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Abstract

The return on conventional momentum portfolios exhibits a predominantly negative, time-varying
skewness, which deepens during the so-called momentum “crashes”. This has important implications
for the dynamic of the risk-return trade-off associated with momentum investing: the relationship
between the strategy’s expected return and volatility is time-varying and depends on conditional
skewness. We explore the economic underpinnings of time-varying skewness by timing the capital
exposure to momentum portfolios in response to fluctuations in risk. The results show that a
dynamic skewness-adjusted maximum Sharpe ratio strategy significantly improves upon popular
volatility scaling approaches. Finally, we show that the dynamic of the momentum return skewness
cannot be fully reconciled with an asymmetric exposure to upside and downside market risk.
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1 Introduction
One of the most studied capital markets phenomena is the relationship between the future
return on a given asset and its past relative performance, termed momentum effect. A simple
portfolio that buys the past “winners” and sells the past “losers” has historically delivered a
competitive risk-adjusted return in US equity markets and has become central to the market
efficiency debate, at least since Jegadeesh (1990).1 Despite a strong historical performance, a
conventional momentum portfolio is subject to rare yet predictable large drawdowns relative
to the market, referred to as momentum “crashes” (e.g., Daniel and Moskowitz, 2016).

A popular approach to mitigate the economic impact of these crashes builds upon the
intuition that the capital exposure to the momentum portfolio can be dynamically adjusted
by timing the risk associated with the strategy performance (e.g., Barroso and Santa-Clara,
2015). We build upon this line of research and offer a novel perspective on the risk associated
with momentum investing. Our approach is based on the assumption that if the portfolio re-
turn displays time-varying skewness, time-varying volatility alone may not provide a complete
representation of the strategy risk. As a result, a capital adjustment which explicitly ignores
the skewness dynamics may be sub-optimal as investors with asymmetric risk preferences
may even accept a lower return if they can trade it off against lesser downside risk.

The reason why skewness may play an important role in managing momentum risk is
intuitive, although often unappreciated: high volatility is not always associated with large
negative returns, and significant negative returns can occur in periods when volatility is
subdued but risk is negatively skewed. In fact, risk is not necessarily symmetric over time
(e.g., Bollerslev et al., 2022). Perhaps surprisingly, though, the explicit role of skewness has
mostly been overlooked in managing momentum risk.

Before discussing our main findings, two comments are in order. First, it is essential to
highlight that our focus is not to modify the construction of a momentum strategy (e.g., Byun
and Jeon, 2023) but rather to design a dynamic capital adjustment to equity momentum port-
folios following the blueprint of Daniel and Moskowitz (2016). Second, although our results
support the view that the skewness in momentum return can be partly rationalised based

1Jegadeesh (1990) first document that stocks that performed well in the past tend to outperform the
market. In contrast, stocks that performed poorly tend to underperform. Grinblatt et al. (1995) find that
momentum strategies are common among investment funds, while several papers document the pervasiveness
of this anomaly across countries – including Rouwenhorst (1998); Fama and French (2012) – and asset classes
(e.g., Moskowitz and Grinblatt, 1999; Moskowitz et al., 2012; Asness et al., 2013).
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on asymmetric risk preferences, our objective is not to provide a structural interpretation of
the momentum premium but rather to highlight the importance of conditional skewness to
understand better the risk associated with momentum investing.

1.1 Findings

We estimate a time-varying parameter model that recovers the return distribution’s loca-
tion, scale, and asymmetry over time to tease out the dynamics of conditional skewness in
momentum returns. This allows us to explain skewness’s role in the momentum risk-return
trade-off and derive a skewness-hedging component within a conventional maximum Sharpe
ratio strategy. Overall, our paper’s contribution is threefold.

First, we uncover a significant, pro-cyclical time variation in the conditional skewness
associated with the daily return on a conventional momentum portfolio á-la Jegadeesh and
Titman (1993). The return asymmetry tends to be negligible during economic expansions,
while it becomes predominantly negative towards the tail of recession periods. This pattern
is exacerbated during momentum crashes, whereby spikes in return volatility are associated
with deepening downside risk. This suggests that conditional skewness may have important
implications for timing the return on a momentum factor.

Second, we explore the role of conditional skewness in the dynamic of the risk-return
trade-off of a momentum strategy. We highlight that any evidence of negative risk-return
trade-off is entirely driven by crashes periods, and more generally the risk return trade-off
is shaped by the strategy’s return skewness. This echoes the intuition in Theodossiou and
Savva (2016), which argues that in the presence of skewed returns, the risk premium features
a “pure risk” component and a “skewness risk” premium component. Hence, the former
can be interpreted as the prevailing risk-return trade-off absent any conditional skewness.
Our results suggest that since the direction of the skewness premium hinges on the sign of
the skewness, the overall risk-return trade-off can range from positive to negative over time,
depending on the strength of the returns’ asymmetry. This evidence can help to rationalise
the rather flat unconditional risk-return trade-off previously reported in the literature (e.g.,
Barroso and Maio, 2023).

Our third result relates to the economic value of capturing time-varying skewness for man-
aging momentum risk. Consistent with the intuition of distinguishing between “pure risk”
and “skewness risk” in the presence of conditional skewness, we derive a dynamic skewness-
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hedging maximum Sharpe ratio strategy expanding on Daniel and Moskowitz (2016). Specifi-
cally, during periods of highly negative (positive) conditional skewness, our approach leads to
a decrease (increase) of the capital exposure to a momentum portfolio larger than what would
be implied by volatility scaling alone. We show empirically that our approach fares better
than leading volatility-managed momentum portfolios, especially regarding the exposure to
downside risk. This suggests that, by accounting for time-varying asymmetry, one can reduce
the impact of low-probability large drawdowns on momentum profitability without giving up
any significant risk-adjusted return.

The main empirical results hold for short-term and intermediate momentum portfolios
when considering transaction costs for different leverage constraints in a post-1950 out-of-
sample period and in the context of monthly capital adjustments. Notice that our framework
is general and can be applied to any other factor or anomaly-based portfolios. Our focus
on momentum portfolios is primarily led by the existing evidence that shows how volatil-
ity scaling is mainly beneficial for momentum portfolios, while the evidence for other fac-
tors/anomalies is far less clear (e.g., Cederburg et al., 2020; Barroso and Detzel, 2021).

Finally, it is worth mentioning that although providing a structural interpretation of the
momentum premium is beyond the scope of the paper, we nevertheless attempt to highlight
some asset pricing implications that can be drawn from our results. Specifically, we build
upon Grundy and Martin (2001) and show that the estimated skewness of momentum return
can only be partly reconciled by a CAPM with asymmetric exposure to upside and downside
market risk. The latter can be framed as a reduced-form representation of an equilibrium
asset pricing model in which a representative agent is endowed with a disappointment-aversion
utility function (e.g., Ang et al., 2006). This poses a challenge for asset pricing models that
overlook higher-order moments’ role in shaping momentum risk premiums.

1.2 Literature

In addition to Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), our work
contributes to a long-standing literature that seeks to understand the properties of momen-
tum returns, such as Jegadeesh (1990); Rouwenhorst (1998); Moskowitz and Grinblatt (1999);
Griffin et al. (2003); Moskowitz et al. (2012); Novy-Marx (2012); Asness et al. (2013); Kelly
et al. (2021); Ehsani and Linnainmaa (2022). Jacobs et al. (2015) uncover a robust relation-
ship between expected skewness and cross-sectional momentum. Yet Theodossiou and Savva
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(2016) highlight how the evidence on the shape of the risk-return trade-off in momentum
strategies has often been inconclusive. They argue that such ambiguity stems from the fact
that volatility and skewness have an offsetting impact on the strategy’s expected return.

A second strand of literature we contribute to relates to the role of skewness as an input for
investment decisions (e.g., Patton, 2004; Guidolin and Timmermann, 2008; Bollerslev et al.,
2022) and asset pricing models (e.g., Harvey and Siddique, 2000; Dittmar, 2002). Building
on Barroso and Santa-Clara (2015); Cederburg et al. (2020), recent evidence from Wang and
Yan (2021); Hanauer and Windmüller (2023) suggests that by scaling factor portfolio return
by downside volatility alone, one can improve upon simple volatility scaling. Our results show
that the time-varying interplay between conditional expected return, volatility and skewness
can offer novel insights into the dynamic of momentum risk and, thus, significant economic
gains compared to popular volatility-managed momentum portfolios.

2 Skewness in US equity momentum
We follow Daniel and Moskowitz (2016) and form portfolios based on all-firm breakpoints;
that is, an equal number of firms is present in each decile portfolio, rather than an equal
number of NYSE firms as in Fama and French (1996). Stocks are sorted into deciles, ranked
based on their performance over the past J months. A conventional momentum strategy
involves investing 1$ in the portfolio of past winners (the 10th decile) and selling 1$ of past
losers (the 1st decile), with a one-month holding period. We skip the most recent month as
the formation period to avoid the short-term reversal (e.g., Jegadeesh, 1990).

Figure 1 compares the cumulative performance of investing 1$ in the winners-minus-losers
(WML) portfolio with a look-back period of 12 months, i.e., the traditional 12_2 momentum
of Jegadeesh and Titman (1993), against a buy-and-hold investment in the market portfolio
and the risk-free rate. The market portfolio is proxied by the value-weighted index of all the
CRPS firms, and the risk-free rate is the 1-month T-bill rate.2 The performance is calculated
from the second half of the 1920s holding the investment until the end of 2020. Momentum
decile portfolios are rebalanced monthly, but returns are calculated daily as in Daniel and
Moskowitz (2016). Despite a strong performance, the 12_2 portfolio has experienced a few
severe drawdowns – e.g., -65% assuming a 1$ investment in the portfolio at the beginning of

2The daily T-bill rate and the daily return on the market portfolio are obtained from Kenneth French data
library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 1: US equity momentum over the last century
The plot reports the cumulative performance of a 12_2 momentum strategy, the market and a 1-month T-bill
rate. The cumulative performance is reported on a logarithmic scale. The right panels zoom in on 1932-1934,
2001-2006 and 2009-2011 momentum crashes by re-scaling the initial investment to 1$ at the beginning of the
period. Grey-shaded bands highlight NBER recessions. Red shaded bands indicate momentum crash periods,
as indicated in Daniel and Moskowitz (2016).

