromising the dynamics of
the evolutionary process as a whole [2]. Examples of such
are the duplication or removal of certain genes/sequences (a
crucial process for the emergence of new genes in natural
evolution [3], and intimately linked to genetic properties such
as robustness, evolvability, and functional specialisation [4]),
or the structural relocation of genes across the genotype [2].

From the computational perspective, variable-length rep-
resentations of the problem genome [5] allow evolutionary
modelling to mimic these phenomena to a higher degree. In
consequence, this facilitates a more natural exploration of
open-ended design problems where solution complexity and/or
dimensionality are in themselves adaptive unknowns [6].

This may be particularly relevant when considering prob-
lems where solution fidelity/feasibility is inherently linked
to the size of the associated genotype. For example, path
optimisation problems where the number of waypoints is
not known a priori [7], systems design problems where the
number of discrete components is a optimisable parameter [8],
or direct optimal control problems requiring adaptive mesh

refinement to capture discontinuous/non-smooth behaviour in
the system dynamics [9]–[11].

This paper expressly deals with this latter application, within
the context of multi-objective optimisation. The following
explores techniques for genetic crossover suitable for variable-
length multi-objective direct optimal control problems, such
that individualistic mesh-refinement may be performed con-
currently within a real-coded evolutionary process.

For this class of problem, we introduce a method where
structural homology is inferred via the exploitation of a
non-uniform dyadic grid structure imposed across discretised
dynamic profiles. This method is integrated into the Multi-
Agent Collaborative Search algorithm [12], where a popu-
lation of independent solutions may be propagated via both
individualistic and social actions to converge on some optimal
representation of the multi-objective trade-off surface. Con-
sidering social actions, crossover points and/or segments are
identified via nodal intersections between parent solutions in
normalised time. Crossover effectiveness is measured based on
the likelihood of producing dominating solutions with respect
to the current archive. Several distinct crossover methods are
considered, each primarily differentiated by the number of
crossover points and their selection strategy. For comparison,
each is applied to a Multi-Objective Optimal Control Problem
representing the descent of a Lunar-landing vehicle.

II. BACKGROUND

Homology is defined in the field of evolutionary biology
as “possessing a common evolutionary origin” [13]. This is as
opposed to merely similarity of sequence, function or location.
Considering linear genomes of constant vector length, genetic
crossover is performed by exchanging homologous sequences
between two parental genomes. The most prevalent methods
are typically differentiated by the number n of crossover point-
pairs selected to define such sequences (e.g. n = 1, 2, . . . , k)
[2]. Crossover points are often selected assuming unambiguous
homology across successive generations. That is, each element
or sequence remains fixed in position within a particular
genome. Clearly, this assumption cannot hold for variable-
length structures. As in nature, variable-length crossover must
be guided to exchange sensible or equivalent sequences re-
gardless of the respective lengths of the parent genomes.
Practically, this may be achieved (for example) by embedding
metadata within the genome [14], or by inferring homology
via sequence similarity or some other relevant heuristic [15].

An example of the latter is the Species Adaptation Genetic
Algorithm (SAGA) [1]. SAGA utilises a similarity metric, the
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Longest Common Subsequence (LCSS), designed to favour the
exchange of similar segments during recombination. Similarly
to Goldberg’s Messy-GA (mGA) [16], an initial crossover
point is randomly selected from the first parent genome.
However, where mGA randomly samples a corresponding
point in the second parent genome, SAGA sequentially tests
each possible matching point in the second parent. The pairing
with the maximum sum of LCSS (on both the left and right
split segments of each genome) is selected. Where there are
multiple candidates with identical scoring, one is selected at
random. A similar approach is adopted in the Virtual Virus
algorithm [17], where crossover probability is regulated by the
degree of local similarity between parent genomes, given by
the number of matches within a specified fixed size window.
However, the SAGA crossover approach explicitly attempts
to preserve a complete genetic sequence using the parent
genomes as a guide, and thus remains superior in this respect.

