
A New Criterion on Stability in Distribution for a Hybrid Stochastic Delay
Differential Equation

Can Lva, Surong Youa,∗, Liangjian Hua, Xuerong Maob

aSchool of Mathematics and Statistics, Donghua University, Shanghai, 201620, China
bDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, U.K.

Abstract

A new sufficient condition for stability in distribution of a hybrid stochastic delay differential equation
(SDDE) has been proposed. In the new criterion leading to stability for an SDDE, its main component only
depends on the coefficients of a corresponding SDE without delay. The Lyapunov method is applied to find
an upper bound, so that the SDDE is stable in distribution if the delay is less than the upper bound. Also,
the criterion shows that delay terms can be impetuses toward the stability in distribution.
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1. Introduction

Hybrid stochastic differential delay equations (SDDEs) have been widely applied to model stochastic
delay systems, when they experience abrupt changes in their structures and parameters caused by phenomena
such as component failures or repairs, changing subsystem interconnections, and abrupt environmental
disturbances. Mao et al. [1] is the first book on theories and applications of hybrid SDDEs. One of the
important issues in automatic control focuses on the stability of a hybrid SDDE. On stability analysis of
SDDEs, most articles have focused on the stability of equilibrium states in the sense of moment, almost
sure and so on (see, e.g.[2–9]). When the system has no equilibrium states, it will be meaningless to study
its asymptotic stability. In this case, we often focus on the stability in distribution. A well-known example
is the Ornstein-Uhlenbeck process in financial model (see, e.g.[3]): dx(t) = a(r − x(t))dt+ bdBt; where a, b
and r are all positive numbers and Bt is a scalar Brownian motion. It can be verified as on [10, p.306],
the probability distribution of its solution x(t) will converge to normal distribution N(r, b2/2a) for any the
initial value x(0).

Now we have seen many references dealing with the stability in distribution for hybrid SDDEs. Basak
et al. [11] considered the stability in distributions for semilinear SDEs with Markov switching. Yuan and
Mao [12] studied the same stability for a nonlinear SDE with Markov switching with the help of Lyapunov
functions. It can be considered as an improvement on the result given by [11]. After that, Yuan, Zhou and
Mao [13] gave a sufficient condition on stability in distribution for an SDDE with Markov switching. Hu and
Wang [14] proposed sufficient conditions for general NSFDEs with Markov switching. Du, Dang and Dieu
[15] provided a new sufficient condition on stability in distribution for an SDDE with Markovian switching,
improving the result given by [13]. Li, Wang and Suo [16] studied the stability in distribution for a class of
NSFDEs by means of weak convergence methods. We also have seen many work by Bao and his coauthors
([17–19]) about the existence and uniqueness of invariant measures for different classes of SFDEs. Wang,
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Wu and Mao [20] studied the stability in distribution for a class of SFDEs, where the equation are highly
nonlinear.

Here are two common points in above cited references. One point is that the term without delay is the
impetus toward stability of the equation. For example, for the stability in distribution of equation

dX(t) = f(X(t), X(t− τ), r(t))dt+ g(X(t), X(t− τ), r(t))dB(t) (1.1)

where r(t) is a Markovian process independent of the Brownian motion B(t). Two auxiliary positive functions
V (x, i) and w(x) are applied to give following sufficient conditions:

c1|x|2 ≤ V (x, i) ≤ c2w(x)

LV (x, y, i) ≤ −λ1w(x) + λ2w(y) + β (1.2)

for suitable positive constants c1, c2, λ1, λ2, β, where LV (x, y, i) is the diffusion operator of V , and λ1 > λ2.
Now consider following scalar linear equation without Markovian switching

dx(t) =(0.1 + 0.1x(t)− 0.3x(t− τ))dt+ (0.2 + 0.1x(t)− 0.2x(t− τ))dB(t). (1.3)

Using V (x) = x2 for discussion, we have

LV = 2x(0.1 + 0.1x− 0.3y) + (0.2 + 0.1x− 0.2y)2

= 0.21x2 + 0.04y2 − 0.14xy + 0.24x− 0.08y + 0.04,

which can’t be reduced to the inequality in (1.2) for any w(x).
Roughly speaking, in this special kind of equations as (1.3), the term with delay is the dominated one.

Can the delay term be the driving force for stability in distribution? We will have a positive answer to this
question. In section 4, by applying our new criterion, it can verified that (1.3) is stable in distribution as
τ < 0.0643. Also, the criterion (1.2) can’t be applied to those equations with coefficients only depending on
delay terms. Our new criterion can solve such problems.

In recent years, we have seen many results on stabilization by delay feedback controls, such as in [21–28].
You et al. [29] has proposed a procedure to stabilize an unstable SDE in distribution with a delay feedback
control. These references show that delay term can be the impetus to stability. In this article, we will
propose a new sufficient condition for the stability in distribution, which reflects the impetuses of delay
terms.

The other common point is that all existing criteria are delay-independent. As well known, the delay size
will also affect the stability of an equation. Here we mention some delay-dependent criteria on moment or
almost sure stability. In Mao and Leonid [5] and Dong and Han [8], delay-dependent criteria had been given
for asymptotic stability of equilibrium states in the sense of moment and also sure for hybrid SDDEs. Guo et.
al [30] had given a bound for delay size to get almost sure exponential stability when the corresponding SDE
without delay was almost surely exponential stable. Fei, Hu, Mao et al. [31] established delay-dependent
criteria for highly nonlinear hybrid SDDEs. Fei, Fei, Mao et al. [32], explored the delay-dependent criteria
on the asymptotic stability for a class of highly nonlinear SDDEs driven by G-Brownian motion by using
the nonlinear expectation theories. To our knowledge, there exist no delay-dependent criteria on stability
in distribution for hybrid SDDEs. We will fix this gap because the new criteria proposed in this article
depends on the delay size.

