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a b s t r a c t

A universal cycle (u-cycle) for permutations of length n is a cyclic word, any size n
window of which is order-isomorphic to exactly one permutation of length n, and all
permutations of length n are covered. It is known that u-cycles for permutations exist,
and they have been considered in the literature in several papers from different points
of view.

In this paper, we show how to construct a family of u-cycles for multi-dimensional
permutations, which is based on applying an appropriate greedy algorithm. Our con-
struction is a generalization of the greedy way by Gao et al. to construct u-cycles for
permutations. We also note the existence of u-cycles for d-dimensional matrices.

© 2024 Published by Elsevier B.V.

1. Introduction

A universal cycle, or u-cycle, for a given set S with ℓ words of length n over an alphabet A is a circular word u0u1 · · · uℓ−1
hat contains each word from S exactly once (and no other word) as a factor uiui+1 · · · ui+n−1 for some 0 ≤ i ≤ ℓ − 1,
where the indices are taken modulo ℓ. For example, 020311 is a u-cycle for the set of words {020, 031, 102, 110, 203, 311}.
The notion of a universal cycle for combinatorial structures was introduced in [2] and has been studied in the literature
extensively for various objects. The celebrated de Bruijn sequences are a particular case of such a u-cycle, where a set
in question is the set An of all words of length n over a k-letter alphabet A. De Bruijn sequences of orders 2 and 3 for
A = {0, 1} can be found in Fig. 1. A universal word, or u-word, for S is a non-circular version of a universal cycle.

Establishing existence of u-cycles is normally done through considering de Bruijn graphs, or similar suitable transition
graphs in the context. A de Bruijn graph B(n, k) consists of kn vertices corresponding to words in An and its directed edges
are x1x2 · · · xn → x2 · · · xnxn+1 where xi ∈ A for i ∈ {1, 2, . . . , n + 1}. See Fig. 2 for B(2, 2) and B(3, 2). De Bruijn graphs
are an important structure that is used in solving a variety of problems, for example, in combinatorics on words [8] and
genomics [9]. These graphs were first introduced (for the alphabet A = {0, 1}) by de Bruijn in 1944 to find the number
of code cycles.

1.1. Constructing de Bruijn sequences

To state some of our multi-dimensional results, we sketch here the well-known way to construct de Bruijn sequences
via de Bruijn graphs, leaving justification to the reader as an easy exercise. We first need some background in graph
theory.
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Fig. 1. De Bruijn sequences of orders 2 and 3 for A = {0, 1}.

Fig. 2. De Bruijn graph B(3, 2) is the line graph of de Bruijn graph B(2, 2).

Let G = (V , E) be a directed graph (digraph). For an edge u → v in G v is called the head and u is called the tail of
the edge. A directed path in G is a sequence v1, . . . , vt of distinct nodes such that there is an edge vi → vi+1 for each
1 ≤ i ≤ t − 1. Such a path is a Hamiltonian path if it contains all nodes in G. A closed Hamiltonian path (vt → v1 is an
edge) is a Hamiltonian cycle. If G has a Hamiltonian cycle then G is Hamiltonian. A digraph is strongly connected if there
exists a directed path from any node to any other node. A digraph is connected if for any pair of nodes a and b there
exists a path in the underlying undirected graph (obtained from the digraph by removing all orientations). A trail in a
digraph G is a sequence v1, . . . , vt of nodes such that there is an edge vi → vi+1 for each 1 ≤ i ≤ t − 1 and edges are not
visited more than once. An Eulerian trail in G is a trail that goes through each edge exactly once. A closed Eulerian trail
s an Eulerian cycle. A directed graph is Eulerian if it has an Eulerian cycle. Let d+(v) (resp., d−(v)) denote the out-degree
resp., in-degree) of a node v, which is the number of edges pointing from (resp., to) v. A directed graph is balanced if
+(v) = d−(v) for each node v in the graph. The following result is well-known and is not hard to prove.

heorem 1.1. A digraph G is Eulerian if and only if it is balanced and (strongly) connected.

The line graph L(G) of a digraph G is the digraph whose vertex set corresponds to the edge set of G, and L(G) has an
dge e → v if in G, the head of e meets the tail of v. For example, the graph to the right is the line graph of the graph to
he left in Fig. 2. Clearly, an Eulerian cycle in G gives a Hamiltonian cycle in L(G).