These methods fundamentally assume the genome itself is
an inflexible, rigid array of data, allowing unbiased selection
of the initial crossover point. As such, this selected point
may lie within any unique structure or subsequence that has
a particularly strong effect on the fitness of the genome as
a whole, thus is less likely to have a complimentary (or
even appropriate) pair in the second genome. This can result
in a largely disruptive crossover, potentially compromising
the exchange and/or preservation of data. In the work [18],
a softer approach is demonstrated, more in line with bio-
logical crossover. The Synapsing Variable-Length Crossover
(SVLC) algorithm selects the initial crossover point biased
by the physical structure of both parent genomes. Parents
are synapsed together at points of similarity (again deter-
mined using the LCSS approach, with longer sequences given
priority). Crossover is then performed only within synapsed
regions, producing offspring that inherit the entirety of the
common parental subsequences. This potential for smoother,
non-destructive crossover is particularly appealing given the
findings of [1], who used the concepts of epistasis and fitness
landscapes to show that propagation through a search space
of indefinite dimensionality may only be feasible through a
gradual increase in genotype length.

It may thus be suggested that the inference of homology via
the genetic structure of parental genomes is more likely to fa-
cilitate meaningful, non-destructive crossover. In this manner,
homologous segments may be both adaptively selected and
compared throughout an open-ended optimisation process. It
is via this principle that the following methods are proposed
and applied within the context of evolutionary multi-objective
optimal control, where the structure of unique solutions is
inherently linked to the NLP transcription approach.

III. MULTI-OBJECTIVE OPTIMAL CONTROL WITH
VARIABLE-LENGTH STRUCTURES

Multidisciplinary Design Optimisation (MDO) problems
can often be formulated as Multi-Objective Optimal Control
problems (MOCP). This is useful for systems where overall
performance is comparably dependant on the time-dependant

(dynamic) control law by which it must operate as it is on
time-independent (static) system design parameters [19].

Solving MOCPs can become prohibitively expensive as
complexity increases. Most practical examples include some
number of state constraints, control constraints, and equal-
ity/inequality boundary and/or path constraints. As a conse-
quence, solutions may exhibit rapid changes or discontinuities
in state/control profiles and/or their respective higher order
derivatives [11]. Considering direct transcription methods1, so-
lution accuracy can therefore be highly dependant on the grid
resolution of the discretisation nodes at which the dynamic
variables are evaluated. If the constraints are to be satisfied
to within a strict tolerance, a high-resolution (dense) grid is
typically required. However, this may induce an excessive
computational cost given the resulting size of the NLP problem
and the associated augmentation of search space dimension-
ality. Therefore, dense grids may remain impractical for most
applications, especially if the NLP problem is not sparse [9],
[10]. Furthermore, as grid density increases, the chosen solver
may become ill-conditioned and exhibit poorer convergence
characteristics, ultimately failing to converge at all [11].

Reducing the cost of MOCPs can be approached via a pro-
gressive non-uniform grid refinement. This entails the adaptive
addition, subtraction, or redistribution of discretisation nodes
to concentrate the grid around non-smooth regions (or, partic-
ular areas that dominate the overall solution accuracy), while
smooth regions remain relatively sparse. Such approaches
has been widely applied to single-objective problems [9]–
[11], [21]. However, if we are to consider MOCPs, individual
solutions (particularly those orthogonal to the objectives) may
exhibit non-linear/non-smooth behaviour at different locations
within the time domain. This implies that to efficiently rep-
resent the associated trade-off surface, each solution must be
separately discretised upon it’s own unique, non-uniform grid.
Within the context of evolutionary computation, this then by
definition prohibits the assumption of direct one-to-one corre-
spondence between parameter loci across alternative solutions,
precluding the use of traditional crossover techniques.

A. Mesh Refinement

In this study, a continuous MOCP is transcribed into a finite-
dimensional NLP problem using Direct Finite Elements in
Time (DFET) [22], where system state and control functions
are approximated using Bernstein polynomials2. The collection
of discretisation nodes τ that represent the interface between
each finite element Dϵ of a solution vector xi over a nor-
malised time interval may be considered a uniform dyadic
mesh Vj,N conforming to the general form:

Vj,N =
{
τj,k ∈ [0, 1] : τj,k = k/(2jN),

0 ≤ k ≤ 2jN
}
, 0 ≤ j ≤ Jmax

(1)

1The reader is referred to [20] for a comprehensive overview of indirect vs
direct transcription methods for optimal control.