1932 and 2009 – followed by prolonged periods underperforming the market.3

Despite the risk-adjusted return remaining large and significant, these sporadic but large
and persistent losses, dubbed momentum “crashes”, induce significant asymmetry in the
momentum return’s distribution. Table 1 shows that the Sharpe ratio for the momentum
strategy is 0.78 annualised, almost double that of the market portfolio.4 A higher risk-
adjusted return is not due to higher exposure to market risk, with the CAPM beta being
slightly negative (β = −0.15, pval = 0.000). Yet, the return unconditional skewness, defined
as the standardised third moment of the sample distribution, is highly negative and significant
as shown by the p-value obtained from the Bai and Ng (2005) test.5

3At a monthly frequency, momentum crashes entail losses ranging from -90% to -75% over the same period.
4For comparison with Daniel and Moskowitz (2016), we do not consider transaction costs in calculating

the performance of the 12_2 portfolio. When adding reasonable transaction costs, the performance of the
standard momentum strategy deteriorates (e.g., Novy-Marx and Velikov, 2016; Patton and Weller, 2020;
Barroso and Detzel, 2021).

5Under the null hypothesis of no return asymmetry, the Bai and Ng (2005) test statistic is π̂3 =
√
T µ̂3

s(µ̂3)

d−→
N(0, 1) with µ̂3 a sample estimate of the third central moment of the return distribution and s (µ̂3) =
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Table 1: A snapshot of the skewness in US equity momentum

This table reports different descriptive statistics (Panel A) and measures of skewness (Panel B) for past
winners, losers, and WML portfolios for three alternative specifications as in Jegadeesh and Titman (1993)
and Novy-Marx (2012). In addition, we report the sample skewness, with p-values for the Bai and Ng (2005)
test in parentheses, and the quantile skewness (QSα), computed as q(α)+q(1−α)−2q(50)

q(α)−q(1−α) , with α = 99. The full
sample period is from January 1st 1927, to December 31st, 2020, daily.

Panel A: Sample descriptive statistics

12-2 6-2 12-7 MKT

losers winners WML losers winners WML losers winners WML

r − rf (%) −3.500 15.415 18.915 −0.130 12.928 13.059 −0.075 15.126 15.201 7.786
σ (%) 28.570 23.626 24.104 27.975 23.135 22.942 25.650 23.539 19.913 18.643
SR −0.123 0.652 0.785 −0.005 0.559 0.569 −0.003 0.643 0.763 0.418
α (%) −12.640 6.803 22.242 −9.657 4.208 15.341 −9.083 6.326 16.941

β 1.317 1.162 −0.155 1.313 1.153 −0.159 1.242 1.183 −0.060

Panel B: Skewness measures

Skewness

Full sample 0.147 -0.680 -1.230 0.234 -0.714 -1.548 -0.051 -0.744 -0.760 -0.476
(0.264) (0.022) (0.001) (0.184) (0.018) (0.001) (0.102) (0.028) (0.021) (0.059)

1932-1937 0.644 0.050 -0.215 1.254 -0.395 -1.747 0.233 -0.181 -0.161 0.356
2000-2005 -0.064 -0.185 -0.403 -0.017 -0.284 -1.371 -0.349 -0.371 -0.533 -0.276
2008-2012 0.001 -0.321 -1.742 0.103 -0.285 -0.796 0.289 0.075 -0.378 0.064

QS99

Full sample 0.021 -0.108 -0.108 0.002 -0.091 -0.096 -0.024 -0.079 -0.089 -0.045
1932-1937 0.117 -0.090 -0.227 0.109 -0.095 -0.239 0.016 -0.009 -0.110 0.057
2000-2005 -0.011 0.031 -0.094 0.016 -0.017 -0.117 -0.030 -0.010 -0.091 -0.100
2008-2012 0.006 -0.114 -0.204 -0.027 -0.090 -0.176 -0.081 -0.031 -0.141 0.084

The presence of asymmetry in the return’s distribution is confirmed when discounting the
effect of outliers by using the Bowley (1926) measure, defined as QSα = q(α)+q(1−α)−2q(50)

q(α)−q(1−α)
,

where q(α) is the αth quantile and q(50) the median. The QS99 value still points towards a
marked negative asymmetry of -0.108, twice as large as the market portfolio. This indicates
that the left tail of the distribution accounts for 55% of the total dispersion of the return,
whereas the right tail accounts for 45%; that is, the downside risk is approximately 20% larger(
α̂2Γ̂22α̂

′
2

) 1
2 . Here, α̂2 =

[
1, −3σ̂2

]
is a function of the sample variance estimate σ̂2 and Γ̂22 a consistent

estimate of the 2×2 (lower-right) sub-matrix of Γ = lim
T→∞

TE
[
ZZ

′] with Z the sample mean of the deviation
of the empirical centred first three moments from their theoretical (Gaussian) counterparts.
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than the upside risk over the entire sample.

Table 1 also reports the descriptive statistics for the return on two alternative cross-
sectional momentum strategies proposed in the literature, meaning the short-term momentum
(6_2), formed based on a six-month look-back period (e.g., Jegadeesh and Titman, 1993), and
the intermediate momentum (12_7), formed based on past returns from months t−12 through
t− 7 as proposed by Novy-Marx (2012). When examining the return asymmetry from these
alternative momentum portfolios, we find evidence that all three long-short strategies present
roughly the same skewness profile. The return on the 12_7 strategy have a sample skewness
of −0.768 (pval = 0.021), which is lower than both the 12_2 strategy (skew = −1.236,
pval = 0.001) and 6_2 (skew = −1.554, pval = 0.001). The QS99 measure is approximately
the same across portfolios, i.e., -0.11 for 12_2, -0.096 for 6_2, and -0.089 for 12_7.

Table 1 also highlights a negative correlation between CAPM alphas and the return skew-
ness. For instance, past winners and the WML strategy all show significant, negative (positive)
skewness (alphas), with the long-short portfolios displaying, on average, twice the asymmetry
and CAPM alphas compared to past winners. Instead, past losers show a highly negative
alpha and a very small, positive skewness. This holds across different momentum portfolios
and confirms that the strategy’s profitability comes at the cost of substantial downside risk.

A preliminary gauge of the time variation in the asymmetry of the momentum return
distribution can be obtained by investigating the realised skewness pattern over different
return windows. Panel B of Table 1 reports various skewness measures calculated over five
years centred around the three crash periods as indicated by Daniel and Moskowitz (2016).
The estimates suggest substantial differences in return asymmetry over different periods. For
instance, the 1932 and 2009 crashes exhibit a quantile skewness QS99 that is twice as large
as the overall sample’s. This holds across different momentum portfolios.

Figure 2 expands on the sub-sample estimates from Table 1 and reports the results of the
Bai and Ng (2005) test statistics for asymmetry calculated over different rolling windows of
two and five years of daily return. The test statistics consistently show negative values of
the standardised third moment of the distribution across alternative momentum portfolios.
Yet, they also exhibit a substantial time variation, ranging from near zero to highly negative
values. The dashed horizontal lines represent the 90% and 95% critical values associated with
the null hypothesis of no asymmetry against the alternative of negative asymmetry.

The null hypothesis of no asymmetry is often rejected over the sample; there are mul-
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Figure 2: Recursive skewness test

The three panels report the time series of the Bai and Ng (2005) test statistics for asymmetry, π̂3 =
√
T µ̂3

s(µ̂3)
, over

different rolling window of return. We report the testing results by using two and five years of daily return
on the WML strategy for the 12_2, 12_7 and the 6_2 momentum. The dashed horizontal lines represent the
one-sided test’s 90% and 95% critical values. Grey-shaded areas identify NBER recessions, while red-shaded
areas highlight momentum crash periods, as indicated in Daniel and Moskowitz (2016). The sample period
is daily from January 1st 1927 to December 31st 2020.

(a) 12_2 momentum (b) 12_7 momentum (c) 6_2 momentum

tiple periods in which the momentum return shows negative and significant skewness. For
instance, the asymmetry of the 12_2 portfolio return is negative and significant throughout
the momentum crash of the 1930s, while it becomes non-significant again over the following
decade. The rolling window estimates also highlight a substantial co-movement of the Bai
and Ng (2005) test statistics across different momentum portfolios. Specifically, the correla-
tion of the test statistics between the 12_2 and the 12_7 (6_2) momentum portfolios is 0.72
(0.65) over the entire sample.

To complement the simple recursive Bai and Ng (2005) test in Figure 2, in Appendix A
we report the results of a more formal likelihood-based test whereby we examine whether the
conditional skewness of the 12_2 portfolio return remains constant against the alternative
of time-varying skewness.6 The null hypothesis of constant skewness is firmly rejected, with
p-values well below the canonical 1% threshold. In the next section, we take stock of this
preliminary evidence and introduce a novel modelling framework which allows us to explicitly
track the time-varying nature of the return asymmetry of momentum portfolio return.

6In practice, we test the information contained in the score of the log-likelihood function estimated under
the null hypothesis of no time-variation. See Appendix A for more details.
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3 Modelling time-varying skewness
We model the conditional distribution of a portfolio return rt as a Skew-t distribution with
ν > 3 degrees of freedom and time-varying location mt, scale σt, and shape ρt parameters
(e.g., Arellano-Valle et al., 2005; Gómez et al., 2007),

rt = mt + σtεt, εt ∼ Sktν(0, 1, ρt), t = 1, . . . , T (1)

The shape parameter ρt ∈ (−1, 1) captures the extent of asymmetry of the portfolio return.
Positive (negative) values of ρt imply a positively (negatively) skewed return at time t, and
the ratio 1+ρt

1−ρt
defines the probability mass on the right versus on the left of the location mt.