So, a traditional approach to construct de Bruijn sequences works as follows. Clearly, there is a one-to-one correspon-
ence between directed paths in the de Bruijn graph B(n, k) and words of length ≥ n over a k-letter alphabet. For example,
n Fig. 3, the path 110 → 101 → 010 → 100 → 001 in B(3, 2) corresponds to the word 1101001 since the path can be
ecovered from the word considering consecutive factors of length 3. But then finding a de Bruijn sequence is equivalent
o finding a Hamiltonian cycle in the respective de Bruijn graph, that is, a cycle that goes through each vertex exactly
nce.
One can show that B(n + 1, k) is the line graph of B(n, k), and labelling each edge x1x2 · · · xn → x2x3 · · · xn+1 in B(n, k)

y x x · · · x we obtain labelling of vertices in B(n + 1, k) (see Fig. 2 for an example). Moreover, it is easy to see that
1 2 n+1
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Fig. 3. A path in B(3, 2).

(n, k) is balanced and (strongly) connected. Hence, B(n, k) is Eulerian and B(n + 1, k) is Hamiltonian. Constructing an
ulerian cycle in B(n− 1, k) using one of the known polynomial algorithms gives a Hamiltonian cycle in B(n, k), which in
urn gives a de Bruijn sequence.

.2. Martin’s algorithm to generate de Bruijn sequences

An alternative construction of a de Bruijn sequence is the following greedy algorithm proposed by Martin [7] in 1934.

Martin’s greedy algorithm to generate a de Bruijn sequence

Start with the word (k − 1)n−1 and then repeatedly apply the following rule: Append the smallest letter in
{0, 1, . . . , k − 1} so that factors of length n in the resulting word are distinct. Once no more extension is possible,
remove the n − 1 rightmost letters.

For example, for k = 3 and n = 2, the steps of the algorithm are: 2 → 20 → 200 → 2001 → 20010 → 200102 →

001021 → 20010211 → 200102112 → 2001021122 → 200102112.

1.3. Martin’s algorithm for other combinatorial structures

The notion of a u-cycle is well-defined for any set of combinatorial objects that admits encoding by words. U-cycles
do not always exist. For example, if k does not divide

(n−1
k−1

)
then u-cycles for the collection of k-sets of an n-set do not

xist [2]. A natural question is: In the case when a u-cycle exists, can Martin’s algorithm (referred to as a greedy algorithm
ecause of usage of the smallest possible option at each step) be used to construct a u-cycle? If so, which start can/cannot
e used? Martin’s algorithm would give an elegant, often easier justifiable way to construct u-cycles without using graph
heory. For example, justifying the existence of u-cycles for permutations via Martin’s algorithm in [4] is much more
traightforward than the graph theoretical justification in [2] (that uses a nontrivial construction in [5]); this greedy
lgorithm is presented in Section 1.5 as it has relevance to our paper.
For a non-example, we consider partitions of the n-element set {1, 2, . . . , n} discussed in [2]. Each such partition can

be represented by a word over {1, 2, . . .}. For example, the word 27254552 represents the partition {1, 3, 8}, {2}, {4, 6, 7},
5}, because in the 1st, 3rd, and 8th positions we have the same letter, so is the case with the 4th, 6th and 7th positions.
t was shown in [2] that u-cycles for set partitions exist for any n ≥ 4. However, computer search shows that in the cases
f n = 5 and n = 8 no start (of lengths 4 and 7, respectively) gives a u-cycle for set partitions if Martin’s algorithm is
pplied. On the other hand, the greedy algorithm works for n = 4 with the unique possible start (if the smallest possible
etters are used lexicographically), namely 124: 124111121122313124. For n = 6 the algorithm works for two possible
tarts, 21436 and 35216, e.g.

21436111111211112211113211121211122213111213112112113212112212113312121231121232
11132211133211143212133112132112133212313232411231211231411232412131432132142231
1322421312431512231412532112432511332214335
312
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ives one of the u-cycles for n = 6, and it does work on a unique possible start 264137 for n = 7. Developing a theory
of when the algorithm works on set partitions and when it does not, and what a possible start can be seems to be a
challenging open problem. Note that in the examples we have, possible starts always consist of distinct letters. In either
case, our experiments show that it is always possible to construct u-words (rather than u-cycles) for set partitions, proving
which remains an open problem:

n = 3: 2 possible starts;
n = 4: 6 possible starts;
n = 5: 6 possible starts;
n = 6: 48 possible starts;
n = 7: 877 possible starts.