The main contributions of this article are:
(1) proposing a new delay-dependent criterion on stability in distribution for an SDDE.
(2) showing that delay terms can be impetuses toward stability in distribution.
This article is arranged as follows. In section 2, some fundamental concepts and notations are listed. In

section 3, main theorems are stated. Three examples are given in section 4 to verify results obtained and
conclusions are made in the last section.
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2. Preliminaries and Notations

Throughout this article, following notations will be used. Let Rn be the n-dimensional Euclidean space
and B(Rn) be the family of all Borel measurable sets in Rn. For τ > 0, C([−τ, 0];Rn) (Cτ in short) denotes
the family of continuous functions ξ : [−τ, 0] → Rn with norm ∥ξ∥τ = sup−τ≤u≤0 |ξ(u)|. Denote |x| the
Euclidean norm of a vector x ∈ Rn. For a matrix A, ∥A∥ = max{|Ax| : |x| = 1} means its operator
norm. For a symmetric matrix A(A = AT ), λmin(A) and λmax(A) are its smallest and largest eigenvalues,
respectively. A > 0 (A < 0) means that A is a positively definite (negatively definite) matrix. If both a and
b are real numbers, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual condition,
and B(t) = (B1(t), B2(t), · · · , Bm(t))T be an m-dimensional Brownian motion defined on this space. Also,
there is a right continuous irreducible Markov chain r(t), t > 0, taking values in a finite state space S =
{1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{
γij∆+ o(∆), i ̸= j,

1 + γii∆+ o(∆), i = j,

where ∆ > 0, and γij > 0(i ̸= j) is the transition rate from state i to j with γii = −
∑
j ̸=i γij . Assume that

r(t) and B(t) are independent.
Consider the n-dimensional SDDE with Markovian switching (1.1) on t ≥ 0 with the initial condition

{X(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];Rn), r(0) = i0, (2.1)

where f : Rn × Rn × S → Rn, and g : Rn × Rn × S → Rn×m satisfy following global Lipschitz condition.

Assumption 2.1. There exists a positive constant H1, such that for any x, y, x̄, ȳ ∈ Rn and i ∈ S,

|f(x, y, i)− f(x̄, ȳ, i)|2 ∨ |g(x, y, i)− g(x̄, ȳ, i)|2 ≤ H1(|x− x̄|2 + |y − ȳ|2). (2.2)

It is easy to see from Assumption 2.1 that for any x, y ∈ Rn

|f(x, y, i)|2 ∨ |g(x, y, i)|2 ≤ 2H1(|x|2 + |y|2) + a0 (2.3)

with a0 = 2max
i∈S

{f(0, 0, i) ∨ g(0, 0, i)}.
It is known that under Assumption 2.1, the SDDE (1.1) with the initial data (2.1) has a unique global

solution on t ≥ −τ . Moreover, define Xt = {X(t+ u) : −τ ≤ u ≤ 0} for t ≥ 0, which is a Cτ -valued process.
To emphasize the role of the initial data (2.1), we will write the solution as Xξ,i0(t), and the Markov chain
starting from i0 at time 0 as ri0(t).

Denote Y ξ,i0(t) = (Xξ,i0
t , r(t)) be an Cτ ×S valued process. Then Y ξ,i0(t) is a time homogeneous Markov

process and denote p(t, ξ, i0, dζ × {j}) its transition probability. Equation (1.1) is said to be stable in
distribution, if there exists a probability measure π(·) on Cτ × S such that p(t, ξ, i0, dζ × {j}) converges to
π(dζ × {j}) weakly as t→ ∞ for any initial data (ξ, i0) ∈ Cτ × S. Let P(Cτ ) be the space of all probability
measures on Cτ . Because we assume that r(t) is irreducible, we only need to show that the probability
measure L(Xξ,i0

t ), generated by Xξ,i0
t ∈ Cτ , converges to a probability measure µτ ∈ P(Cτ ).

For two probability measures P1, P2 ∈ P(Cτ ), define the distance between P1 and P2 as

d(P1, P2) = sup
ψ∈L

∣∣∣∣∫ ψ(ξ)P1(dξ)−
∫
ψ(ξ)P2(dξ)

∣∣∣∣
where

L = {ψ : Cτ → R
∣∣|ψ(ξ)− ψ(η)| ≤ ∥ξ − η∥ and |ψ(·)| ≤ 1 for any (ξ, η) ∈ Cτ × Cτ}.
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Definition 2.2. The equation (1.1) is said to be stable in distribution, if there exists a probability measure
µτ ∈ P(Cτ ) such that

lim
t→∞

d(L(Xξ,i0
t ), µτ ) = 0

holds for any initial data (ξ, i0) ∈ Cτ × S.

Assumption 2.3. There exist two positive numbers λ1, δ and N symmetric positive definite matrices
Wi, 1 ≤ i ≤ N such that

Ψ(z1, z2, i) :=2(z1 − z2)
TWi

(
f(z1, z1, i)− f(z2, z2, i)

)
+ (1 + δ)trace

((
g(z1, z1, i)− g(z2, z2, i)

)T
Wi

(
g(z1, z1, i)− g(z2, z2, i)

))
+

N∑
j=1

γij(z1 − z2)
TWj(z1 − z2)

≤− λ1|z1 − z2|2 (2.4)

holds for all (z1, z2, i) ∈ Rn × Rn × S.