Equation (1) nests standard distributional assumptions as limiting cases. For instance, by
restricting ρt = 0 we obtain the symmetric Student-t distribution. With ν → ∞ and ρt = 0,
the conditional distribution coincides with a Normal with time-varying mean and variance.
Finally, with ν → ∞ and ρt ̸= 0 we retrieve the Skew-Normal distribution of Mudholkar and
Hutson (2000). As all these parameters are estimated from the data, our model does not
impose but allows for time-varying skewness in the return’s conditional distribution.

We follow Creal et al. (2013) and Harvey (2013) and assume the dynamics of mt, σt and
ρt is entirely observation-driven in the sense of Cox (1981), meaning that the time variation
of the parameters is a direct function of past prediction errors. In order to ensure that the
scale σt is positive and the shape ρt ∈ (−1, 1), we adopt the transformations γt = log (σt)

and δt = arctanh (ρt). The vector of time-varying parameters ft = (mt, γt, δt)
′ is updated at

each time t based on the law of motion,

ft+1 = ft + Ast, t = 1, . . . , T (2)

where A contains the structural parameters regulating the sensitivity of ft to the information
contained in the scaled score st = St∇t. Here St is a scaling matrix proportional to the
diagonal of the information matrix It = E [∇t∇′

t], such that St = (J ′
tdiag(It)Jt)

−1, and ∇t =

J ′
t

[
∂ℓt
∂mt ,

∂ℓt
∂σ2

t
, ∂ℓt

∂ρt

]′
the gradient of the log-likelihood function for the time-varying parameters.

The Jacobian matrix Jt maps the transformations γt and δt into the original time-varying
scale σt and shape ρt parameters.

The scaled score translates the information summarized by the prediction errors at time
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t into an update of ft. Specifically, given Eq. (1) and the conditional log-likelihood (see
Eq. (B7) in Appendix B.4), the elements of st are defined as:

sm,t = χ(1 + ρ2t )wtεt, sγ,t = χ(ν + 1)(wtε
2
t − σ2

t ), sδ,t = χsign(εt)(1− s(εt)ρt)wt
ε2t
3σ2

t

, (3)

where sign(·) is the sign function, χ = (ν+3)
(ν+1)

and wt = (ν + 1)−1
(
ν (1 + s (εt) ρt)2 + ζ2t

)
represents the weights to the standardised prediction errors ζt=

εt
σt

. A full derivation of the
information matrix It, the Jacobian Jt and the elements of the scaled score vector st is
provided in Appendix B.1 and Appendix B.2. We assume that the matrix A in Eq. (2) is
diagonal so that the update of each time-varying parameter is proportional to the information
conveyed by the likelihood of that specific parameter.

The scalar wt in Eq. (3) plays a key role as it represents the implicit weight of the in-
formation contained in the prediction error (e.g., Harvey and Luati, 2014). More generally,
Blasques et al. (2015) show that score-driven updates as in Eq. (3) can reduce the local
Kullback-Leibler divergence between the actual, unobserved, conditional density and the cor-
responding estimate, even when the underlying model is potentially mis-specified.7

Maximum likelihood estimates (MLE) of ft and θ = (ν, A) can be obtained via a prediction
error decomposition (see Blasques et al., 2022). However, given the random-walk specification
of ft, maximum likelihood tends to put a large point mass at the initial condition, an issue
known as the “pile-up problem” (e.g., Sargan and Bhargava, 1983; Stock and Watson, 1998).
To address this issue, we discipline the parameter space by introducing a minimal set of prior
conditions on A and ν, such that any evidence of time variation in ft must reflect strong
evidence in the data. As a result, the resulting estimator produces a maximum a posteriori
estimate (see, e.g., Kamen and Su, 2012). Appendix B.4 provides a detailed description of
the estimation procedure.

3.1 Expected return and parameters updating

The conditional moments of the return distribution implied by Eq. (1) can be derived as a
weighted average of the conditional moments of a Half-t distribution (Arellano-Valle et al.,

7Related to that, Koopman et al. (2016) show that score-driven time-varying parameter models produce
similar forecasting precision to parameter-driven state–space models, even if the latter constitute the actual
data generating process. In this respect, score-driven updates of the time-varying parameters are optimal
from an information theoretic perspective.
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2005; Gómez et al., 2007). As a result, the expected return Et(rt+1) can defined as:

Et(rt+1) = mt + g(ν)ρtσt, ν > 3 with g(ν) =
4νC(ν)
ν − 1

(4)

where ν denotes the degrees of freedom parameter, C =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
and Γ(.) is the Gamma

function. Eq. (4) implies that momentum expected return depend on the scale σt and the
asymmetry ρt at each time t. The location parameter mt captures the mode of the conditional
distribution and is equivalent to Et(rt+1) under symmetric distributional assumptions – when
ρt = 0. A full derivation of the expected return in Eq. (4) is provided in Appendix C.

To better understand the role of conditional skewness in our model, Figure 3 shows some
comparative statics on the impact of σt and ρt on Et(rt+1). Two properties emerge: first,
the effect of σt on the expected return is amplified by ρt. For instance, for a negatively
skewed return, i.e., ρt < 0, the higher the volatility, the lower the expected return (dark blue
area). This observation provides an intuitive narrative for the risk associated with momen-
tum investing. The combination of volatility spikes and negative skewness, characterising
momentum crashes, can swiftly reverse the strategy’s expected return.

The second property that emerges from Figure 3 is that the effect of asymmetry and
volatility on the expected return is multiplicative. This means that the curvature of Et(rt+1)

as a function of σt increases more than linearly as |ρt| increases. The steepness of the curvature
is regulated by the degrees of freedom ν (see partial derivative plots). Thicker tails push the
portfolio’s expected return to more extreme values depending on the conditional asymmetry.
It is ρt that dictates the sign of the sensitivity of expected return to a change in volatility.

As the time variation of ft depends on past prediction errors, it is worth discussing how the
scale σt and asymmetry ρt update over time and the effect of these updates on the dynamic of
the expected return. Figure 4 displays how new information – measured by the standardised
prediction error – translates into changes in the scale and shape parameters. The extent of
parameters updating at a given time t depends on the underlying return asymmetry. For
instance, when the conditional distribution exhibits positive skewness (e.g., ρt = 0.5, dashed
green line), observing a negative prediction error leads to significant adjustments in scale
and asymmetry. These adjustments are less pronounced when the return skewness is mildly
negative (e.g., ρt = −0.25, dashed blue line). In the latter case, a negative prediction error
is more likely than when the conditional distribution is positively skewed. This determines
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Figure 3: Model-implied expected value surface

The left panel illustrates the expected value surface for values of ρt and σt. The smaller panels on the right
illustrate the partial derivative of Eq. (4) with respect to ρt and σ. Without loss of generality, we report the
surface by restricting the location parameter mt to zero.
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how σt and ρt dynamically update upon observing the return at time t.

A significant rebound in the strategy’s return prompts the model to promptly revise the
expected value of future returns due to reassessing the underlying risk profile. This effect
becomes more prominent as the strategy return becomes more extreme.8 As a result, the
expected return is responsive to changes in the overall risk profile of the strategy. A reassess-
ment of the risk balance, captured by the asymmetry parameter, especially during periods of
high volatility, leads to a quick adaptation of Et(rt+1) to shifts in the portfolio risk. In the
next section, we leverage these model features to investigate the role of conditional volatility
and skewness in the strategy’s risk-return trade-off over time.

8Except when a return is categorized as a tail event by the model, in which case their informational value
is heavily discounted (see Figure B1(a) in Appendix B.3).

13



Figure 4: Updating of the scale and asymmetry parameters

The panels report the news impact curves (NICs) for the scale and shape parameters as functions of the
standardised prediction error, ζt. We consider values of ϱ = −0.5, 1,−0.25. ν is fixed at 5.

(a) Scale updating (b) Asymmetry updating

4 Time-varying skewness and momentum risk
The descriptive statistics in Table 1 suggest that the 12_2 portfolio provides the largest risk-
adjusted performance while at the same time reports an equally large negative skewness –
even larger – compared to the 12_7 and 6_2 momentum portfolios. In addition, there is a
substantial co-movement in the dynamics of skewness across momentum portfolios (see Figure
2). For this reason, we follow Barroso and Santa-Clara (2015); Daniel and Moskowitz (2016);
Hanauer and Windmüller (2023) and focus on the 12_2 momentum return. The analysis
for the 12_7 and 6_2 portfolios, as well as for the 12_2 long-short strategy based on NYSE
breakpoints are discussed in Section 5.1 and Appendix E.

Figure 5 presents the estimates for the 12_2 return conditional volatility
√
Vt(rt+1) and

skewness Skt(rt+1), respectively. The conditional variance of the return can be derived an-
alytically as Vt(rt+1) = σ2

t (
ν

ν−2
+ h(ν)ρ2t ), for ν > 3, where h(ν) = 3

ν−2
− g(ν)2 ≫ 0 gauges

the interaction between the fat-tailedness of the distribution and the asymmetry parameter.9

For ρt = 0, the conditional variance Vt(rt+1) reduces to the Student-t variance. The full
derivation of Vt(rt+1) and Skt(rt+1) is provided in Appendix C. We report the daily estimates

9The formulation for Skt(rt+1) is slightly more tedious, and maps directly the asymmetry parameter
ρt ∈ (−1, 1) into the unbounded value of the conditional skewness.
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in black and their two-year average in green to increase readability. The red line represents
the sample mean estimate.

Figure 5: Conditional volatility and skewness in momentum return
The plot reports the time-varying volatility (left) and skewness (right) estimates for the 12_2 WML portfolio
return. The red dashed lines represent the sample mean, whereas the green lines highlight the 2-year moving
averages of the daily estimates. Grey-shaded areas identify NBER recessions, while red-shaded areas highlight
momentum crash periods, as indicated by Daniel and Moskowitz (2016). The sample period is from January
1st 1927 to December 31st, 2020.