2The reader is referred to [23] for a detailed description of this approach,
and the various practical advantages of Bernstein polynomials that support
their use in this application.
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where τj,k are the time coordinates of the interface nodes,
with corresponding spatial locations k. The positive integers
j and Jmax represent the current and maximum allowable
resolution level and N is the number of elements present in the
initial uniform mesh. A dyadic grid is obtained by successively
subdividing a uniform grid such that Wj,N denotes the set of
grid points belonging to Vj+1,N but not Vj,N ; that is,

Wj,N = {τ̂j,k ∈ [0, 1] : τ̂j,k = (2k + 1)/(2j+1N),

0 ≤ k ≤ 2jN − 1
}
, 0 ≤ j ≤ Jmax − 1

(2)

Hence, τj+1,k ∈ Vj+1,N if:

τj+1,k =

{
τj,k/2, k is even

τ̂j,(k−1)/2, otherwise (3)

N can be any positive integer for the generalised dyadic grid,
which is more convenient for optimisation. An example of a
uniform dyadic grid with N = 1 and Jmax = 7 is shown in
Fig. 1. The subspaces Vj,N are nested;

V0,N ⊂ V1,N ⊂ · · · ⊂ VJmax,N
(4)

with
lim

Jmax→∞
VJmax,N = [0, 1] (5)

The sequence of subspaces Wj,N satisfies the property Wj,N∩
Wl,N = ∅ for all j ̸= l. The sets Vj,N and Wl,N for j ≤ l
are orthogonal to each other, as are the sets Wj,N and Wl,N

for j ̸= l (see Fig. 1). If element subdivision is performed in
a non-uniform manner, (1) can be modified to represent the
resulting non-uniform grid:

G =
{
τji,ki ∈ [0, 1] : 0 ≤ ki ≤ 2ji

}
,

Jmin ≤ ji ≤ Jmax for i = 1, . . . , R

τji,ki < τji+1,ki+1 for i = 1, . . . , R − 1 (6)

where G ⊂ VJmax,N and R represents the number of resolution
levels present. Of note, working with dyadic grids is equivalent
to employing interpolating wavelets for analysis of the under-
lying function [10] and thus retains a major benefit of wavelet-
based analyses: multi-resolution functional representations.

In this work, mesh quality is assessed by estimating the local
error. That is, the difference between the computed solution
and the solution of the differential equation which passes
through the computed point. The reader is referred to [22] for a
detailed description and supporting derivation of this approach.
Using this method, any additional procedure or integration is
not required, as enough information can be derived from the
discontinuities across the boundaries of each element.

Mesh-refinement is implemented at a user-defined fre-
quency. Additional interface nodes are inserted at the mid-
points of all elements not satisfying a user-specified error
tolerance ϵtol, thus preserving the dyadic structure.

B. Multi-Resolution MACS

This work employs the Multi-Agent Collaborative Search
(MACS) algorithm, a dominance-based memetic solver for
MOO problems [12]. MACS initialises a population of virtual

Fig. 1: A uniform dyadic grid where N = 1 and Jmax = 7.

agents at random locations in the search space. Each agent
in turn explores it’s local neighbourhood through a series
of individualistic actions. The population as a whole then
performs social actions to concurrently advance towards the
Pareto-front. The MACS algorithm additionally utilises a bi-
level optimisation routine, as presented in [24], to maintain
local feasibility and balance the global/local search. The
alternating individual and social actions comprise the globally
searching outer-level of the algorithm. Each action in turn
generates a candidate solution and submits it to the inner-level.
The inner-level then triggers a gradient-based optimisation step
to ensure the candidate is feasible with respect to differential,
path, and boundary constraints. The new candidate is then
passed back to the outer level for assessment. Candidates
that demonstrate an improvement are saved to the current
population. After every user-specified number of iterations
(and as a final step before the algorithm terminates) a fur-
ther gradient-based optimisation step is triggered to locally
refine the population using a set of scalarised single-objective
sub-problems. The algorithm continues alternating social and
individualistic actions, with periodic local refinement, until a
maximum number of iterations, or objective function calls, is
met. The reader is referred to [23] for a complete description
of this approach.