The main goal of this paper is to introduce a family of universal cycles for multi-dimensional permutations via an
application of a greedy algorithm. We will also discuss the graph theoretical approach to show the existence of u-cycles
for multi-dimensional permutations. Before introducing multi-dimensional permutations, we note that sometimes the
reduction of multi-dimensional objects to one-dimensional counterparts is straightforward. For example, the following
theorem is an immediate corollary to the known results/techniques outlined in Sections 1.1 and 1.2.

Theorem 1.2. There exists a u-cycle for d-dimensional n1 × n2 × · · · × nd matrices over the alphabet {1, 2, . . . , k}.

roof. Think of d-dimensional matrices as words of length nd over the alphabet

{1, 2, . . . , kn1·n2·...·nd−1},

here we label lexicographically all (d − 1)-dimensional matrices. But then we deal with de Bruijn sequences whose
xistence is discussed in Sections 1.1 and 1.2. □

In the case of multi-dimensional permutations, reduction to known results on permutations is not so straightforward:
e cannot simply refer to the existence of u-cycles theorems (and even to the theorems on products of u-cycles [3]).

.4. d-dimensional permutations

Let π = π1π2 . . . πn be a permutation of length n (n-permutation) in the symmetric group Sn. As written, π is in
ne-line notation, while its two-line notation is

π =

(
1 2 . . . n
π1 π2 . . . πn

)
.

A d-dimensional permutation Π of length n (or d-dimensional n-permutation) studied e.g. in [1], is an ordered (d−1)-tuple
π2, π3, . . . , πd) of n-permutations where for each 2 ≤ i ≤ d, π i

= π i
1π

i
2 . . . π i

n ∈ Sn. For example, (231, 312, 231) is a
-dimensional permutation of length 3. We let Sdn denote the set of d-dimensional permutations of length n. Note that
2
n corresponds naturally to Sn, hence ‘‘usual’’ permutations are 2-dimensional permutations. We also generalize two-line
otation to d-line notation and we write

Π =

⎛⎜⎜⎜⎜⎜⎝
1 2 . . . n
π2
1 π2

2 . . . π2
n

π3
1 π3

2 . . . π3
n

... . . .
...

πd
1 πd

2 . . . πd
n

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
π1
1 π1

2 . . . π1
n

π2
1 π2

2 . . . π2
n

π3
1 π3

2 . . . π3
n

... . . .
...

πd
1 πd

2 . . . πd
n

⎞⎟⎟⎟⎟⎟⎟⎠ ,

so that Π corresponds naturally to a d × n matrix. It is also helpful to let π1 denote the permutation 12 . . . n so that we
an succinctly write

Π =
{
π i
j

}
1≤i≤d1≤j≤n

.

otivated by two-line notation, we say that the columns of this matrix represent the elements of Π which we denote by
Πi. In particular, we write Π = Π1Π2 . . . Πn where Πi is the d-tuple (i, π2

i , π3
i , . . . , πd

i )
T . For example, if Π = (π2, π3)

is a 3-dimensional permutation of length 5 with π2
= 12534 and π3

= 51243, then we write

Π =

⎛⎝π1

π2

π3

⎞⎠ =

(1 2 3 4 5
1 2 5 3 4
5 1 2 4 3

)
,

T T T T T
or Π = Π1Π2Π3Π4Π5 where Π1 = (1, 1, 5) , Π2 = (2, 2, 1) , Π3 = (3, 5, 2) , Π4 = (4, 3, 4) , Π5 = (5, 4, 3) .

313



S. Kitaev and D. Qiu Discrete Applied Mathematics 359 (2024) 310–320

1

i
i
t

D
n

D
o

p

w

T
f

n

W

p

.5. A greedy algorithm to construct u-cycles for permutations

For a permutation, or word, π , the reduced form of π , denoted red(π ), is obtained by replacing the ith smallest element
n π by i. For example, red(4285) = 2143. Any i consecutive letters of a word or permutation w form a factor of w. If w

s a cyclic word then a factor can begin at the end of w and end at the beginning of w. If u is a factor of w, we also say
hat w covers red(u).

efinition 1.3. A word U ′
n is a universal word, or u-word, for n-permutations if U ′

n covers, in a non-cyclic way, every
-permutation exactly once.

efinition 1.4. A cyclic word Un is a universal cycle, or u-cycle, for n-permutations if Un covers every n-permutation exactly
nce.