(a) Conditional volatility (b) Conditional skewness

The conditional volatility of the momentum return is substantially higher than its sample
average during the decade following the Great Depression, the burst of the dot-com bubble,
and the period following the great financial crisis of 2008/2009. Perhaps surprisingly, the
return conditional volatility remained subdued and relatively stable for almost sixty years,
from 1940 to the late ’90s, except for a few episodes of short-lived spikes during the ’70s and
’80s, two decades characterised by a series of economic shocks and subsequent recessions.

Figure 5(b) points towards a pro-cyclical time variation in the asymmetry of the strategy
return. Specifically, the conditional skewness tends to zero during economic expansions, while
it becomes more negative during recessions. This pattern is exacerbated during momentum
crashes, whereby the return conditional distribution features both an increasing dispersion
and a deepening negative skewness akin to a time-varying leverage effect. For instance, the
return skewness was largely negative during the crash of 1932- 1939 and significantly dropped
from -0.1 to -0.4 towards the end of the great financial crisis. These periods coincide with
major peaks in return volatility.
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Although with some peculiarities, a similar combination of higher volatility and more
negative skewness occurred during the 2001-2002 crash – with skewness collapsing from 0.2
to -0.3 and volatility peaking at 7% daily in annualised terms – and the great financial crisis.
Interestingly, the conditional skewness (volatility) remains persistently lower (higher) than
its sample mean towards the end of 2020. This coincides with the onset of the COVID-19
pandemic, which may represent the latest episode of a long-lasting flattening in momentum
profitability since the early 2000s, as highlighted in Figure 1. Appendix E.1 shows that the
estimates of conditional volatility and skewness for the 12_7 and 6_2 momentum portfolios
largely align with Figure 5.

4.1 Time-varying skewness and the risk-return trade-off

Figure 5(a) confirms that the strategy’s return displays time-varying volatility, a result well-
documented in the literature (Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016).
In addition, our findings suggest that the momentum return is also persistently negatively
skewed, with skewness deepening at times as shown in Figure 5(b). In particular, momentum
crashes are characterized by increases in volatility with deepening negative skewness of the
conditional returns. This is the first indication that conditional volatility alone may not
suffice to capture the full extent of momentum risk. But why does skewness matter? We
argue that the strength of return asymmetry has important implications for the time variation
of the strategy risk-return trade-off. The relationship between conditional volatility and the
expected return should be red in conjunction with conditional skewness.

We first highlight the role of conditional skewness on the momentum risk-return trade-
off by plotting the correlation between the estimated expected return Et(rt+1) and volatility√

Vt(rt+1) over the entire sample. Figure 6(a) supports the evidence shown by Charoen-
rook and Conrad (2005); Barroso and Maio (2023) of a mildly negative, if not insignificant,
relationship between the momentum expected return and volatility. Yet, such a negative
correlation deepens and becomes highly significant during momentum crashes, as highlighted
by the red markers in the scatter plot.10

Figure 6(b) suggests that one can better understand the sign of the risk-return trade-
off by distinguishing between periods with positively and negatively skewed returns. With a
positively skewed return distribution, one notes a positive risk-return relationship on average,

10The regression slopes for the points in Figure 6(b) are -0.05, -0.01, -0.32 for the full sample, the non-crash
sample (black) and the crash sample (red), respectively. All coefficients are significant at the 1% level.
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whereas the opposite arises when the strategy displays negatively skewed returns. Therefore,
the often inconclusive evidence on the sign of the unconditional risk-return trade-off may be
due to an offsetting impact of conditional volatility and skewness on expected returns.

Figure 6: The dynamic of the risk-return trade-off
Panel (a) reports the correlation between the estimated expected return Et(rt+1) and volatility

√
Vt(rt+1)

over the entire sample. We highlight different slopes during momentum crashes (red) and non-crash periods
(black). Panel (b) illustrates the risk-return trade-off as a function of the time-varying asymmetry, whereby
we colour-code periods with positive vs negative skewness. Panel (c) reports the correlation between the
“pure risk” premium component mt and conditional volatility. Panel (d) shows the change in the price of
skewness risk as a function of positive and negative return skewness. The sample is from January 1st 1927 to
December 31st 2020.

(a) Risk-return trade-off (b) Pos. vs. Neg. skewness

(c) “Pure risk” premium (d) “Skewness risk” premium
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To interpret these findings, we rearrange Eq. (4) and write the expected return as

Et(rt+1) = mt + λt

√
Vt(rt+1) with λt =

g(ν)√
ν

ν−2
+ h(ν)ρ2t

ρt (5)

where the slope λt is a non-linear function of the time-varying asymmetry ρt. Equation (5)
echoes the intuition provided by Theodossiou and Savva (2016) whereby in the presence of
skewed returns, the mean excess return features a “pure risk” component, which captures the
prevailing premium absent any conditional return skewness, and a “skewness risk” component,
which aligns with the sign of skewness.

The first component, mt, in Eq. (5) represents the modal return which should be, theoreti-
cally, positively related to risk. The second component takes the value of zero in the absence
of skewness and directly maps time-varying asymmetry to the expected returns, and thus can
be interpreted as ”skewness risk” premium in the jargon of Theodossiou and Savva (2016).
Therefore, the direction of the “skewness risk” premium hinges on the sign skewness. As a
result, the overall risk-return trade-off can range from positive to zero or negative, depending
on the relative strength of the “pure risk” vs“skewness risk”, and the sign of the latter.

The lower panels of Figure 6 depict a breakdown of the momentum risk-return trade-off
into these two components. Consistent with economic theory, Figure 6(c) shows a positive
slope in the relationship between the return mode mt and conditional volatility

√
Vt(rt+1).

Differently, Figure 6(d) shows that the strategy’s “skewness risk” component varies in sign
due to changes in skewness over time. On average, the “skewness risk” premium is less
pronounced when skewness is positive but stronger when skewness is negative. The two
components have a partially offsetting effect on the expected return when the realised return
is negatively skewed, while they reinforce each other for positively skewed returns. As a
result, shifts in risk have a more pronounced, negative effect on the expected return when the
return asymmetry becomes more negative.

Overall, Figure 6 suggests that, in the presence of significant return asymmetry, the dy-
namic of the risk-return trade-off does not depend only on conditional volatility. Figure 7(a)
formalises this argument by showing the theoretical shape of λt as a function of ρt (dashed
curve), its estimated value over time (blue marks), and its unconditional mean (red circle).
The sensitivity of expected returns to “skewness risk” exhibits a more pronounced negative
relationship when conditional skewness is negative.
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Figure 7: The role of time-varying skewness
Panel (a) reports the theoretical shape of λt, as a function of ρt. The blue marks represent the realized values,
and the red circle highlights the mean. In panel (b), we report the time series of λt. The blue line represents
the daily estimates, the light-blue line a two-year moving average, and the horizontal dashed line the value
of λt evaluated at the sample mean ρ. The sample is from January 1st 1927 to December 31st 2020.

(a) λt as a function of ρt (b) λt dynamics

Figure 7(b) shows that the sign of the risk-return trade-off in momentum investing is gen-
erally negative, although it varies considerably over time. Consequently, most of the variation
in Et(rt+1) can be attributed to time-varying risk, provided that the role of risk asymmetry is
appropriately accounted for through λt. Overall, accounting for time-varying skewness helps
to rationalize (a) the unconditional flat relationship between risk and return in momentum,
and (b) the pronounced negative relationship between expected return and volatility during
crash episodes. Indeed, the latter are characterized not only by large volatility but also by a
more negatively skewed conditional distribution of returns (see Figure 5).

The results in Figures 6-7 help to draw some useful comparisons with Daniel and Moskowitz
(2016). They regress the WML return onto the interaction between a bear market indicator
and a market variance estimate as a proxy for Et(rt+1), which implies lower expected return
during bear markets. Our model explicitly captures the same mechanism: when volatility is
moderate and conditional skewness is negligible, the variation in Et(rt+1) is small and mostly
captured by the “pure risk” component mt. Instead, when conditional volatility spikes in the
lead-up to crash periods, the expected return is depressed due to the interaction with an
increasingly negative conditional skewness.
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4.2 Sharpe ratio and time-varying skewness

We leverage the definition of expected return in Eq. (5) and investigate further the value of
modelling time-varying skewness to understand the dynamic of the momentum risk-adjusted
return. Specifically, we decompose the conditional Sharpe ratio, SRt =

Et(rt+1)√
Vt(rt+1)

as

SRt =
mt√

Vt(rt+1)
+ λt (6)

such that the time variation of the risk-adjusted return is a function of both conditional
volatility and skewness. The first component mt√

Vt(rt+1)
measures the contribution of condi-

tional volatility to the overall strategy risk-adjusted return and is related to the “pure risk”
premium component postulated by Theodossiou and Savva (2016) and outlined in Section 4.1.
The second component measures the direct role of conditional skewness in the momentum
risk-adjusted return based on λt (see Eq. (5)).

Figure 8: Sharpe ratio decomposition during crashes
The plots report in the top panels the conditional Sharpe ratio (black, annualised) against the conditional
volatility of the 12_2 momentum return. The bottom panels highlight the decomposition of the conditional
Sharpe ratio into a location component (mt/

√
V ar, blue) and λt in purple. The three plots correspond to the

1932, 2001 and 2009 crashes. Grey-shaded bands highlight the NBER recession. Red shaded bands indicate
momentum crash periods, as indicated in Daniel and Moskowitz (2016).