The advantage of condition (2.4) lies that we can make use of delay terms to produce better effect.
Taking equation (1.3) as an example, we will have f(x, x) = 0.1− 0.2x and g(x, x) = 0.2− 0.1x. Now if we
use V (x) = x2 for discussion, we see

2xf(x, x) + g2(x, x) = 0.04 + 0.16x− 0.39x2 ≤ −0.385x2 + 1.32 (2.5)

which is just the condition what we want for further discussion. Also, as shown in [12], under Assumptions
2.1 and 2.3, when δ = 0, following equation without delay

dX(t) = f(X(t), X(t), r(t))dt+ g(X(t), X(t), r(t))dB(t) (2.6)

will be stable in distribution. Our assumption is a little more stronger than that in [13], because we need
δ > 0 to balance the difference X(t)−X(t− τ) in forthcoming discussion. Now there arises a question: can
we give a bound τ∗ for τ such that the delay equation (1.1) is also stable in distribution when τ < τ∗?

It is straightforward to show from Assumptions 2.1 and 2.3, there exist positive numbers λ0 and λ2 such
that for all (z, i) ∈ Rn × S

Φ(z, i) := 2zTWif(z, z, i) + (1 + δ)trace
(
g(z, z, i)TWig(z, z, i)

)
+

N∑
j=1

γijz
TWjz

≤− λ1|z|2 + λ2|z|+ λ0. (2.7)

3. Main Results

Arguments to prove the stability in distribution for an SDDE (1.1) are rather standard, as proposed and
proved in [13], and then widely used such as in [14–16, 28, 29]. We conclude as a lemma.

Lemma 3.1 (Theorem 3.2, [13]). Denote BR = {ξ ∈ Cτ |∥ξ∥ ≤ R}. If for any given R > 0, following two
assertions are verified:

(A) for any (ξ, i0) ∈ BR × S, the solution Xξ,i0(t) of (1.1) satisfies

sup
ξ∈BR

(
sup

0≤t<∞
E∥Xξ,i0

t ∥2
)
<∞,
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(B) for any (ξ, η, i0) ∈ BR ×BR × S, two solutions Xξ,i0(t), Xη,i0(t) from different initial data (ξ, i0) and
(η, i0) of (1.1) satisfy

lim
t→∞

E∥Xξ,i0
t −Xη,i0

t ∥2 = 0

uniformly in ξ and η,

then equation (1.1) is stable in distribution.

As explained in [13], assertion (A) guarantees that for any (ξ, i0) ∈ Cτ × S, the family {p(t, ξ, i0, dζ ×
{j})|t ≥ 0} is tight, while assertion (B) guarantees that solutions from different initial data will have the
same asymptotic tendency. Now we give sufficient conditions as in next two lemmas such that equation (1.1)
satisfies two assertions.

Lemma 3.2. Under Assumption 2.1 and Assumption 2.3, there exists τ∗1 > 0 as defined in (3.15), such that
as τ < τ∗1 , we will have

E∥Xξ,i0
t ∥2 ≤ γ1(1 + ∥ξ∥2) (3.1)

for any t > 0, where γ1 is independent of (ξ, i0).

Proof. We will divide the proof into three steps.
Step 1: Introduce the auxiliary Lyapunov functional.
Denote X̂t = {X(t + s) : −2τ ≤ s ≤ 0}. We will apply following Lyapunov functional for subsequent

analysis

V (X̂t, r(t)) :=X
T (t)W (r(t))X(t)

+ θ

∫ 0

−τ

∫ t

t+s

(
τ |f(X(v), X(v − τ), r(v))|2 + |g(X(v), X(v − τ), r(v))|2

)
dvds. (3.2)

For this functional, it is easily to obtain that

λ̂m|X(t)|2 ≤V (X̂t, r(t))

≤λ̂M |X(t)|2 + θτ

∫ t

t−τ

(
τ |f(X(v), X(v − τ), r(v))|2 + |g(X(v), X(v − τ), r(v))|2

)
dv, (3.3)

and

dV (X̂t, r(t)) = LV (X(t), X(t− τ), r(t))dt+ 2XT (t)W (r(t))g(X(t), X(t− τ), r(t))dB(t), (3.4)

where λ̂m = min
i∈S

λmin(Wi), λ̂M = max
i∈S

λmax(Wi), and for any i ∈ S,

LV (x, y, i) =2xTWif(x, y, i) + trace
(
g(x, y, i)

T
Wig(x, y, i)

)
+

N∑
j=1

γijx
TWjx+ θτ

(
τ |f(x, y, i)|2 + |g(x, y, i)|2

)
− θ

∫ t

t−τ

(
τ |f(x, y, i)|2 + |g(x, y, i)|2

)
dv. (3.5)

Step 2: Evaluate LV in (3.5).
It can be directly derived that

trace
(
g(x, y, i)

T
Wig(x, y, i)

)
≤(1 + δ)trace

(
g(x, x, i)TWig(x, x, i)

)
+ (1 +

1

δ
)trace

((
g(x, x, i)− g(x, y, i)

)T
Wi

(
g(x, x, i)− g(x, y, i)

))
. (3.6)
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By Assumption 2.3, We can see that

LV (x, y, i) ≤ Φ(x, i) + J1(x, y, i) + J2(x, y, i) + J3(x, y, i) + J4(x, y, i), (3.7)

where

J1(x, y, i) = 2xTWi(f(x, y, i)− f(x, x, i)) ≤ λ̂M

(
θ1|x|2 +

H1

θ1
|x− y|2

)
, (3.8)

J2(x, y, i) = (1 +
1

δ
)trace

((
g(x, x, i)− g(x, y, i)

)T
Wi

(
g(x, x, i)− g(x, y, i)

))
≤ λ̂MH1(1 +

1

δ
)|x− y|2, (3.9)

J3(x, y, i) = θτ
(
τ |f(x, y, i)|2 + |g(x, y, i)|2

)
≤ θτ(τ + 1)