Let π = π1π2 · · · πm be a permutation of m distinct integers. Then the ith extension of π to the right, 1 ≤ i ≤ m, is the
ermutation

cb(π1)cb(π2) · · · cb(πm)b,

here b is the ith smallest element in {π1, π2, . . . , πm}, and

cb(x) =

{
x if x < b,
x + 1 if x ≥ b.

he (m + 1) extension is the permutation πb, where b is the largest element in {π1 + 1, π2 + 1, . . . , πm + 1}. We call the
irst extension the smallest extension, and the (m + 1)st extension the largest extension of w.

The following simple algorithm, suggested and justified in [4], produces a universal word U ′
n of length n! + n − 1 for

-permutations.

The greedy algorithm to construct U ′
n

Begin with the permutation U ′

n,0 := 12 · · · (n − 1). Suppose that a permutation

U ′

n,k = a1a2 · · · ak+n−1

has been constructed for 0 ≤ k < n!, and no two factors in U ′

n,k of length n are order-isomorphic. Let i be minimal
such that no factor of length n in U ′

n,k is order-isomorphic to the i-th extension of ak+1ak+2 · · · ak+n−1, and denote
the last element of this extension by b. Then

U ′

n,k+1 := cb(a1)cb(a2) · · · cb(ak+n−1)b.

For some k∗, no extension of U ′

n,k∗ will be possible without creating a factor order-isomorphic to a factor in U ′

n,k. The
greedy algorithm then terminates and outputs U ′

n := U ′

n,k∗ .

For example, the steps of the algorithm for n = 3 are as follows:

12 → 231 → 3421 → 45312 → 564132 → 6751324 → 78613245 = U ′

3.

e note that for each k, U ′

n,k is a permutation of {1, 2, . . . , k + n − 1}.
The following simple extension of the greedy algorithm, again suggested and justified in [4], turns the u-word for

ermutations U ′
n into a u-cycle for permutations Un.

Generating the u-cycle Un from U ′
n

Remove the last n − 1 elements in U ′
n and take the reduced form of the resulting sequence to obtain Un.

For example, U3 is given by

U ′

3 = 78613245 → 786132 → red(786132) = 564132 = Π3.

For another example, Π4 is given by

(22)(23)(24)(21)(20)(18)(19)3(17)42(16)1695(10)87(13)(11)(12)(15)(14).
314
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Fig. 4. The graph P(3).

Fig. 5. The relations between the elements in U3 , where i → j denotes the requirement that i < j.

.6. The graph theoretic approach to construct u-cycles for permutations

The original approach in [2] to prove the existence of u-cycles for permutations, that is similar in nature (but is much
ore involved) to that in Section 1.1 to construct de Bruijn sequences, works as follows.
The graph of overlapping permutations P(n) is defined in a way analogous to the de Bruijn graph B(n, k). However,

nstead of requiring the tail of one permutation to equal the head of another for them to be connected by an edge, we
equire that the head and tail in question have their elements appear in the same relative order. Hence, the vertex set
f P(n) is the set of all n! permutations of {1, 2, . . . , n}, and there is an edge x1x2 · · · xn → y1y2 · · · yn if and only if, for
≤ i < j ≤ n, xi < xj if and only if yi−1 < yj−1. The graph P(3) can be found in Fig. 4.
Via defining the notion of the clustered transition graph (where the cluster with signature x = x1x2 · · · xn−1 is the set of

all n-permutations whose first n− 1 elements are order-isomorphic to x) one can prove that P(n) is Hamiltonian; see [2]
for details. For example, a Hamiltonian cycle C for P(3) is

132 → 312 → 123 → 231 → 321 → 213 → 132.

Translating the Hamiltonian cycle C in P(3) into a u-cycle for 3-permutations begins with assigning (as of yet)
undetermined values for the potential u-cycle as U3 = abcdef and building the partially ordered set (poset) in Fig. 5
corresponding to the relations between the elements in U3. For example, the first permutation in C is 132 and hence
a < c < b; the second permutation in C is 312 and hence c < d < b, etc. Taking a linear extension of the poset into
{1, 2, . . . ,N}, that is, mapping {a, b, c, d, e, f } into {1, 2, . . . ,N} for a suitable N (in this example, N = 4) we obtain the
desired u-cycle U3 = 142342.

Even though obtaining a Hamiltonian cycle C in P(n) is straightforward, arguing that the implied ordering on the values
is in fact a partial order, i.e. has no cycles, is a difficult task. While the authors of [2] believe that this to be the case for any
Hamiltonian cycle in P(n), they refer to [5] where a particular construction of C is offered that guarantees the ordering
be a partial order. Since [5] is not easily accessible, we sketch here the idea of the construction to be referred by us to in
Section 3.