(a) 1932 Crash (b) 2001 Crash (c) 2009 Crash

Figure 8(a) illustrates the dynamics of
√

Vt(rt+1), SRt and its two components over the
1932 momentum crash period. As volatility spikes during the great depression, the economic
relevance of mt√

Vt(rt+1)
vanishes, so that SRt is primarily due to the sensitivity of the “skewness
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risk” premium component to a shift in volatility, as captured by λt. This leads to an overall
negative conditional risk-adjusted return as the negative skewness deepens towards the tail
of the great depression. Figure 8(c) shows a similar dynamic during the great financial crisis;
that is, as volatility increases, the SRt becomes negative and primarily driven by conditional
skewness. Instead, Figure 8(b) shows that return skewness does not play any role in SRt

during the burst of the dot-com bubble. As volatility trends downward at the end of 2001,
the risk-adjusted return becomes positive, with return asymmetry playing a negligible role
until 2003, when conditional skewness becomes negative (see Figure 5).

Overall, Figure 8 confirms the intuition that the risk-adjusted return associated with a
momentum strategy is not only related to time-varying volatility but is also tightly connected
to the dynamic of conditional skewness. When volatility increases and the return distribution
shape becomes more tilted towards negative values, the leverage effect leads to an even larger
negative conditional Sharpe ratio than that exerted by conditional volatility alone.

5 A skewness-adjusted maximum Sharpe ratio strategy
In this section, we assess the economic significance of modelling time-varying skewness. To
this end, we build upon an established literature aiming to improve the profitability of a
momentum portfolio by timing the risk associated with the strategy performance (e.g., Bar-
roso and Santa-Clara, 2015 and Hanauer and Windmüller, 2023). Within this setting, during
periods of higher (lower) volatility – relative to its sample average – the capital exposure
to the WML portfolio is reduced (increased) by an amount proportional to the inverse of the
previous month’s variance. Expanding on this idea, Daniel and Moskowitz (2016) propose a
simple dynamic leverage adjustment that maximizes the conditional Sharpe ratio as follows,

ωt =
1

2γ

Et(rt+1)

Vt(rt+1)
(7)

where Et(rt+1) and Vt(rt+1) represent some appropriately chosen estimates of the conditional
mean and variance of momentum return, and γ is a constant calibrated to match the un-
conditional volatility of the original momentum return. Eq. (7) illustrates that the capital
adjustment ωt is well described by its dependence on the first two conditional moments of
the strategy return (see Appendix C in Daniel and Moskowitz, 2016). Our model directly
takes into account the role of the return asymmetry on ωt in both moments. As a result, the
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investment rule in Eq. (7) can be separated into two components,

ωt =
1

2γ

Et(rt+1)

Vt(rt+1)
=

1

2γ

mt + g(ν)ρtσt

Vt(rt+1)
=

1

2γ

mt

Vt(rt+1)︸ ︷︷ ︸
ω1,t

+
1

2γ

g(ν)σtρt
Vt(rt+1)︸ ︷︷ ︸
ω2,t

. (8)

The second component, ω2,t, captures the effect of time-varying asymmetry conditional on
the scale parameter σt. When the conditional distribution of the return is approximately
symmetric, i.e., ρt ≈ 0, ω2,t is economically negligible.11 Thus, we interpret ω2,t as a skewness
hedging adjustment to the original maximum conditional Sharpe ratio strategy of Daniel and
Moskowitz (2016). During periods of highly negative (positive) conditional skewness, our
dynamic leverage adjustment decreases (increases) the exposure to the WML portfolio more
than what would be implied by ignoring return asymmetry. For this reason, we label our
approach as a maximum “skewness-adjusted” SR (mSSR) strategy.12

We pit our approach against existing time-series adjustments previously explored in the
literature. First, we consider the constant volatility approach of Barroso and Santa-Clara
(2015) (BS2015 henceforth) whereby the exposure to a momentum strategy is re-scaled based
on the six-months realised volatility rv126t calculated on a rolling-window basis from daily
momentum return. Next, we consider the maximum SR strategy of Daniel and Moskowitz
(2016) (DM2016 henceforth) where Et(rt+1) is the fitted value of a regression of the WML re-
turn on the interaction between a bear market indicator and the six-months market realised
variance, and Vt(rt+1) is the fitted value of a regression of the 22-days WML realised volatility
onto rv126t and a daily asymmetric GARCH estimate. Finally, we consider a semi-volatility
targeting as in Wang and Yan (2021); Hanauer and Windmüller (2023) (cdVol henceforth).

Each method is tested using a broad range of performance measures. In addition to the
Sharpe ratio (SR), we consider the Sortino ratio (Sortino and Van Der Meer, 1991), which
penalizes returns that fall below the 30-day T-bill rate. The denominator of this ratio (dVol)
is the volatility of excess return conditional on being negative. We also calculate a series
of performance metrics specifically designed to capture the extent of downside risk across

11With ρt = 0, we have mt = Et(rt+1) so that ω1,t would be akin to the adjustment of Daniel and Moskowitz
(2016). Note that while ρt may have a sizable effect on Et(rt+1) it has much lower impact on Vt(rt+1) since
ρt ∈ (−1, 1) and enters squared in the formula for Vt(rt+1) (see Section 4).

12Kandel and Stambaugh (1996) show that if we assume that only the first two conditional moments
matter for portfolio choice, the optimal investment rule under a more general power utility investor would be
ωt =

1
γ

Et(rt+1)
Vt(rt+1)

+ 1
2γ which is proportional to Eq. (7).
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strategies, such as the Stable Tail Adjusted Return Ratio (STARR) – which replaces volatility
with the Expected Shortfall (ES) as the denominator in the Sharpe ratio – and the Rachev
Ratio (RR) – which represents the ratio between the Expected Longrise (EL) and the ES
(e.g., Fabozzi et al., 2005).13 Lastly, we include the maximum return drawdown (MaxDD),
the Value-at-Risk (VaR), and the sample skewness as crude proxies for downside risk.

We develop a novel bootstrap procedure to test the performance differential across meth-
ods. Specifically, we extend the framework developed by Ledoit and Wolf (2008) to the broad
set of downside risk-specific measures outlined above in the presence of both time-series de-
pendence and fat tails. Appendix D contains the complete description of our block-bootstrap
method and the simulation results for the optimal choice of the block size.

Before discussing the results, one comment is in order. An alternative approach to gauge
the economic performance of time-varying skewness would include higher-order moments in
the investors’ utility function (e.g., Mencía and Sentana, 2009). While this certainly represents
an interesting approach, it prevents a direct comparison with existing volatility targeting
methods. Instead, our implementation provides a cleaner setting to gauge the economic
value of modelling time-varying return asymmetry while benefiting from the simplicity of the
maximum conditional Sharpe ratio adjustment proposed by Daniel and Moskowitz (2016).

Baseline results. The time-varying parameters mt, σt and ρt used to calculate Et(rt+1)

and Vt(rt+1) in Eq. (7) are extracted daily assuming that the structural parameters of the
score-driven transition remain constant within a given month. The degrees of freedom ν and
the matrix A in Eq. (2) are re-estimated each month, whereas ft evolves daily.14 We use three
years of daily return as an initial burn-in sample for the recursive estimates and generate the
initial portfolio choice on January 1st, 1930.

Table 2 reports the results. A p-value below the conventional 5% threshold indicates that
the performance differential of a given method compared to mSSR is statistically different
from zero. The Sharpe ratio of mSSR is 1.57 annually. This is about twice as large as the
original momentum portfolio (0.737, pval = 0.000). Not surprisingly, the DM2016 and BS2015
strategies do improve in risk-adjusted terms vis-á-vis the WML portfolio, with an SR of 1.37
and 1.26, respectively. Yet, while the SR from DM2016 is statistically equivalent to our

13The Rachev ratio captures the asymmetry of the return distribution by assessing the imbalance between
extreme losses and gains.

14The random walk dynamics of the parameters ft imply that these are quite stable and, therefore, re-
estimating the model daily would have a limited impact on the results.
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Table 2: Managed momentum portfolios

Panel A reports a series of performance measures on the daily returns on our skewness-adjusted maximum
conditional Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We
consider Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are
based on recursive estimates of the realised variance, as well as a semi-volatility targeting as proposed by
Wang and Yan (2021) and Hanauer and Windmüller (2023). Specifically, the performance measures in each of
the columns are, in order, the Sharpe ratio, the Sortino ratio, the Stable Tail Adjusted Return ratio (STARR),
the Rachev ratio (RR), the Value-at-Risk (VaR), the Expected Shortfall (ES), the volatility of excess return
conditional on being negative (dVol), the sample skewness of excess returns, and the maximum drawdown
(MaxDD). In parentheses we report the bootstrapped p-values testing the difference in performance of mSSR
against each of the alternatives. In the last column we report the implied leverage. Panel B reproduces the
performance of mSSR, denoted with ωt, and reports performance measures associated with the two components
of the portfolio (see Eq. (8)): the location component ω1t and the skewness hedging component ω2t. The
out-of-sample period is from January 1st 1930 to December 31st 2020.

Panel A: Performance metrics

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.573 2.513 14.256 1.309 −3.231 −4.770 10.738 0.153 0.349 0.573

cdVol 1.432
(0.139)

2.095
(0.037)

11.604
(0.003)

1.005
(0.027)

−4.186
(0.000)

−5.333
(0.580)

11.720 −0.035 0.565 1.527

DM2016 1.375
(0.107)

2.011
(0.035)

11.479
(0.020)

1.077
(0.051)

−3.870
(0.000)

−5.179
(0.087)

11.731 0.021 0.427 0.970

BS2015 1.262
(0.014)

1.812
(0.005)

10.135
(0.002)

0.974
(0.021)

−4.156
(0.000)

−5.384
(0.086)

11.950 −0.043 0.462 0.243

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.000)

−3.791
(0.000)

−5.387
(0.002)

12.435 −0.056 1.137

Panel B: mSSR performance decomposition

Components Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD
w 1.573 2.513 14.256 1.309 -3.231 -4.770 10.738 0.153 0.349
w1 1.652 2.571 14.223 1.226 -4.408 -6.206 13.623 0.100 0.496
w2 0.645 0.926 12.933 0.974 -3.035 -4.176 8.833 -0.002 1.416

mSSR adjustment (pval = 0.107), the BS2015 produces significantly lower risk-adjusted return
(pval = 0.014). Scaling by semi-volatility also improves upon the original WML portfolio, with
a SR of 1.43 that is statistically equivalent to mSSR (pval = 0.139). Note the average leverage
implied by DS2016 and cdVol is almost two and three times larger than mSSR, respectively.