(
2H1(|x|2 + |y|2) + a0

)
, (3.10)

J4(x, y, i) = −θ
∫ t

t−τ

(
τ |f(x, y, i)|2 + |g(x, y, i)|2

)
dv. (3.11)

Setting θ1 = λ1

2λ̂M
in J1, and rearranging terms, we finally have

LV (x, y, i) ≤− λ1
2
|x|2 + λ2|x|+ λ0 + λ̂MH1

(
2λ̂M
λ1

+ (1 +
1

δ
)

)
|x− y|2

+ θτ(τ + 1)
(
2H1(|x|2 + |y|2) + a0

)
− θ

∫ t

t−τ

(
τ |f(x, y, i)|2 + |g(x, y, i)|2

)
dv. (3.12)

Step 3: Find a bound τ∗1 such that the assertion (3.1) holds as τ < τ∗1 .
Applying the Hölder inequality and martingale inequality to

X(t)−X(t− τ) =

∫ t

t−τ
f(X(v), X(v − τ), r(v))dv +

∫ t

t−τ
g(X(v), X(v − τ), r(v))dBv,

it is easily to get

E|X(t)−X(t− τ)|2 ≤ 2E
∫ t

t−τ

(
τ |f(X(v), X(v − τ), r(v))|2 + |g(X(v), X(v − τ), r(v))|2

)
dv. (3.13)

For any ϵ > 0, it follows that

λ̂me
ϵtE|X(t)|2 ≤E(eϵtV (X̂t, r(t)))

≤EV (ξ, i0) + E
∫ t

0

eϵsϵV (X̂s, r(s))ds+ E
∫ t

0

eϵsLV (X(s), X(s− τ), r(s))ds

≤EV (ξ, i0) + 2H1θτ(τ + 1)E
∫ t

0

eϵs|X(s− τ)|2ds

+

(
−λ1

2
+ ϵλ̂M + 2H1θτ(τ + 1)

)
E
∫ t

0

eϵs|X(s)|2ds

+ λ2E
∫ t

0

eϵs|X(s)|ds+ (λ0 + a0θτ(τ + 1))

∫ t

0

eϵsds

+

(
ϵθτ − θ + 2λ̂MH1(

2λ̂M
λ1

+ 1 +
1

δ
)

)

× E
∫ t

0

eϵs
∫ s

s−τ

(
τ |f(X(v), X(v − τ), r(v))|2 + |g(X(v), X(v − τ), r(v))|2

)
dvds. (3.14)
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Fix a θ > 2λ̂MH1

(
2λ̂M

λ1
+ 1 + 1

δ

)
, there exists a unique positive solution τ∗1 such that

8H1θτ
∗
1 (τ

∗
1 + 1)− λ1 = 0. (3.15)

For any fixed τ ∈ (0, τ∗1 ), 8H1θτ(τ + 1) < λ1 holds, and there then exists a positive number ϵ0, such that

−λ1
2

+ ϵ0λ̂M + 2H1θτ(τ + 1)(1 + eϵ0τ ) < 0

and
ϵ0θτ − θ + 2λ̂MH1(

2λ̂M
λ1

+ 1 +
1

δ
) < 0

hold simultaneously. Setting

β0 = −
(
−λ1

2
+ ϵ0λ̂M + 2H1θτ(τ + 1)(1 + eϵ0τ )

)
> 0,

(3.14) can be further evaluated as

λ̂me
ϵ0tE|X(t)|2 ≤EV (ξ, i0) + 2H1θτ(τ + 1)eϵ0τE

∫ 0

−τ
eϵ0s|X(s)|2ds

+ E
∫ t

0

eϵ0s(−β0|X(s)|2 + λ2|X(s)|)ds+ 1

ϵ0
(λ0 + a0θτ(τ + 1)) (eϵ0t − 1). (3.16)

Obviously, for any s, −β0|X(s)|2 + λ2|X(s)| ≤ λ2
2

4β0
, and consequently, we obtain

λ̂me
ϵ0tE|X(t)|2 ≤ K1 +K2(e

ϵ0t − 1)

with K1 = EV (ξ, i0) + 2H1θτ(τ + 1)eϵ0τE
∫ 0

−τ e
ϵ0s|X(s)|2ds and K2 = 1

ϵ0

(
λ0 + a0θτ(τ + 1) +

λ2
2

4β0

)
, and

then
E|X(t)|2 ≤ 1

λ̂m

(
K2 + (K1 −K2)e

−ϵ0t
)
≤ K0(1 + ∥ξ∥2),

where K0 is a constant independent on (ξ, i0).
By the well-known BDG inequality, we can derive following bound for E∥Xt∥2 as t ≥ τ , which is

E∥Xt∥2 ≤3E|X(t− τ)|2 + 3E
(

sup
t−τ≤s≤t

∣∣∫ s

s−τ
f(X(v), X(v − τ), r(v))dv

∣∣)2

+ 3E
(

sup
t−τ≤s≤t

∣∣∫ s

s−τ
g(X(v), X(v − τ), r(v))dBv

∣∣)2

≤3K0(1 + ∥ξ∥2) + 12(τ + 1)E
∫ t

t−τ
2H1(|X(v)|2 + |X(v − τ)|2)dv

≤γ1(1 + ∥ξ∥2)

with γ1 independent on the initial data. Now (3.1) is verified.