This work offers an extension to the MACS algorithm in
which the proposed mesh-refinement procedure is periodically
applied to the current population of P agents xp, (1 ≤ p ≤ P ).
Each agent represents a solution to a MOCP initially discre-
tised upon a uniform grid V(p)

j,N using the DFET transcription
process [22], [23]. By imposing the condition that any discre-
tised element may only be split exactly in half, the population
evolves into a set of unique, variable-length solutions defined
upon multi-resolution (non-uniform) dyadic grids G(p).

C. Variable-Length Crossover

The nodal intersection between two or more unique dyadic
grids can be easily computed. Considering discretised MOCPs,
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this allows common vector components to be quickly identi-
fied, thus facilitating direct comparison and/or recombination
for the purpose of social action. It is important to note
that given the initial uniform discretisation of each agent,
the proposed dyadic refinement implies that any segment
bounded by common intersection nodes of any two agents
must by definition share common ancestry. With reference to
our previous definition (Section II), homology in this context
additionally infers that such segments represent the same
portion of the solution in normalised time, regardless of the
number of intermediate nodes enclosed within.

Consider two individual solution vectors of respective
lengths L and K, x = [x0, x1, . . . , xi, . . . , xL] and x∗ =
[x∗

0, x
∗
1, . . . , x

∗
j , . . . , x

∗
K ] with corresponding multi-resolution

grids G(x) and G(x∗). Given that each agent within the
population is initialised upon an identical uniform grid, i.e.
N (x) = N (x∗), and that z = 0.5, the grid intersection between
x and x∗ will include at least one intermediate node (excluding
the trivial case of common initial and final nodes) such that:

G(x) ∩ G(x∗) ̸= ∅, 2 ≤ R(x,x∗) ≤ 2Jmax (7)

The simplest social action that can thus be considered is
classical one-point crossover (1PCO). In this case, a single
intersection node is selected at random, xi = x∗

j , with all
components following xi and x∗

j exchanged between the
parent solutions to create two new individuals3.

One-point crossover has the feature that solution compo-
nents nearer the vector extremes are much more likely to be
separated than components nearer the middle [1]. Intuitively,
two-point crossover (2PCO) may avoid this inherent bias by
instead randomly selecting two intermediate nodes from the set
of intersections between x and x∗, exchanging the enclosed
subsequence. In this case, grid intersections conform to:

G(x) ∩ G(x∗) ≥ 2, 2 ≤ R(x,x∗) ≤ 2Jmax (8)

A known flaw within both methods is the potential for lack
of offspring diversity should the crossover point(s) be chosen
too close to the initial and/or final nodes [7]. In such cases, this
is equivalent to saying the length of the exchanged segment
is comparable to the length of the parent vectors themselves.
An interesting consideration within the context of this study
is that as the population is progressively evolved, the number
of nodal intersections between similar solutions is likely to
increase. This therefore allows a progressively finer level of
crossover to occur between similar solutions, thus reducing
the overall difference between agents comprising successive
generations. This itself has implications for the convergence
characteristics of the algorithm as a whole.

However, whilst the potential for smoother social coop-
eration is introduced, crossover points are still selected at
random. This means that there is no guarantee that crossover
at a higher level of resolution will actually occur. Indeed,
[1] presents a modified 2PCO that chooses the second point

3This is functionally equivalent to the cut and splice operations introduced
in Goldberg’s Messy-GA [16].

such that the similarity between the exchanged segments is
maximised. In the current work, a bias is introduced weighted
towards the exchange of higher resolution segments. As the
number of intersection points between solutions increases,
information exchange will occur at as high a resolution level
as is available. This aims to minimise the potential disruptive
effects caused by blind exchange of larger subsequences (a not
uncommon feature of unbiased crossover) and thus promotes
a more gradual convergence in objective space. Furthermore,
if the selection of intersection points is allowed to include
either the initial or final nodes, the biased process (referred
to now as dyadic crossover, or DCO), can effectively switch
freely between 1PCO and 2PCO classifications, guided by the
resolution of the parent individuals.