The competitive SR obtained from our skewness-adjusted method does not translate into
higher downside risk. The Sortino ratio of 2.5 obtained from mSSR is both economically and
statistically larger than all the other strategies. In comparison, the original WML factor has
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a Sortino ratio of 1.017 (pval = 0.000). More generally, our mSSR strategy outperforms,
both economically and statistically, all competing methods in terms of realised downside risk.
For example, mSSR produces a STARR of 14.2 compared to 11.4 (pval = 0.020) and 10.1
(pval = 0.002) obtained from DM2016 and BS2015, respectively. Similar conclusions can be
drawn also by looking at other downside risk measures. For instance, mSSR produces an RR
of 1.3, compared to 1.1 (pval = 0.051) and 0.97 (pval = 0.021) obtained from DM2016 and
BS2015, respectively.

When separating the performance of ω1,t and ω2,t in Eq. (8) an interesting observation
arises. The first component ω1,t yields a higher SR and Sortino ratio than ω2,t. This im-
plies that adjusting for skewness may harm the portfolio’s overall performance. However, ω2,t

results in lower VaR, ES, and dVol. Consequently, combining the two leads to significant
enhancements in all downside risk measures and overall higher performance when measured
with the STARR and RR metrics. The combined portfolio exhibits a lower maximum draw-
down and a more positively skewed return distribution than either component individually.
This partially supports the notion that ω2,t serves as an insurance component against down-
side risk, which could be particularly beneficial for investors who prioritize avoiding losses
over maximizing gains (e.g., Kraus and Litzenberger, 1976; Kahneman and Tversky, 2013).

5.1 Additional results

We expand the main economic evaluation and implement a variety of alternative exercises.
First, we examine the models’ performance based on short-term and intermediate momentum
strategies. Next, we investigate the role of leverage constraints on the capital adjustment
implied by (7) and transaction costs on the strategy’s profitability. Finally, we investigate
the robustness of the main results by focusing on the post-1950 subsample or by implementing
the capital adjustment monthly instead of daily.

Alternative momentum portfolios. Table 3 reports the performance of our mSSR strat-
egy for both the short-term 6_2 and intermediate 12_7 momentum portfolios. The results are
consistent with the 12_2 momentum portfolio. A dynamic leverage adjustment that accounts
for time-varying skewness has a more decisive effect on mitigating the exposure to downside
risk than achieving a higher risk-adjusted return. For instance, our mSSR strategy produces
a significantly higher Sortino ratio, STARR, RR, and a lower VaR and ES. In addition, the
average leverage from our approach is substantially lower than the one required by cdVol
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and the DM2016 strategy. This implies less binding liquidity constraints.

Table 3: Alternative momentum portfolios

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum
conditional Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We
consider Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are
based on recursive estimates of the realised variance, as well as a semi-volatility targeting as proposed by
Wang and Yan (2021) and Hanauer and Windmüller (2023). Specifically, the performance measures in each of
the columns are, in order, the Sharpe ratio, the Sortino ratio, the Stable Tail Adjusted Return ratio (STARR),
the Rachev ratio (RR), the Value-at-Risk (VaR), the Expected Shortfall (ES), the volatility of excess return
conditional on being negative (dVol), the sample skewness of excess returns, and the maximum drawdown
(MaxDD). In parentheses we report the bootstrapped p-values testing the difference in performance of mSSR
against each of the alternatives. In the last column we report the implied leverage. Panel A reports the
results for the intermediate momentum 12_7 portfolio, whereas Panel B reports the results for the short-term
momentum 6_2 portfolio. The out-of-sample period is from January 1st 1930 to December 31st 2020.

Panel A: Intermediate momentum 12_7

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD leverage
mSSR 1.380 2.155 12.169 1.249 −3.355 −4.901 10.982 0.130 0.547 0.641

cdVol 1.274
(0.161)

1.873
(0.071)

10.533
(0.014)

1.043
(0.335)

−4.155
(0.000)

−5.229
(0.359)

11.671 −0.021 0.442 1.785

DM2016 1.209
(0.143)

1.779
(0.092)

9.852
(0.338)

1.092
(0.147)

−4.034
(0.000)

−5.306
(0.334)

11.658 0.028 0.563 0.998

BS2015 1.134
(0.046)

1.646
(0.018)

9.342
(0.146)

1.027
(0.089)

−4.139
(0.000)

−5.248
(0.983)

11.820 −0.023 0.577 0.280

WML 0.734
(0.000)

1.030
(0.000)

5.974
(0.017)

0.984
(0.000)

−3.782
(0.000)

−5.308
(0.015)

12.218 −0.038 1.040

Panel B: Short-term momentum 6_2

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD leverage
mSSR 1.210 1.843 10.593 1.237 −3.382 −4.928 11.242 0.112 0.472 0.503

cdVol 1.123
(0.369)

1.621
(0.222)

9.905
(0.008)

0.990
(0.496)

−4.273
(0.000)

−5.360
(0.541)

11.886 −0.047 1.027 1.589

DM2016 1.189
(0.861)

1.746
(0.662)

9.455
(0.048)

1.073
(0.694)

−3.972
(0.000)

−5.422
(0.204)

11.653 0.033 0.544 0.843

BS2015 1.004
(0.105)

1.430
(0.056)

7.857
(0.063)

0.966
(0.123)

−4.251
(0.000)

−5.510
(0.454)

12.013 −0.045 0.953 0.253

WML 0.517
(0.000)

0.697
(0.000)

4.065
(0.024)

0.930
(0.000)

−3.752
(0.004)

−5.488
(0.006)

12.697 −0.054 1.799

The similarity of the performance for different momentum portfolios does not come as a
surprise. Figure E1 in Appendix E.1 shows that the estimates of conditional volatility and
skewness for the 12_7 and 6_2 momentum portfolios are similar to the 12_2 portfolio. For
instance, both alternative momentum portfolios experienced spikes in return volatility during
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the great depression, which coincided with deepening negative skewness. Return asymmetry
tends to deteriorate during economic recessions while becoming negligible, or at times positive,
during economic expansions, especially if an upturn in economic activity occurs for prolonged
periods. Overall, conditional volatility and skewness dynamics are rather consistent across
momentum portfolios.

For completeness, Figure E2 in Appendix E.1 also reports the estimates of conditional
skewness based on the NYSE breakpoints as in Fama and French (1996). The trajectory of
the conditional skewness is broadly consistent with the 12_2 portfolio constructed from the
all-firm breakpoints used in the main empirical analysis. The correlation between the two
estimates is as high as 70%, even when looking at noisy daily estimates.

Leverage constraints. The capital adjustment in Eq. (7) is unconstrained, and ωt can
be large for small levels of conditional volatility or can take negative values. For instance,
the DM2016 implementation leaves open the possibility of negative ωt as far as there is a
negative correlation between volatility and return during recessions (see Figure 5 in Daniel
and Moskowitz, 2016). Table 2 confirms that some adjustments can require, on average, as
much as 1.5 times more capital than the one invested in the original WML portfolio. This can
exacerbate liquidity needs or lead to a switch from momentum to a reversal strategy and thus
can cast doubt on the actual feasibility of implementing Eq. (7) under reasonable liquidity or
operational constraints (e.g., Harvey et al., 2018; Patton and Weller, 2020).

For this reason, we investigate the performance across models under a leverage cap and
forbidding negative weights. We follow Moreira and Muir (2017); Cederburg et al. (2020);
Barroso and Detzel (2021); Wang and Yan (2021) and implement two sets of leverage con-
straints. Panel A in Table 4 reports the results for the baseline 12_2 momentum portfolio
with an x5 leverage constraint, i.e., ωt ∈ (0, 5) ∀t. In parentheses, we report the bootstrap
p-values for all performance measures.

Interestingly, unlike the unconstrained implementation, the SR significantly favours our
mSSR strategy. The second best approach, cdVol, produces an SR of 1.402 against a 1.671
annualised obtained from mSSR. The null hypothesis that the SRs are statistically equivalent
is strongly rejected (pval = 0.013). Our mSSR also retains an advantage in pure exposure to
downside risk. For instance, the Sortino ratio, the STARR, the VaR, and the ES significantly
favour mSSR. The realised sample skewness and the maximum drawdown also favour our mSSR
strategy compared to other methods. Panel B shows that the results are broadly consistent
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Table 4: Accounting for portfolio constraints

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum
conditional Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We
consider Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are
based on recursive estimates of the realised variance, as well as a semi-volatility targeting as proposed by
Wang and Yan (2021) and Hanauer and Windmüller (2023). Specifically, the performance measures in each
of the columns are, in order, the Sharpe ratio, the Sortino ratio, the Stable Tail Adjusted Return ratio
(STARR), the Rachev ratio (RR), the Value-at-Risk (VaR), the Expected Shortfall (ES), the volatility of
excess return conditional on being negative (dVol), the sample skewness of excess returns, and the maximum
drawdown (MaxDD). In parentheses we report the bootstrapped p-values testing the difference in performance
of mSSR against each of the alternatives. In the last column we report the implied leverage. All strategies
are constrained such that ωt ∈ (0, 5) ∀t in the firs panel, and ωt ∈ (0, 1.5) ∀t in the second panel. The
out-of-sample period is from January 1st 1930 to December 31st 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage

Panel A: x5 leverage cap
mSSR 1.671 2.688 15.174 1.348 −3.062 −4.761 10.666 0.193 0.261 0.703

cdVol 1.402
(0.013)

2.095
(0.004)

11.605
(0.000)

1.005
(0.935)

−4.186
(0.000)

−5.333
(0.040)

11.720 −0.037 0.565 1.506

DM2016 1.373
(0.005)

2.007
(0.002)

11.453
(0.000)

1.078
(0.240)

−3.873
(0.148)

−5.182
(0.012)

11.732 0.023 0.428 0.868

BS2015 1.262
(0.000)

1.812
(0.000)

10.135
(0.000)

0.974
(0.279)

−4.156
(0.062)

−5.384
(0.002)

11.950 −0.043 0.462 0.213

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.006)

−3.791
(0.000)

−5.387
(0.000)

12.435 −0.056 1.137

Panel B: x1.5 leverage cap
mSSR 1.573 2.513 14.256 1.309 −3.231 −4.770 10.738 0.153 0.349 0.573

cdVol 1.394
(0.140)

2.035
(0.041)

11.262
(0.000)

0.992
(0.587)

−4.188
(0.003)

−5.349
(0.177)

11.751 −0.047 0.558 1.652

DM2016 1.375
(0.100)

2.011
(0.037)

11.479
(0.000)

1.077
(0.081)

−3.870
(0.113)

−5.179
(0.093)

11.731 0.021 0.427 0.970

BS2015 1.262
(0.012)

1.812
(0.004)

10.135
(0.000)

0.974
(0.087)

−4.156
(0.071)

−5.384
(0.021)

11.950 −0.043 0.462 0.243

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.002)

−3.791
(0.002)

−5.387
(0.000)

12.435 −0.056 1.137

with a more restrictive x1.5 leverage constraint, i.e., ωt ∈ (0, 1.5) ∀t.