First, we introduce the following notions. The suffix of a permutation is all but the first element. The prefix of a
permutation is all but the last element. If we group n-permutations into groups whose prefixes are order-isomorphic
(that is, are the same in the reduced form), then every group has a permutation ending in i for each i. To generate a
group we use the method of displacement, which is merely the sequential transposition of i + 1 and i and generates
the lexicographical ordering while preserving the prefix order-isomorphism. A key for n-permutations is a permutation
beginning with a 1 and ending with an n.

A head is a permutation beginning with a 1. The heads for a given key are generated by displacement and are hence
all heads whose prefixes are order-isomorphic to the prefix of that key (we do not perform the last displacement, i.e. the
315
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Fig. 6. Permutation list for S3 .

Fig. 7. Temporary list for S4 .

ransposition (12)). Rotations of the heads are cyclic shifts of the heads. For example, given head 1abc (n = 4) its rotations
re itself, abc1, bc1a, and c1ab, in that order. Hence, each n-permutation is a rotation of one of the (n− 2)! heads, which

in turn is the displacement of one of the (n − 2)! keys.
The only key for S3 is the permutation 123, whereas for S4 we have 1234 and 1324. The only other head for S3 is 132,

whereas 1234 includes 1243 and 1342, and 1324 includes 1423 and 1432. Figs. 6 and 7 show the two lists generated so
far. The lists are read by column, top to bottom, left to right.

Notice that the heads for S3 are the prefixes of the keys of S4. This holds in general that the prefixes of the keys for
Sn are the heads for Sn−1, and in the same order. This recursive property is important in understanding the switching
described in [5] and presented here properly only for S4, which is sufficient for our purposes. The list for S4 comes in two
parts, distinguished by the two keys. Each part is indeed a cycle by itself, as is easy to see. The suffix of the last rotation
of a head is precisely the prefix of the head and hence is order-isomorphic to the other heads under its key. Therefore, we
obtain two cycles which we must join together. This is possible by switching the two underlined permutations a = 2134
and b = 2143. Letting a′

= 4213 and b′
= 3214 we see that in P(4) we find the edges a′

→ b and a → b′, so this switch
does produce a Hamiltonian cycle.

For the general switching algorithm, there are (n − 3) levels of joining, the success of the final one being dependent
upon the construction for S3; see [5] for details, which we omit here. It can be argued that such a construction produces
a partially ordered set as it has a built in breaker, the permutation 12 · · · n, in the sense described in [5].

For another paper involving a graph theoretic approach to construct u-cycles for permutations, see [6]. There, similarly
to the approach above, short cycles in P(n) are created, and a suitable approach to join these cycles is discussed that results
in a u-cycle for n-permutations requiring n + 1 distinct letters (the minimum possible number of distinct letters).

2. Generating u-cycles for d-dimensional permutations

In this section, we usually do not present the top row in multi-dimensional permutations, which is always the
respective increasing permutation. Also, for a matrix M in which each row has distinct elements (but there can be equal
elements in different rows), the reduced form of M , denoted by red(M), is obtained by taking the reduced form of each
row.

Definition 2.1. A matrix U ′

d;n with d − 1 rows is a universal word, or u-word, for d-dimensional n-permutations if each
d-dimensional permutation (without the top row) can be found non-cyclically in U ′

d;n exactly once as n consecutive columns
in the reduced form.

For example, U ′

3,2 =

(
5 4 1 2 3
5 1 4 2 3

)
. Indeed, the first two columns cover the permutation

(1 2
2 1
2 1

)
, columns 2

and 3 cover the permutation

(1 2
2 1
1 2

)
, and so on.

Definition 2.2. Allowing in the definition of U ′

d;n consecutive columns to be considered cyclically, we define a universal
cycle, or u-cycle, Ud;n for d-dimensional n-permutations.

For example, U3,2 =

(
4 3 1 2
4 1 3 2

)
.