IV. COMPUTATIONAL EXPERIMENTS

This section presents a computational test case intended
to explore the effectiveness of the proposed approach. An
example MOCP is transcribed using DFET and solved with
the modified MACS algorithm (incorporating the bi-level
optimisation, as described in Section III-B), where the original
social operations are replaced with each crossover method
described in Section III-C (1PCO, 2PCO and DCO) in turn.
Two additional methods are included for reference. The first
exchanges only the static parameters between the two selected
parent solution vectors. In general, the static portion (e.g.
design variables) of an optimal control solution vector is
greatly outnumbered by the dynamic parameters (representing
the system states and control law). As such, the lengths of
the exchanged segments are comparable to those of the parent
vectors themselves, thus this method is referred to here as
’near-uniform’ crossover (NUCO). The second demonstrates
an extreme case in which parent agents are simply swapped
prior to the inner-level optimisation step, thus named ’no
crossover’ (NCO). In effect, this action represents a local
optimisation step along a search direction different to that
originally assigned to that particular agent4. The complete
set thus represents a clear hierarchy of complexity, whilst
including the most prominent fundamental methods from the
literature (i.e. 1PCO and 2PCO). This allows the individual
effects of each level to be more explicitly observed.

Given the prevalence of additional heuristics within MACS,
it can be difficult to disseminate the global effects of any
particular operation. For example, deficiencies in one may
be compensated for by another, for a particular problem.
Furthermore, the deliberate isolation of heuristics for testing
purposes may not give an accurate representation of their
behaviour when employed in collaboration. In an attempt to
provide as isolated a performance metric as practical, the
number of dominating solutions produced by the crossover
action (including the inner-level gradient-based optimisation
step of the bi-level approach) with respect to the current
population is recorded as a measure of effectiveness. The

4The reader is referred to [24] for a description of how the search direction
is defined for each agent within the context of the MACS algorithm
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likelihood of each approach to produce meaningful, globally
exploratory offspring may thus be tracked in a relatively
unbiased manner. Additionally, the quality and spread of the
final Pareto-front is assessed against a reference Pareto-optimal
set of solutions via the Inverted Generational Distance (IGD)
and Averaged Hausdorff Distance5 (AHD) metrics [25].

Due to the inherent stochastic nature of the employed
algorithms, 100 independent analyses were performed to track
both the mean and standard deviation of relevant metrics.
Additionally, to objectively indicate statistical significance, a
one-way Analysis of Variance (ANOVA) was performed for
each metric throughout the computation, where the signifi-
cance level required to reject the null-hypothesis is taken as
α = 0.05. To subsequently assess the extent of the variation
between individual pairs of crossover methods, a multiple
comparison test was performed using the ANOVA output.

A. Settings

All computations were performed using the ARCHIE-WeSt
High Performance Computer. Individual runs utilised a single
Intel Xeon Gold 6138 20 core 2.0GHz CPU, where 40 nodes
comprise a standard compute node (on Lenovo SD30 servers)
of 192GB RAM per node.

B. Formulation

The following MOCP represents the controlled descent of
a Lunar-landing vehicle, based on the formulation originally
presented in [26]. The problem is to determine the control law
u that minimises the total impulse acting on the vehicle and
the maximum allowable control force:

min
tf ,u

[J1, J2]
T =

[∫ tf

t0

u dt, umax

]T
(9)

The system state dynamics are given by:

ḣ = v (10)
v̇ = −g + u (11)

where h [m] is altitude, v [m/s] is velocity, g [m/s2] is
the gravity force and u [m/s2] is the upwards control force.
Boundary conditions are given as:

h(0) = h0 = 10, v(0) = v0 = 2

h(tf ) = hf = 0, v(tf ) = vf = 0 (12)

with a path constraint on the control force defined by:

0 ≤ u ≤ umax (13)

The gravity of the Moon is taken as g = 1.5 m/s2, the
final time tf is free and the maximum control force is an
optimisable static parameter umax ∈ [0, 3].

This problem was solved by initialising a population of 10
individual agents, where each is a single continuous time phase
discretised upon a uniform mesh of resolution level J = 0 (i.e.

5As remarked by [25], the IGD metric is sensitive to the number of elements
in the reference Pareto front and in the computed one, hence the inclusion of
the AHD in the presented comparisons.

a single finite element). States and controls are represented
by element specific 2nd order Bernstein polynomials. The
target mesh error imposed at element boundaries was set to
ϵ = 10−5, with a refinement step performed every 10 itera-
tions. Elements not meeting this value were split at a frequency
coinciding with the gradient-based local searches (every 10
iterations). In this manner, local optimality may be guaranteed
prior to each mesh refinement step. Local (inner-level) opti-
misation was completed using the MATLAB® fmincon solver
with a SQP algorithm where function, constraint violation
and step tolerances set to 1e-6, 1e-12 and 1e-9 respectively.
The MACS algorithm was set to terminate upon reaching a
maximum number of outer-loop iterations niter = 200.