Subsample analysis. In the main empirical analysis, the out-of-sample period is from Jan-
uary 1st, 1930, to December 31st, 2020. Given all the regulatory and institutional changes
in the US stock market, one may wonder if the data from the pre-World War II period may
be relevant for investors today. In addition, the results so far indicate that the momentum
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crash of the 1930s had a substantial role in shaping the risk-return trade-off of the momentum
portfolio to this date. This is due to the compounding nature of the return of a buy-and-hold
strategy in the WML (see Section 2). To mitigate concerns about sample selection, we investi-
gate the performance of different dynamic leverage strategies post-World War II. Specifically,
we use three years of daily return as an initial burn-in sample for the recursive estimates to
generate the initial portfolio choice on January 1st, 1950.

Table 5: Post-1950 sample analysis

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum
conditional Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We
consider Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are
based on recursive estimates of the realised variance, as well as a semi-volatility targeting as proposed by
Wang and Yan (2021) and Hanauer and Windmüller (2023). Specifically, the performance measures in each of
the columns are, in order, the Sharpe ratio, the Sortino ratio, the Stable Tail Adjusted Return ratio (STARR),
the Rachev ratio (RR), the Value-at-Risk (VaR), the Expected Shortfall (ES), the volatility of excess return
conditional on being negative (dVol), the sample skewness of excess returns, and the maximum drawdown
(MaxDD). In parentheses we report the bootstrapped p-values testing the difference in performance of mSSR
against each of the alternatives. The out-of-sample is from January 1st, 1950, to December 31st, 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.805 2.944 16.523 1.344 −3.212 −4.722 10.515 0.162 0.323 0.628

cdVol 1.646
(0.219)

2.447
(0.063)

13.468
(0.295)

1.029
(0.002)

−4.186
(0.000)

−5.283
(0.040)

11.537 −0.032 0.567 1.602

DM2016 1.657
(0.290)

2.481
(0.071)

13.867
(0.204)

1.117
(0.118)

−3.915
(0.000)

−5.166
(0.041)

11.458 0.032 0.432 1.169

BS2015 1.500
(0.027)

2.195
(0.010)

12.091
(0.037)

1.001
(0.003)

−4.184
(0.000)

−5.363
(0.008)

11.722 −0.037 0.465 0.257

WML 0.883
(0.000)

1.224
(0.000)

7.108
(0.000)

0.969
(0.002)

−3.713
(0.002)

−5.372
(0.004)

12.376 −0.036 1.192

Table 5 reports the results. The performance in the post-1950 period is notably stronger
across methods, including the original WML portfolio, especially regarding SR and Sortino ra-
tios. Nevertheless, all time-series capital adjustments still improve upon the WML portfolio.
Consistent with the longer out-of-sample results (see Table 2), our mSSR produces a compara-
ble, statistically equivalent SR, but at the same time, significantly lower exposure to downside
risk. The gap in favour of our mSSR regarding downside risk mitigation is confirmed for all
performance metrics.

Transaction costs. The last column of Table 2 shows that our mSSR strategy implies, on
average, quite conservative leverage. The average ωt is 0.57 for the mSSR, vs 1.5 and 0.97 for
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cdVol and DM2016, respectively. Perhaps not surprisingly, a smoother volatility estimate, such
as the six-month realised variance used by BS2015, helps to reduce turnover (e.g., Barroso and
Detzel, 2021 and Bernardi et al., 2022). The same conclusion can be drawn for alternative
momentum portfolios (see Table 3) and for a monthly capital adjustment (see Table 8).

To investigate the economic cost of turnover across strategies, we evaluate the performance
for all methods after transaction costs.15 Specifically, we implement three different notions of
trading costs: first, we follow DeMiguel et al. (2009) and calculate the evolution of wealth for
strategy i as Wi,t+1 = Wi,tRi,t

(
1− c|ωi,t+1 − ω+

i,t|
)

with Ri,t = 1+Ri,t the gross return at time
t, ω+

i,t = Ri,tωi,t−1 the time t weights after accruing the return (e.g., Detzel et al., 2023) and
|ωi,t+1−ω+

i,t| and c the turnover for a given period and the transaction costs. Thus, a strategy
performance net of transaction costs can be computed as r − c =

Wi,t+1

Wi,t
− 1. Second, we

follow Della Corte et al. (2008) and evaluate the maximum performance fee an investor with
a quadratic utility function would be willing to pay to access a given managed-momentum
strategy. Specifically, for any pair (i, j) of strategies, the fee F arises as the solution of,

T−1∑
t=0

(Ri,t −F)− δ(Ri,t −F)2

2(1− δ)
=

T−1∑
t=0

Rj,t −
δR2

j,t

δ(1− δ)
, (9)

where δ is the degree of relative risk aversion. Third, we consider a measure of abnormal
return as in Modigliani and Modigliani (1997). That is, for any pair of strategies (i, j),
we leverage up or down strategy i to match the downside-risk profile of strategy j, and we
evaluate the annualised abnormal return as follows dAi,j = dV oli(Sortinoi − Sortinoj).

We calculate the fee F relative to the original WML portfolio and consider a risk aversion
of δ = 5 (e.g., Rapach and Zhou, 2013; Pettenuzzo et al., 2014; Bianchi et al., 2021). We
explore different levels of transaction costs, ranging from 0 to 10 bps. The latter represents
a non-trivial execution cost to trade an “ETF-like” momentum portfolio. The cost of build-
ing the actual momentum portfolio is arguably higher, although symmetric for all managed
momentum strategies and therefore irrelevant for our purposes (e.g., DeMiguel et al., 2020).

Table 6 reports the results. Our mSSR strategy produces a higher annualised average return
after transaction costs and commands higher performance fees than all competing strategies.

15Notice that our goal is not to propose an actual trading strategy that can be implemented “off the shelf”,
but rather to show the economic value of expanding the notion of risk to the third moment. Thus, although
simplistic, we believe that considering different cost measures could help shed further light on the incremental
value of accounting for time-varying skewness in momentum return.
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Table 6: Accounting for transaction costs

The table reports the out-of-sample terminal returns net of transaction costs (r − c, DeMiguel et al., 2009),
the performance fee (F) of Fleming et al., 2003), and the downside-abnormal return (dA, Modigliani and
Modigliani, 1997). We report the results for our skewness-managed strategy (mSSR) against a constant down-
side volatility targeting (cdVol) and the same exact implementation of Daniel and Moskowitz (2016) (DM2016)
and Barroso and Santa-Clara (2015) (BS2015) which are based on recursive estimates of the realised variance.
The performance fees are computed for a risk aversion coefficient of 5. All the measures are reported in annual
basis points. The out-of-sample period is from January 1st 1930 to December 31st 2020. Portfolio weights
are generated by recursively estimating the conditional mean and variance of the returns based on the model
parameters. The first three years are used as a burn-in period.

Costs (bps) mSSR cdVol DM2016 BS2015

r − c dA F r − c dA F r − c dA F r − c dA F

0 14.328 18.594 10.595 11.894 13.378 8.198 10.902 12.291 7.189 8.957 9.809 5.297
1 13.914 18.075 10.216 11.706 13.164 7.946 10.862 12.244 7.189 8.962 9.815 5.297
5 12.258 16.010 8.450 10.956 12.313 7.189 10.702 12.059 6.937 8.982 9.839 5.171
10 10.187 13.455 6.432 10.017 11.254 6.180 10.503 11.827 6.685 9.008 9.867 5.171

The performance fee remains largely in favour of mSSR for different levels of transaction costs.
For instance, with 10 basis points of rebalancing costs the abnormal performance dAi,j –
relatively to WML – of the mSSR is 13.3% (annualised), against 11.9%, 11.3% and 9.8% for the
DM2016, BS2015 and cdVol, respectively.

Appendix E reports the results obtained by repeating the economic evaluation of Table 6
for different levels of risk aversion of δ = 2, 7, 15. Interestingly, a time-varying skewness
adjustment becomes even more valuable for a more risk-averse investor. This supports the
intuition that the insurance component represented by the skewness adjustment becomes
more valuable as investors dislike the potential losses of the original WML portfolio even more.

Spanning tests. We estimate a series of factor spanning regressions whereby the daily
return on each adjusted momentum portfolio is regressed onto a host of factors, including the
market, size and value factors from Fama and French (1993), the original WML portfolio, the
dynamic volatility adjustment of Daniel and Moskowitz (2016) and the constant volatility
adjustment of Barroso and Santa-Clara (2015). Table 7 reports the annualised alphas and
corresponding t-stats (in parenthesis).