For a d-dimensional permutation Π1Π2 . . . Πn where Πi is the d-tuple (π2
i , π3

i , . . . , πd
i )

T , we say that Πi < Πj if
(π2

i , π3
i , . . . , πd

i )
T is lexicographically smaller than (π2

j , π3
j , . . . , πd

j )
T , that is, if π2

i < π2
j or π2

i = π2
j and π3

i < π3
j or

2 2 3 3 4 4
πi = πj and πi = πj and πi < πj , and so on.
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To construct U ′

d;n and Ud;n, we mimic the steps in Section 1.5 to construct U ′
n and Un, respectively. To proceed, we need

he notion of ith extension for a d-dimensional permutation to be introduced next.
Let Π = Π1Π2 · · · Πm be a matrix with d−1 rows where each row containsm distinct integers and columns are distinct.

Also, let (i1, i2, . . . , id−1)T be the ith lexicographically smallest element in {(x1, x2, . . . , xd−1)T : 1 ≤ xi ≤ m + 1, 1 ≤ i ≤

d − 1}. Then the ith extension of Π to the right, 1 ≤ i ≤ (m + 1)d−1, is the matrix CB(Π )B where

• B = (b1, b2, . . . , bd−1)T and bj is the ij-th smallest element in row j in Π defined to be one more than the maximum
element in row j if ij = m + 1, and

• CB(Π ) is obtained from Π by increasing by one every element in row j that is ≥ bj and leaving all other elements
unchanged.

We call the first extension the smallest extension, and the (m + 1)d−1st extension the largest extension of Π .

For example, the second (given by (1, 1, 2)T ) and 31st (given by (2, 4, 3)T ) extensions of

(4 2 5
2 6 1
4 1 2

)
are(5 3 6 2

3 7 2 1
5 1 3 2

)
and

(5 2 6 4
2 6 1 7
5 1 2 4

)
, respectively.

In what follows, Id;n :=

(12 · · · n
· · ·

12 · · · n

)
is a matrix with d − 1 rows.

The greedy algorithm to construct U ′

d;n

Begin with the matrix U ′

d;n,0 := Id;n−1. Suppose that a (d − 1)-dimensional permutation (with columns denoted by
Πi)

U ′

d;n,k = Π1Π2 · · · Πk+n−1

has been constructed for 0 ≤ k < (n!)d−1, and no two of sets of n consecutive columns (in reduced form) in U ′

d;n,k
result in the same d-dimensional permutations. Let i be minimal such that no n consecutive rows in U ′

d;n,k in reduced
form is the same as the i-th extension of Πk+1Πk+2 · · · Πk+n−1 in reduced form, and denote the last element of this
extension by B. Then

U ′

d;n,k+1 := CB(Π1Π2 · · · Πk+n−1)B.
For some k∗, no extension of U ′

d;n,k∗ will be possible without creating a permutation already covered by U ′

d;n,k. The
greedy algorithm then terminates and outputs U ′

d;n := U ′

d;n,k∗ .

Generating the u-cycle Ud;n from U ′

d;n

Remove the last n − 1 elements in U ′

d;n and take the reduced form of the resulting matrix to obtain Ud;n.

The examples of U ′

3;2 and U3;2 above are obtained by implementing the respective algorithms. For another example,
beginning with I3;2 =

(12
12

)
, we obtain the following u-cycle U3;3:

(
35 36 34 33 32 31 30 26 29 25 28 24 27 23 3 22 2 21 1 5 4 7 6 9 8 11 10 13 12 15 14 16 17 18 19 20
35 36 34 2 3 1 33 32 31 4 6 5 7 9 30 8 11 10 28 29 27 26 12 14 13 16 25 15 18 17 23 24 22 19 21 20

)
We will next justify that the algorithms work. Our justification follows closely the steps in [4,7].
For U ′

d;n,k = Π1Π2 · · · Πk+n−1, set

σk := red(ΠkΠk+1 · · · Πk+n−1), σ ′

k := red(Πk+1Πk+2 · · · Πk+n−1),

Jk := |{j ≤ k : σ ′

j = σ ′

k}|,

i.e. Jk is the number of occurrences in reduced form of the d-dimensional (n− 1)-permutation σ ′

k in U ′

d;n,k. By description
of the algorithm, all ith extensions of σ ′

k with i < Jk occur in U ′

d;n,k, and the Jk-th extension of σ ′

k does not occur in U ′

d;n,k.
Therefore, the greedy algorithm terminates at k if and only if Jk = nd−1. If Jk < nd−1, then σk+1 is the Jk-th extension of
σ ′

k.