Figure 2 shows an example representation of the Pareto
front obtained using the proposed approach. Included are the
corresponding state and control profiles, where circle markers
represent element boundaries. This problem was chosen in
part due to the inherent simplicity in formulation, whilst
demonstrating several features of interest to the current study.
For example, in Fig. 2 it can be seen that all solutions exhibit
one clear discontinuity, corresponding to a bang-bang control
structure and therefore suitable for analysis via an adaptive
mesh approach. Furthermore, the location of this discontinuity
in time changes as solutions move across one end of the
Pareto-front to the other, a feature that should be captured by
an effective variable-length crossover. This problem therefore
represents a suitable platform to demonstrate and assess the
differences between the included crossover approaches.

C. Results

Figure 3 shows the accumulation of dominating solutions
generated by each of the described crossover approaches.
Several interesting features can be observed. Firstly, 1PCO
and 2PCO exhibit rather similar rates of change. The gradual
plateauing of each may be attributed to the associated evolu-
tion of NLP size (shown in Fig. 4) which causes an increase
in available grid point intersections and thus a decrease in
the effectiveness of random point-pair selection. The effect
of introducing the resolution-based bias can be clearly seen
in the comparison between 2PCO and DCO, where the latter
maintains an almost linear accumulation even as NLP size (and
thus also the available grid intersections) begins converging.
This may be due to the pronounced discontinuities seen in
Fig. 2, in addition to the free (rather than fixed) final time
tf . The latter is important as the subsequent exchange of ho-
mologous segments identified in normalised time implies the
exchange of form rather than simple time-equivalent numeric
magnitudes. In this case then, the exchange of information
via intersection-based crossover may have a higher potential
of preserving/propagating important subsequences throughout
the population. As expected, the NCO approach represents a
performance baseline where no social manipulation is actually
present. The generality of NCO may go to explain the linear
accumulation (albeit at a reduced rate) of dominating solutions
proportional to NLP size. Particularly interesting behaviour is
seen from NUCO, initially accumulating non-dominated solu-
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(a) (b)

(c) (d)
Fig. 2: Multi-objective solutions, including (a) Pareto front and corresponding (b-c) state and (d) control profiles.

tions at a higher rate than DCO, before exhibiting a plateauing
similar to that of 1PCO and 2PCO. Given that NUCO is only
exchanging static parameters (e.g. the free final time tf ), the
initially larger accumulation rate may be attributed to the more
exploratory nature of earlier iterations, where the choice in
static parameters plays a more definitive role in the positioning
of agents within objective space. As the distribution of static
parameter values across the population stabilises, the rate of
accumulation reduces towards the baseline level demonstrated
by the NCO approach, interesting in the sense that the local
search direction for NUCO is in the originally associated
search direction.

The NLP size lx and the number of dominating solutions
(with respect to the current population) produced by the
crossover operation nsoc at the final iteration (niter = 200)
of each approach are shown in Table I, as well as the total
recorded execution time tf . Reported are the mean values
across 100 separate analyses (standard deviation included in
brackets). A clear hierarchy can be seen, where the dyadic
approach seems to offer significant improvement relative to the
others. Indeed, DCO exhibits execution times approaching the
values of NCO, which itself could be taken as the theoretical
minimum given that no recombination actually occurs.

Specifically considering the evolution of NLP size, two
distinct groups are present (see Fig. 4). Interestingly, the first
includes the single-point methods6 and the second includes
the multi-point methods. Whilst a lower average NLP size
may suggest a generally more efficient distribution of grid
nodes using DCO, the larger quantity and spread of outliers
nonetheless suggests a remaining potential for excessive NLP
’bloat’ (an acknowledged risk with variable-length representa-
tions in evolutionary algorithms [2]). Of note here is that in this
work, NLP bloat is treated only indirectly through the user-
specification of mesh-error tolerance. That is, an appropriate
tolerance value prevents the algorithm from actively adding
excessive new nodes. However, it is acknowledged that this
does not prevent heavily refined segments from being relocated
by the crossover mechanism to areas within the solution
vector that do not require such levels of detail. The explicit
identification and removal of unnecessary nodes is a complex
problem and thus originally considered outwith the scope of
this study, though remains an important subject of future work.