By Lemma 3.2, it is obvious that assertion (A) in Lemma 3.1 is satisfied. Now we check assertion (B).
For that, denote Hξ,η,i0(t) = Xξ,i0(t) − Xη,i0(t) and Ĥξ,η,i0

t = {Hξ,η,i0(t + s)| − 2τ ≤ s ≤ 0}. We have
following differential rule for Hξ,η,i0(t),

dHξ,η,i0(t) =
(
f(Xξ,i0(t), Xξ,i0(t− τ), r(t))− f(Xη,i0(t), Xη,i0(t− τ), r(t))

)
dt

+
(
g(Xξ,i0(t), Xξ,i0(t− τ), r(t))− g(Xη,i0(t), Xη,i0(t− τ), r(t))

)
dB(t). (3.17)
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with the initial condition
Hξ,η,i0(0) = ξ − η, r(0) = i0.

We will use another Lyapunov functional V̂ for analysis:

V̂ (Ĥξ,η,i0
t , r(t)) :=(Xξ,i0(t)−Xη,i0(t))TW (r(t))(Xξ,i0(t)−Xη,i0(t))

+ θ̄

∫ 0

−τ

∫ t

t+s

(
τ
∣∣∣f(Xξ,i0(v), Xξ,i0(v − τ), r(v))− f(Xη,i0(v), Xξ,i0(v − η), r(v))

∣∣∣2
+
∣∣∣g(Xξ,i0(v), Xξ,i0(v − τ), r(v))− g(Xη,i0(v), Xη,i0(v − τ), r(v))

∣∣∣2)dvds, (3.18)

where θ̄ is a free parameter.
When we evaluate square moment of the difference |Hξ,η,i0(t)−Hξ,η,i0(t− τ)|, it is inevitable to relate

f(Xξ,i0(t), Xξ,i0(t−τ), r(t))−f(Xη,i0(t), Xη,i0(t−τ), r(t)) and g(Xξ,i0(t), Xξ,i0(t−τ), r(t))−g(Xη,i0(t), Xη,i0(t−
τ), r(t)) with Hξ,η,i0(t)−Hξ,η,i0(t− τ). Equivalently, we should relate f(x, y, i)− f(x̄, ȳ, i) and g(x, y, i)−
g(x̄, ȳ, i) with (x − x̄) − (y − ȳ). Because our main criterion (2.4) only involves f(x, x, i) and g(x, x, i), we
make following technical assumption to meet the requirement.

Assumption 3.3. There exist three positive constants σ1, σ2 and σ3, such that for any x, y, x̄, ȳ ∈ Rn and
i ∈ S,

|f(x, y, i)− f(x, x, i) + f(x̄, x̄, i)− f(x̄, ȳ, i)|2∨
|g(x, y, i)− g(x, x, i) + g(x̄, x̄, i)− g(x̄, ȳ, i)|2

≤σ1|(x− x̄)− (y − ȳ)|2 + σ2|x− x̄|2 + σ3|y − ȳ|2. (3.19)

Remark: Actually, assumption 3.3 can be derived from assumption 2.1. For example, we can see that
under assumption 2.1,

|f(x, y, i)− f(x, x, i) + f(x̄, x̄, i)− f(x̄, ȳ, i)|2 ≤2H1(|x− y|2 + |x̄− ȳ|2)
≤4H1(|x− y − x̄+ ȳ|2) + 6H1|x̄− ȳ|2. (3.20)

The reason why we make such assumption is that we need σ1, σ2 and σ3 to determine the control delay
size. Smaller σ1, σ2 and σ3 will produce better results. There are some types of functions f and g that can
produce |x− y − x̄+ ȳ|2 directly without deriving from the global Lipschitz condition. In such cases, good
estimations for σ1, σ2, σ3 will be achieved. Take f(x, y, i) = f1(x, i) + Aiy + f2(y, i) as an example, where
f1 and f2 satisfy the global Lipschitz condition. For such f , it can be directly derived that

|f(x, y, i)− f(x̄, ȳ, i)|2 ≤ 3|f1(x, i)− f1(x̄, i)|2 + 3∥Ai∥2|y − ȳ|2 + 3|f2(y, i)− f2(ȳ, i)|2

≤ H̃
(
|x− x̄|2 + |y − ȳ|2

)
(3.21)

with H̃ = 3max

(
H̃1,max

i∈S
∥Ai∥2 ∨ H̃2

)
, where H̃1 and H̃2 are Lipschitz constants of f1 and f2, respectively.

And now we can get σ1, σ2, σ3 as in (3.20). But if we estimate directly, we can calculate as

|(f(x, y, i)− f(x, x, i))− (f(x̄, ȳ, i)− f(x̄, x̄, i))|2

=|Ai(y − x− ȳ + x̄) + f2(y, i)− f2(ȳ, i) + f2(x̄, i)− f2(x, i)|2

≤3max
i∈S

∥Ai∥2|y − x− ȳ + x̄|2 + 3H̃2

(
|x− x̄|2 + |y − ȳ|2

)
.

Then we have σ1 = 3max
i∈S

∥Ai∥2 and σ2 + σ3 = 6H̃2, substantially smaller than those derived from the
Lipschitz condition.
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Lemma 3.4. Under Assumption 2.1, Assumption 2.3 and Assumption 3.3, if

σ2 + σ3 <
λ1

2(1 + 2λ̂M

λ1
+ δ−1)λ̂M

there exists a τ∗2 > 0, such that as 0 < τ < τ∗2 ,

lim
t→∞

E∥Xξ,i0
t −Xη,i0

t ∥2 = 0 (3.22)

holds uniformly for any initial data (ξ, η, i0) ∈ BR ×BR × S.
Proof. For the Lyapunov functional (3.18), we have

LV̂ (x, y, x̄, ȳ, i) =2(x− x̄)TWi

(
f(x, y, i)− f(x̄, ȳ, i)

)
+ trace

((
g(x, y, i)− g(x̄, ȳ, i)

)T
Wi

(
g(x, y, i)− g(x̄, ȳ, i)