Lemma 2.3. The greedy algorithm terminates at k if and only if σ = I .
k d;n
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P
a

roof. If σk = Id;n, then σ ′

k−1 = σ ′

k = Id;n−1 and Jk−1 = nd−1
− 1. Thus, Jk = nd−1, and the greedy algorithm terminates

t k.
Conversely, assume that σk ̸= Id;n and by the above, σj ̸= Id;n for all j ≤ k. If σ ′

k ̸= Id;n−1 then we have σ ′

0 ̸= σ ′

k, and so
every occurrence of σ ′

k is preceded by an element (column) and hence Jk ≤ nd−1. If σ ′

k = Id;n−1, then σ ′

0 = σ ′

k but because
σj = Id;n is not possible, we have σ ′

j = σ ′

k for at most nd−1
− 1 different indices j ≥ 1, which again gives that Jk ≤ nd−1.

Therefore, the greedy algorithm does not terminate at k if σk ̸= Id;n because < nd−1 extensions of σ ′

k to the right are used
in U ′

d;n,k. □

Lemma 2.4. U ′

n,d covers all d-dimensional n-permutations.

Proof. We proceed by contradiction. Suppose that a permutation Π1Π2 · · · Πn is not covered by U ′

d;n. Then Π2 · · · Πn is
covered at most nd−1 times, hence red(Π2 · · · Πn)Bn, where Bn = (n, n, . . . , n)T is the largest extension of Π2 · · · Πn, is
not covered. More generally, for 1 ≤ k ≤ n, if red(Πk · · · Πn)Bn−k+2 · · · Bn is not covered, then

red(red(Πk+1 · · · Πn)Bn−k+2 · · · Bn−1)Bn = red(Πk+1 · · · Πn)Bn−k+1 · · · Bn−1Bn

is not covered, where, for example, red(Πk · · · Πn)Bn−k+2 · · · Bn denotes k − 1 applications of the largest extension to
red(Πk · · · Πn). We obtain that U ′

d;n does not cover the permutation Id;n contradicting Lemma 2.3. □

By the nature of the greedy algorithm, U ′

d;n cannot cover a permutation more than once. By Lemma 2.4, U ′

d;n covers all
n-permutations. Hence, we proved the following result.

Theorem 2.5. U ′

d;n is a u-word for d-dimensional n-permutations.

Theorem 2.6. Ud;n is a u-cycle for d-dimensional n-permutations.

Proof. By Theorem 2.5, it suffices to prove that

red(ΠkΠk+1 · · · Πk+n−1) = red(Πk · · · Π(n!)d−1Π1 · · · Πk+n−(n!)d−1−1)

for all (n!)d−1
− n + 2 ≤ k ≤ (n!)d−1. Note that σi ends with (1, 1, . . . , 1)T for all 1 ≤ i < n. Hence, letting as above Bx

denote the column (x, x, . . . , x)T , we have that

U ′

d;n,n−1 = BnBn+1 · · · B2n−2Bn−1Bn−2 · · · B1

and so, for all k ≥ n,

Πk < Π1 < Π2 < · · · < Πn−1.

Next, we show that σi ends with Bn for (n!)d−1
− n + 2 ≤ i ≤ (n!)d−1. Suppose that this is not true for some such i.

Since U ′

d;n is a u-word, we must have σ ′

i−1 = σ ′

j−1 for some j > i. It follows from σ(n!)d−1 = Id;n that

Π(n!)d−1 < Π(n!)d−1+1 < · · · < Πj+n−2.

Then, σ ′

i−1 = σ ′

j−1 implies that

Π(n!)d−1+i−j < Π(n!)d−1+i−j+1 < · · · < Πi+n−2 < · · · < Π(n!)d−1+n−1.

Iterating this argument gives that Πj < Πj+1 < · · · < Π(n!)d−1+n−1 and thus Πi < Πi+1 < · · · < Π(n!)d−1+n−1, contradicting
the assumption that σi does not end with Bn. Therefore, σi ends with Bn for all i ≥ (n!)d−1

− n + 2, and hence

Πk < Π(n!)d−1+1 < Π(n!)d−1+2 < · · · < Π(n!)d−1+n−1

for all (n!)d−1
− n + 2 ≤ k ≤ n!. Therefore,

σk = red(ΠkΠk+1 · · · Π(n!)d−1 )B(n!)d−1−k+2 · · · Bn = red(Πk · · · Π(n!)d−1Π1 · · · Πk+n−(n!)d−1−1)

for (n!)d−1
− n + 2 ≤ k ≤ n!, as desired. □

Remark 2.7. In fact, Theorem 2.6 gives us a family of u-cycles for multi-dimensional permutations. Indeed, it is easy to
see that complementing any row, that is, swapping the smallest letter with the largest letter, the next smallest letter with
the next largest letter, etc, in any given row, results in a u-cycle for multi-dimensional permutations, and we have 2d−1

different u-cycles produced from a given initial u-cycle in this way (the beginnings of length n−1 will be distinct). On the
other hand, note that such operations as reversing a row or taking its cyclic shift potentially can result in a non-u-cycle
for multi-dimensional permutations.
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Fig. 8. A key group and the respective head group producing a small cycle read by column, top to bottom, left to right.