Perhaps a more surprising aspect of Fig. 4(b) is the range

6For the purpose of comparison, NCO can be considered a single-point
method assuming the selected point is either of the extremal vector loci.
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Fig. 3: Total number of dominating solutions accumulated by
each crossover method.
TABLE I: Values of total execution time tf , NLP size lx
and number of dominating solutions nsoc produced by each
crossover operation at the final iteration niter = 200.

method tf [s] lx nsoc

1P 10496 (3.11e+3) 669 (196) 1.22 (1.03)
2P 8944 (2.67e+3) 584 (218) 2.19 (1.31)
D 7761 (2.55e+3) 582 (238) 5.82 (1.58)
N 7572 (2.90e+3) 673 (177) 1.34 (0.82)

NU 9754 (2.58e+3) 663 (177) 2.49 (1.30)

in final NLP size. Indeed, for each method the observed range
is a significant proportion of the maximum observed value.
As stated earlier, an important feature of the original mesh re-
finement problem is that individual solutions distributed across
the Pareto-front may require unique discretisation grids to fully
represent the corresponding state and/or control profiles (see
Fig. 2). To quantitatively measure the extent of this require-
ment, we define the grid intersect ratio (GIR) as the fraction
of intersection points between any two individuals relative to
the total number of possible intersections. Figure 5(b) shows
an example of the pairwise correlation in GIR recorded by
the DCO method at the final iteration. The concentration of
higher intersect values surrounding the diagonal of the agent
pairing matrix supports the conjecture that similar solutions
in objective space share a higher fraction of common nodes.
Furthermore, the lowest observed value of GIR indicates that
only around 30% of possible nodes are shared between the
‘least similar’ individuals of the final population, which may
support the large range in final NLP size seen in Fig. 4(b).

To indicate how GIR varies between each method, Fig. 5(a)
shows the respective distributions recorded at (niter = 200).
One might expect a higher GIR to suggest a decrease in
structural diversity across the population. That is, if two grids
share a larger number of nodes, they are inherently less unique
(a GIR of 1 indicates one is a complete subset of the other).

However, a complicating factor is the associated NLP size.
If a population exhibits a lower GIR but a larger average
NLP size, this could suggest over-refinement. Conversely, a
higher GIR coupled with a lower NLP size may suggest under-
refinement, in that the population may not yet have achieved
a genetic diversity complementary to the problem complexity.
In part these results suggest the problem is relatively simple
for the optimiser (albeit assuming some initial spreading in
objective space), or at least is inexpensive enough to complete
a sufficient number of iterations. Whilst as expected given
the additional heuristics within MACS, this is nonetheless
supported by the general agreement in IGD and AHD values
between methods, see Table II.
TABLE II: Mean values (standard deviation in brackets) of
IGD and AHD for each crossover method.

Method IGD AHD
1P 0.0927 (3.32e-2) 0.5290 (1.11e-1)
2P 0.0926 (2.90e-2) 0.5367 (1.06e-1)
D 0.0940 (2.81e-2) 0.5298 (9.40e-2)
N 0.0921 (2.50e-2) 0.5029 (1.08e-1)

NU 0.1016 (4.18e-2) 0.5505 (1.16e-1)

This agreement and it’s relation to the complexity of the
example problem can be further understood by considering the
results of the statistical analyses. Table III shows the results of
a multiple comparisons test (using Tukey’s honestly significant
difference criterion), where the first column indicates the
specific pair of methods being directly compared through
ANOVA, and the remainder displaying the p-values for each
performance metric at niter = 200. Firstly, it can be seen
that the numbers of non-dominated solutions nsoc produced
by the DCO method is statistically significant relative to every
other method. Indeed, it was found that only 40 intermediate
iterations were required for this to be true. Secondly, the p-
values reported for NLP size support the grouping seen in
Fig. 4(a), in that the null-hypothesis can only be rejected
between a single-point method and a multi-point method.
A similar distinction is seen for GIR. Finally, and perhaps
most importantly, the p-values of AHD and IGD suggest
that there is no significant difference between the quality of
final population obtained using any of the included crossover
methods. When considered as a whole, these results ultimately
suggest that the DCO method is exhibiting a meaningful
improvement in the exploration of the design space, but not
enough to affect the final convergence of the algorithm in the
presence of the additional heuristics. This again highlights the
need for more complicated test problems to assess whether the
observed effectiveness of DCO (even if strictly internal in this
case) is maintained.