))
+

N∑
j=1

γij(x− x̄)TWj(x− x̄)

+ θ̄τ
(
τ |f(x, y, i)− f(x̄, ȳ, i)|2 + |g(x, y, i)− g(x̄, ȳ, i)|2

)
− θ̄

∫ t

t−τ

(
τ |f(x, y, i)− f(x̄, ȳ, i)|2 + |g(x, y, i)− g(x̄, ȳ, i)|2

)
dv

≤Ψ(x, x̄, i) + J ′
1 + J ′

2 + J ′
3 + J ′

4, (3.23)
where

J ′
1 =2(x− x̄)Wi

(
f(x, y, i)− f(x, x, i) + f(x̄, x̄, i)− f(x̄, ȳ, i)

)
, (3.24)

J ′
2 =(1 +

1

δ
)trace

((
g(x, y, i)− g(x, x, i) + g(x̄, x̄, i)− g(x̄, ȳ, i)

)T
Wi(

g(x, y, i)− g(x, x, i) + g(x̄, x̄, i)− g(x̄, ȳ, i)
))
, (3.25)

J ′
3 =θ̄τ

(
τ |f(x, y, i)− f(x̄, ȳ, i)|2 + |g(x, y, i)− g(x̄, ȳ, i)|2

)
, (3.26)

J ′
4 =− θ̄

∫ t

t−τ

(
τ |f(x, y, i)− f(x̄, ȳ, i)|2 + |g(x, y, i)− g(x̄, ȳ, i)|2

)
dv. (3.27)

Applying similar arguments as those used for evaluating J1, J2 and J3 in Lemma 3.2,we can get
LV̂ (x, y, x̄, ȳ, i)

≤

(
−1

2
λ1 + θ̄τ(τ + 1)H1 +

(2λ̂M
λ1

+ (1 +
1

δ
)
)
λ̂Mσ2

)
|x− x̄|2

+

(
θ̄τ(τ + 1)H1 +

(2λ̂M
λ1

+ (1 +
1

δ
)
)
λ̂Mσ3

)
|y − ȳ|2

+

(
2λ̂M
λ1

+ (1 +
1

δ
)

)
λ̂Mσ1|(x− x̄)− (y − ȳ)|2

− θ̄

∫ t

t−τ

(
τ |f(x, y, i)− f(x̄, ȳ, i)|2 + |g(x, y, i)− g(x̄, ȳ, i)|2

)
dv. (3.28)

From

Hξ,η,i0(t)−Hξ,η,i0(t− τ) =

∫ t

t−τ

(
f(Xξ,i0(v), Xξ,i0(v − τ), r(v))− f(Xη,i0(v), Xη,i0(v − τ), r(v))

)
dv

+

∫ t

t−τ

(
g(Xξ,i0(v), Xξ,i0(v − τ), r(v))− g(Xη,i0(v), Xη,i0(v − τ), r(v))

)
dBv,
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we have E|Hξ,η,i0(t)−Hξ,η,i0(t− τ)|2 ≤ 2E(F (t)), where

F (t) =

∫ t

t−τ

(
τ
∣∣∣f(Xξ,i0(v), Xξ,i0(v − τ), r(v))− f(Xη,i0(v), Xη,i0(v − τ), r(v))

∣∣∣2
+
∣∣∣g(Xξ,i0(v), Xξ,i0(v − τ), r(v))− g(Xη,i0(v), Xη,i0(v − τ), r(v))

∣∣∣2)dv.
By the definition of V̂ and Itô’s lemma, it can be derived directly that for any ϵ > 0,

λ̂me
ϵtE|H(t)|2 ≤E(eϵtV̂ (Ĥt, r(t)))

≤EV̂ (ξ − η, i0)

+ E
∫ t

0

eϵs
(
ϵV (Ĥs, r(s)) + LV (Xξ,i0(s), Xξ,i0(s− τ), Xη,i0(s), Xη,i0(s− τ), r(s))

)
ds

≤EV̂ (ξ − η, i0) +

(
θ̄τ(τ + 1)H1 + (

2λ̂M
λ1

+ 1 +
1

δ
)λ̂Mσ3

)
E
∫ t

0

eϵs|H(s− τ)|2ds

+

(
−1

2
λ1 + θ̄τ(τ + 1)H1 + (

2λ̂M
λ1

+ 1 +
1

δ
)λ̂Mσ2 + ϵλ̂M

)
E
∫ t

0

eϵs|H(s)|2ds

+

(
ϵθ̄τ − θ̄ + 2(

2λ̂M
λ1

+ 1 +
1

δ
)λ̂Mσ1

)
E
∫ t

0

eϵsF (s)ds

≤EV̂ (ξ − η, i0) +

(
θ̄τ(τ + 1)H1 + (

2λ̂M
λ1

+ 1 +
1

δ
)λ̂Mσ3

)
eϵτE

∫ 0

−τ
eϵs|H(s)|2ds

+ γ1(ϵ, τ)E
∫ t

0

eϵs|H(s)|2ds+ γ2(ϵ, τ)E
∫ t

0

eϵsF (s)|ds (3.29)

where

γ1(ϵ, τ) =− 1

2
λ1 + θ̄τ(τ + 1)H1(1 + eϵ̄τ ) +

(
2λ̂M
λ1

+ 1 +
1

δ

)
λ̂M (σ2 + σ3e

ϵ̄τ ) + ϵ̄λ̂M ,

γ2(ϵ, τ) =ϵ̄θ̄τ − θ̄ + 2λ̂Mσ1

(
2λ̂M
λ1

+ 1 +
1

δ

)
.