To illustrate Remark 2.7, complementing the second row of U3;3 given above, we obtain(
35 36 34 33 32 31 30 26 29 25 28 24 27 23 3 22 2 21 1 5 4 7 6 9 8 11 10 13 12 15 14 16 17 18 19 20
2 1 3 35 34 36 4 5 6 33 31 32 30 28 7 29 26 27 9 8 10 11 25 23 24 21 12 22 19 20 14 13 15 18 16 17

)

. Concluding remarks

This paper shows that Martin’s greedy algorithm can be used to construct u-cycles for multi-dimensional permutations,
hile as is discussed in Section 1.3, this algorithm is not applicable for some sets of combinatorial objects. That would be

nteresting to build a theory of applicability/suitability of Martin’s greedy algorithm in the situations when u-cycles exist.
n particular, understanding when the algorithm works on set partitions and when it does not, and what the possible
tart can be, is an interesting open problem.
In fact, the notion of a greedy algorithm can be modified, for example, by alternating steps of taking the smallest

nd largest available options. Such an approach does not work, for example, for the set of all words of length 2 over
0, 1, 2} if we start with 2 (analogously to the original Martin’s algorithm) as we get stack before covering all words:
→ 20 → 202 → 2021 → 20212 → 202122. But are there situations when such a modification would work? Or can it
e proved that it never works?
The greedy algorithm to generate u-cycles for multi-dimensional permutation is rather elegant, but can one use the

ypical graph theoretic approach, analogues to that in Section 1.6 for permutations, to achieve the same goal? At least
onstructing u-words for multi-dimensional permutations is straightforward here as one can easily generalize the notion
f P(n) to that of Pd(n) for d-dimensional n-permutations, where the vertices are all such permutations and there is an
dge from a permutation X to a permutation Y if the suffix of each row of X is order-isomorphic to the prefix of the
ame row of Y . One can then mimic the steps of clustering of P(n) in [2] to get clustering of Pd(n) (where cluster’s in- and
ut-degrees will be nd−1) and then deduce Hamiltonicity of Pd(n) that can be easily translated into a u-word.
However, proving that there is a u-cycle using the methods in [5] outlined in Section 1.3 does not seem to work at

east for n = 3. Indeed, consider the case of d = 3. It is natural (but maybe not the only way?) to define the notion of key
nd head requiring the second row (out of three, the top row is always 123 and hence can be removed) to be key and
ead, respectively (recall the definitions in Section 1.3). Hence, instead of 2 groups of 3-permutations in Fig. 6, we will
ave 12 groups of 3 3-permutations as each group in Fig. 6 will be repeated 6 times (the number of ways to chose the
econd independent permutation). We would expect a key group and the head group corresponding to it to be connected
nto a small cycle, like it is the case in Fig. 6, with a hope to connect the cycles between each other by the switching, or

ther methods. This is indeed the case for the key group generated by
(
1 2 3
1 2 3

)
and the respective head group (as it is

ot different from the d = 2 case), and even for the key group generated by
(
1 2 3
1 3 2

)
and the respective head group

see Fig. 8). However, this does not work, for example, for the key group generated by
(
1 2 3
2 3 1

)
and the respective

ead group (see Fig. 9).
We leave it as an open question to modify the method in [5] to construct u-cycles for permutations (sketched in

ection 1.6) to obtain a u-cycle for multi-dimensional permutations. Analogously to the conjecture about P(n), it is
onceivable that any Hamiltonian cycle in Pd(n) can be turned into a u-cycle, but this may be difficult to confirm. One
an also study the minimum number of letters required to produce a u-cycle for multi-dimensional permutations, as it
s done in [6] for usual permutations. However, the steps in [6] do not seem to be extendable (easily) to the case of
ulti-dimensional permutations.
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Fig. 9. A key group and the respective head group not producing a small cycle read by column, top to bottom, left to right.
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