V. CONCLUSIONS

In general, it is found that the proposed approaches success-
fully promote offspring diversity throughout an open-ended
evolutionary process. This is achieved by allowing a progres-
sively finer level of social action to occur between similar
solutions, thus reducing the overall genetic difference between
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(a) (b)
Fig. 4: NLP size progression recorded during 100 separate runs using each crossover method, where (a) shows the fourier-fit
trend of the averages across all iterations, and (b) shows the distributions at the final iteration.

(a) (b)
Fig. 5: Grid Intersect Ratio (GIR) recorded at the final iteration (niter = 200), where (a) shows the distribution of average
values for each crossover method, and (b) shows the pairwise GIR across an example population solved using the DCO method.

TABLE III: ANOVA multiple-comparisons test.

Methods p-value (niter = 200)
nsoc NLP size GIR AHD IGD

1P 2P 3.67e-6 5.50e-19 0.00 0.96 0.76
1P D 0 1.48e-20 6.16e-9 0.51 0.37
1P N 0.90 0.99 0.95 0.95 1.00
1P NU 2.96e-8 0.96 0.78 0.71 0.98
2P D 0 1.00 9.29e-2 0.89 0.97
2P N 2.77e-4 1.53e-21 9.84e-5 1.00 0.80
2P NU 0.92 5.60e-16 1.24e-5 0.97 0.97
D N 0 2.59e-23 4.47e-11 0.92 0.41
D NU 0 2.49e-17 1.73e-12 1.00 0.74
N NU 4.84e-6 0.82 0.99 0.98 0.99

successive generations. A positive effect on the execution time

of the algorithm is observed, as well as a reduction in the
average NLP size across the population for the same solution
quality. It is found that a bias towards exchanging higher
resolution segments consistently produces more dominating
solutions than traditional, unbiased crossover. However, the
effects of these improvements on the final solution are found
to be negligible, likely due to the simplicity of the example
problem. Future work should include more complex scenarios
such that crossover effectiveness becomes more important to
the host algorithm. Excessive NLP growth remains a pressing
issue outwith passive/indirect mitigation. Future study could
include an adaptive approach to validate growth, detect over-
refinement and ultimately remove unnecessary nodes without
incurring additional expense or loss of crucial information.

8

Biased dyadic crossover for variable-length multi-objective optimal control problems



A significant factor in these findings is the influence of
additional heuristics within the host algorithm. For exam-
ple, even if the crossover operation successfully produces
a dominating solution with respect to the current popula-
tion, inclusion into the population is not guaranteed without
first demonstrating (via substitution with an existing archived
individual) a collective improvement as per the archiving
strategy implemented within MACS [27]. This further reliance
on the positioning of candidate solutions within objective
space, as opposed to merely the diversity or quality of
the genetic information contained within, may significantly
dampen the exchange/redistribution of genetic features across
successive generations. This in turn affects the genetic ma-
terial available for redistribution during the next iteration.
Whilst partly analogous to a natural evolutionary process,
this fundamentally makes it difficult to quantitatively isolate
and evaluate the global effects of any particular operation,
including the proposed crossover methods. It is of course
true that this issue may not be fully due to the inherent
complexity of the host algorithm. To maximise the efficiency
of an evolutionary optimisation, high-fidelity is necessary to
preserve homologous information. However, this feature of
crossover is common, and can indeed be achieved even by
simple algorithms [2]. We may conclude then that despite these
misgivings, the results show that the inference of homology via
the genetic structure of parental genomes is at least more likely
in this case to allow and facilitate meaningful, non-destructive
crossover through the redistribution of genetic information.
The presented methodology may offer comparable savings in
computational expense as would normally be associated with
discipline-based multi-fidelity optimisation. Specific investiga-
tions into this aspect remains the subject of future work.
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