Fix a θ̄ > 2( 2λ̂M

λ1
+ 1 + 1

δ )λ̂Mσ1, we can have a unique positive solution τ∗2 for the equation

−λ1 + 4θ̄τ(τ + 1)H1 + 2

(
2λ̂M
λ1

+ 1 +
1

δ

)
λ̂M (σ2 + σ3) = 0. (3.30)

Obviously, for any τ < τ∗2 , there exists a positive number ϵ̄0, such that

γ1(ϵ̄0, τ) < 0, γ2(ϵ̄0, τ) < 0

hold simultaneously.
(3.29) can then be further reduced to

λ̂me
ϵ̄0tE|H(t)|2 ≤ EV̂ (ξ − η, i0) +

(
θ̄τ(τ + 1)H1 + λ̂Mσ3

(
2λ̂M
λ1

+ 1 +
1

δ

))
eϵ̄0τE

∫ 0

−τ
eϵ̄0s|H(s)|2ds.

(3.31)
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We then obtain
E|H(t)|2 ≤ K̄0e

−ϵ̄0tλ̂−1
m ∥ξ − η∥2

for some positive K̄0 independent on ξ and η.
Now, applying the well-known BDG inequality and (2.2), we can derive following bound for E∥Ht∥2 as

t ≥ τ∗2 , which is

E∥Ht∥2 ≤3E|H(t− τ)|2

+ 3E
(

sup
t−τ≤s≤t

∣∣∣∫ s

s−τ

(
f(Xξ,i0(v), Xξ,i0(v − τ), r(v))− f(Xη,i0(v), Xη,i0(v − τ), r(v))

)
dv
∣∣∣)2

+ 3E
(

sup
t−τ≤s≤t

∣∣∣∫ s

s−τ

(
g(Xξ,i0(v), Xξ,i0(v − τ), r(v))− g(Xη,i0(v), Xη,i0(v − τ), r(v))

)
dBv

∣∣∣)2

≤3K̄0(∥ξ − η∥2) + 12(τ + 1)E
(∫ t

t−τ
2H1(|H(v)|2 + |H(v − τ)|2)dv

)
≤γ2e−ϵ̄0t(∥ξ − η∥2) (3.32)

with γ2 independent on the initial data. And consequently, (3.22) is verified.

On the base of Lemmas 3.2 and 3.4, we can state our final theorem on the stability in distribution of
equation (1.1) by using Lemma 3.1.

Theorem 3.5. If τ < τ∗ = τ∗1 ∧ τ∗2 and σ2 + σ3 <
λ1

2λ̂M

(
1+

2λ̂M
λ1

+δ−1
) , there exists a unique probability

measure µτ ∈ P(Cτ ) such that
lim
t→∞

d(L(Xξ,i
t ), µτ ) = 0.

for any (ξ, i0) ∈ Cτ × S.

4. Illustrative Examples

In this section, three illustrative examples will be applied to validate the new criterion for some SDDEs.
The first scale SDDE without Markovian switching is used to verify the assertion made in Introduction
section. In the second example, a general hybrid linear SDDE is analyzed. It will be shown that for a linear
SDDE, we can have a sufficient condition with a form like LMIs, which can be checked directly. Also, in
such special equations, the upper bounds can be expressed explicitly. In the third example, we want to show
that the criterion can also be applied to an SDDE with nonlinear coefficients.

Example 1. Consider the scalar equation (1.3) in the introduction section

dx(t) = [0.1 + 0.1x(t)− 0.3x(t− τ)]dt+ [0.2 + 0.1x(t)− 0.2x(t− τ)]dB(t). (4.1)

Obviously, the equation satisfies the Assumption 2.1 with H1 = 0.18. Assumption 3.3 is also satisfied
with σ1 = 0.09 and σ2 = σ3 = 0. We still use V (x(t)) = x2(t) for discussion. Setting δ = 0.5, it can
be directly verified that Ψ(z1, z2) in Assumption 2.3 will be Ψ(z1, z2) = 2(z1 − z2)

(
−0.2(z1 − z2)

)
+ (1 +

δ)
(
−0.1(z1 − z2)

)2
= −λ1|z1 − z2|2, with λ1 = 0.385.

Following the procedures as in Lemmas 3.2 and 3.4, we can choose θ = 2.3823 and θ̄ = 1.0712 to
calculate τ∗1 = 0.3689 and τ∗2 = 0.8220, respectively. By Theorem 3.5, (1.3) is stable in distribution as long
as τ < τ∗1 ∧ τ∗2 = 0.3689.

Setting X(0) = 2 and τ = 0.35 for simulation, one thousand sample paths are simulated on 0 ≤ t ≤ 100
with step size h = 0.01. As shown in Fig. 1, the shapes of empirical density functions at t = 1, t = 5 and
t = 10 are rather different. But those shapes at t = 20, t = 50 and t = 100 are similar, which indicates the
existence of the limit probability measure.
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Fig. 1. Empirical density functions at different time.

To measure the difference of density functions at consecutive time points tk = kh and tk+1 = (k + 1)h
fork = 0, 1, · · · , we employ Kolmogorov-Smirnov test (K-S test) to test following hypotheses:

H0 : Two samples at tk and tk+1 are from the same distribution
H1 : Two samples at tk and tk+1 are from different distributions

It can be observed from the left subgraph in Fig. 2 that the differences of empirical density functions
at consecutive time points tend to zero as time gets large. Also the right subgragh shows that p values are
close to 1 as time advances, which confirms the conclusion too.

Fig. 2. K-S test and p-values for samples at consecutive time points.

Example 2. In the second example, we consider a general hybrid linear equation (1.1) with

f(X(t), X(t− τ), i) = K1,i +K2,iX(t) +K3,iX(t− τ)

g(X(t), X(t− τ), i) = L1,i + L2,iX(t) + L3,iX(t− τ) (4.2)

where K1,i, L1,i ∈ Rn and K2,i,K3,i, L2,i, L3,i ∈ Rn×n. To this equation, we look forward to form a criterion
composed of its matrices coefficients and checked directly.

Obviously, Assumption 2.1 is satisfied with

H1 = 2max
i∈S

(
∥K2,i∥2 ∨ ∥K3,i∥2 ∨ ∥L2,i∥2 ∨ ∥L3,i∥2

)
.
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Ψ(z1, z2, i) in Assumption 2.3 will be Ψ(z1, z2, i) = (z1 − z2)
TΛi(z1 − z2) with

Λi = (K2,i +K3,i)
TWi +Wi(K2,i +K3,i) + (1 + δ)(L2,i + L3,i)

TWi(L2,i + L3,i) +

N∑
j=1

γijWj .

If there exist N positively definite matrices Wi, i ∈ S and δ > 0 such that Λi is negatively definite for
any i ∈ S, Assumption 2.3 will be satisfied with λ1 = −max

i∈S
λM (Λi).

Toward Assumption 3.2, we can easily deduce σ1 = max
i∈S

(
∥K3,i∥2 ∨ ∥L3,i∥2

)
and σ2 = σ3 = 0. Now

following the argument in Lemma 3.2, and setting θ = 2λ̂MH1

(
2λ̂M

λ1
+ 1 + 1

δ

)
, we can calculate τ∗1 =

− 1
2 + 1

2 (1 + λ1

2H1θ
)1/2. Similarly, letting θ̄ = 2λ̂Mσ1

(
2λ̂M

λ1
+ 1 + 1

δ

)
in Lemma 3.4, we also have τ∗2 =

− 1
2 +

1
2

(
1 + λ1

H1θ

)1/2
. Obviously, we have τ∗1 < τ∗2 and the equation will be stable in distribution as long as

τ < τ∗1 .

Specifically, let us consider an equation defined in R2 with S = {1, 2} and Γ =

(
−2 2
2 −2

)
. The

matrices are given by

K1,1 =

(
0.1
0.08

)
, L1,1 =

(
0.2
0.1

)
, K2,1 =

(
0.1 0
0 0.1

)
, L2,1 =

(
0.1 0
0 0.1

)
,

K3,1 =

(
−0.3 0
0 −0.3

)
, L3,1 =

(
−0.2 0
0 −0.2

)
, K1,2 =

(
0.12
0.1

)
, L1,2 =

(
0.21
0.09

)
,

K2,2 =

(
0.15 0
0 0.15

)
, L2,2 =

(
0.08 0
0 0.12

)
, K3,2 =

(
−0.32 0

0 −0.3

)
, L3,2 =

(
−0.15 0

0 −0.2

)
.

Choose δ = 2, W1 =

(
2 0
0 1.8

)
and W2 =

(
2.2 0
0 2

)
for analysis. It can be verified that Assumption

2.3 is satisfied with λ1 = 0.266. Now we then figure out τ∗ = 0.0099.
For simulation, we select X1(0) = X2(0) = 1 and τ = 0.009. One thousand sample paths are simulated

on 0 ≤ t ≤ 30 with time step size h = 0.003. As in the first example, we can draw empirical density functions
for X1(t) and X2(t) at different time, as shown in Fig. 3. It can be seen that shapes the density functions
of X1(t) at t = 15, 20, 30 are very similar, and those of X2(t) are also similar at t = 20, 30, which shows that
both X1(t) and X2(t) have their limit probability measures as t → ∞. Also, K-S tests and their p-values
are depicted in Fig. 4, which confirm above assertions.

Fig. 3. Empirical density functions at different time for X1(t) and X2(t).
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Fig. 4. K-S test and p-values for samples at consecutive time points for X1(t) and X2(t).

Example 3. Consider a nonlinear hybrid scalar equation (1.1) with S = {1, 2} and Γ =

(
−2 2
2 −2

)
,

where

f(x, y, 1) = 0.1− 0.2y + 0.01(sin(x) + sin(y)), f(x, y, 2) = 0.11− 0.22y + 0.013(sin(x)− sin(y)),

g(x, y, 1) = 0.2− 0.1y + 0.005(sin(x) + sin(y)), g(x, y, 2) = 0.22− 0.12y + 0.006(sin(x)− sin(y)).

For this equation, Assumption 2.1 is satisfied with H1 = 0.1452. Take V (x, i) =

{
2x2 i = 1
2.1x2 i = 2

for
discussion. We see that Assumption 2.3 is satisfied with λ1 = 0.3. Toward Assumption 3.3, we can take
σ1 = 0.1452, σ2 = 0.0004 and σ3 = 0.0004 to meet conditions in Lemma 3.4 simultaneously. Choosing
θ = 11.2869 and θ̄ = 11.2869, we will have τ∗1 = 0.0224, τ∗2 = 0.0359, respectively. Now by our theories, the
equation will be stable in distribution as long as τ < τ∗ = 0.0224.

We let τ = 0.02 and X(0) = 2 for simulation on 0 ≤ t ≤ 100 with step size h = 0.01. The empirical
density functions at t = 1, 5, 10, 20, 50, 100 are drawn in Fig.5, with K-S test and p-values shown in Fig.6.
All three graphs show that the equation is stable in distribution.

Fig. 5. Empirical density functions at different time.
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Fig. 6. K-S test and p-values for samples at consecutive time points.

5. Conclusion

A new criterion has been proposed to guarantee asymptotic stability in distribution for a SDDE. Com-
pared to other related results, this criterion is delay-dependent. An upper bound for the delay size can be
calculated from some equations. Also, this criterion shows the positive role of the delay term. It means that
we can use delay terms as impetuses toward asymptotic stability for SDDEs.
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