The first column reports the regression results controlling for the market (Mkt) and the
WML portfolio. The intercept is highly significant for all strategies, with the highest value
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Table 7: Factor spanning regressions

The table reports the results of a series of factor spanning regressions where the dependent variables are the
returns on different managed momentum portfolios based on our skewness-adjusted maximum conditional
Sharpe ratio strategy (mSSR), the original maximum Sharpe ratio adjustment ofDaniel and Moskowitz (2016)
(DM2016), the constant volatility targeting of Barroso and Santa-Clara (2015) (BS2015), and semi-volatility
targeting as proposed by Wang and Yan (2021) and Hanauer and Windmüller (2023). Each portfolio returns
is regressed onto the market and other Fama and French (1993) common risk factors in addition to the original
WML portfolio. The sample size is from January 1st 1930 to December 31st 2020, daily.

Mkt+WML FF3+WML Mkt+cdVol FF3+cdVol Mkt+DM2016 FF3+DM2016 Mkt+BS2015 FF3+BS2015

mSSR 26.374
(13.765)

26.366
(13.762)

15.249
(9.355)

15.234
(9.348)

27.471
(13.749)

27.453
(13.743)

27.923
(13.944)

27.906
(13.939)

cdVol 15.410
(13.961)

15.431
(13.980)

23.521
(12.015)

23.517
(12.015)

23.774
(12.142)

23.773
(12.143)

DM2016 25.254
(12.741)

25.274
(12.751)

22.248
(11.424)

22.265
(11.434)

3.614
(5.306)

3.625
(5.322)

BS2015 22.527
(11.519)

22.535
(11.523)

19.779
(10.269)

19.784
(10.273)

−0.206
(−0.309)

−0.216
(−0.323)

for mSSR (26.3% annualised, t-stat = 13.7). This indicates that the Mkt and WML portfolios
cannot explain the performance of mSSR. The second column adds the size and value factors
as further regressors. All the alphas are again highly significant, with our mSSR strategy
showing the largest intercept (26.3% annualised, t-stat = 13.7). Hence, conventional equity
factors cannot explain the performance of mSSR. Columns 3 and 4 replace the WML portfolio
with the return on the cdVol strategy. The intercepts drop in magnitude but remain highly
significant throughout. This is surprising since cdVol should capture the downside risk expo-
sure. Overall, the evidence suggests that the performance of managed momentum strategies
remains substantially high even after controlling for asymmetric volatility.

The last four columns in Table 7 replace the WML portfolio with the return on either
the Daniel and Moskowitz (2016) or the Barroso and Santa-Clara (2015) strategy. The
results show that these managed momentum portfolios cannot fully explain the return on our
skewness-adjusted strategy. Interestingly, the intercept on BS2015 is no longer statistically
significant when conditioning on the Daniel and Moskowitz (2016) managed portfolio, whereas
the intercept of DM2016 is still significant when conditioning on the Barroso and Santa-Clara
(2015). This confirms that a maximum Sharpe ratio strategy generally subsumes constant
volatility targeting.

Monthly capital adjustment. The performance outlined in Table 2 concerns daily adjust-
ments based on Eq. (7). Specifically, the momentum decile portfolios are rebalanced monthly,
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but the capital adjustment implied by ωt is executed daily. This section investigates the per-
formance across methods for a lower-frequency monthly estimate of ωt. To mitigate the effect
of aggregation from high to lower frequency return in a portfolio context (e.g., Boguth et al.,
2016), for the monthly adjustment, we re-scale and aggregate the estimated conditional mean
and variance from daily to monthly.

Table 8: Monthly capital adjustment

The table reports the performance on our skewness-adjusted maximum conditional Sharpe ratio strategy
(mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and Moskowitz
(2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on aggregating daily recursive
estimates of the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021)
and Hanauer and Windmüller (2023). The capital adjustment in Eq. (7) is implemented monthly instead
of daily. We report in parentheses the bootstrapped p-values for the difference in the performance of mSSR
against each of the alternatives. The out-of-sample period is from January 1930 to December 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.093 2.561 2.807 2.101 −0.525 −0.869 7.936 0.405 0.349 0.684

cdVol 1.292
(0.000)

2.832
(0.326)

3.159
(0.000)

1.490
(0.060)

−0.739
(0.002)

−0.983
(0.655)

9.134 0.027 0.402 1.049

DM2016 1.159
(0.392)

2.311
(0.352)

2.632
(0.550)

1.703
(0.579)

−0.684
(0.095)

−0.982
(0.208)

9.323 0.221 0.547 0.910

BS2015 1.082
(0.869)

1.836
(0.003)

2.053
(0.858)

1.209
(0.069)

−0.841
(0.001)

−1.176
(0.040)

10.957 −0.010 0.506 0.351

WML 0.641
(0.006)

0.877
(0.000)

1.079
(0.001)

0.925
(0.006)

−0.881
(0.005)

−1.326
(0.024)

13.599 −0.092 1.028

Table 8 reports the results for the 12_2 momentum portfolio. Overall, the effectiveness
of the leverage adjustment decreases when implemented monthly; that is, the performance
at a monthly frequency is notably lower. This corroborates the intuition in Novy-Marx and
Velikov (2019); monthly rebalancing reduces the strategy’s profitability due to the signal’s
staleness at a monthly frequency. The same holds in our setting due to the aggregation of
the estimates from daily to monthly. As a result, it is unclear whether a lower-frequency
implementation of Eq. (7) would effectively reduce transaction costs.

Nevertheless, both DM2016 and BS2015 still improve upon the WML portfolio. Interestingly,
the cdVol semi-volatility targeting produces the highest Sharpe ratio. Our mSSR produces
the lowest realised downside risk, as shown by the lowest VaR and ES, the highest RR and
the largest positive return skewness. Although the significance slightly decreases, the results
confirm the evidence based on daily rebalancing. Appendix E.3 reports the results for the
12_7 and 6_2 portfolios. The results are consistent with the 12_2 momentum portfolio.
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6 Implications for asset pricing models
Grundy and Martin (2001) document that the asymmetric nature of the momentum exposure
to market risk is at the core of momentum crashes. We build upon this intuition and at-
tempt to provide a more structured asset pricing interpretation of the uncovered time-varying
skewness risk in momentum return. Consider a state-dependent CAPM specification which
separates up-market and down-market betas for the momentum return rt,

rt = α + βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (10)

with mt ∼ N (µm, σ
2
m) the normally distributed market portfolio and I(mt ≥ µm) (or I(mt <

µm)) an indicator function that takes value one if the market return mt are above (or below)
the mode µm and zero otherwise. Ang et al. (2006) suggest that a conditional CAPM as
Eq. (10) can be interpreted as a reduced form representation of a general equilibrium model
with a disappointment-aversion utility function in which a representative investor has a higher
sensitivity to losses versus gains (e.g., Kraus and Litzenberger, 1976; Gul, 1991; Kahneman
and Tversky, 2013). Conditional on I(·), the systematic component βmt can be characterised
by a two-piece continuous distribution (e.g., Johnson et al., 1995), such that the difference
between the expected value E [βmt] and the mode βµm takes the form (see Appendix G),

E [βmt]− βµm =

√
2

π
(σm − σm) ∝ σm

(
β − β

)
(11)

with σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. Under the assumption of equal betas between market

states, β = β = β, we obtain that E [βmt] = βµm, V [βmt] = β2σ2
m, such that the marginal

distribution of the momentum strategy return is equivalent to a standard CAPM formulation
rt ∼ N (α + βµm, β

2σ2
m + σ2

e). Instead, with asymmetric betas β ̸= β and sign
(
β
)
= sign

(
β
)
,

Eq. (11) suggests that for β < β (β > β) the expected value of the systematic CAPM
component is lower (higher) than the mode (e.g., Arnold and Groeneveld, 1995). As a result,
even if the market return mt and the residual et are both normally distributed, the marginal
distribution of rt can still be negatively (positively) skewed, with the level of skewness that
depends on how far apart are the state-dependent betas.16

16Notice this holds with the sign of the betas being the same, i.e., sgn
(
β
)
= sgn

(
β
)
. Instead, under

sgn
(
β
)
̸= sgn

(
β
)

the distribution of βmt conditional on the indicator I(·) is no longer a split-Normal but a
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Figure 9: State-dependent CAPM and simulated return
This figure reports the marginal distribution of the return on the momentum strategy (y-axis), the return on
the market portfolio (x-axis) and the corresponding joint distribution. return are simulated assuming a two-
piece Normal distribution (see Appendix G). The left panel shows the joint distribution for the full sample,
whereas the middle and the right panels show the joint return distributions for two different timestamps.

(a) Full sample (b) 22/03/1935 (c) 30/09/2008

Appendix F.1 reports the sample estimates of the upside and downside market betas for
daily return on the past losers, past winners, and the WML portfolios. Consistent with Grundy
and Martin (2001), the estimates show that the past losers portfolio is more exposed to upside
market risk (β = 1.36) compared to downside market risk (β = 1.27). The opposite holds
for past winners (β = 1.09, β = 1.22). Thus, the WML strategy shows a sizable, negative
up-market beta (β = −0.27), while the down-market beta is closer to zero (β = −0.04).
We plug these estimates in Eq. (10) and simulate the marginal and joint distribution of the
WML and the market portfolio returns. To isolate the effect of the state-dependent betas on
return skewness, we assume et is normally distributed with mean zero and volatility equal to
one, whereas mt is normally distributed with mean zero and volatility equal to the sample
standard deviation of the market return.

Figure 9 shows the simulated return distribution. The left column shows that the nega-
tive spread in betas can generate a slightly negatively skewed marginal return distribution.
The middle and right columns expand the simulation by calculating β and β for two spe-
cific timestamps within crash periods. The skewness of momentum return markedly differs
from the full sample estimates. For instance, in March 1935 – in the middle of the largest
momentum crash – the average quarterly difference β − β is as large as -1.5. As a result,

mixture of normal distributions with different means.
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the marginal distribution of the momentum return (middle panel) is more negatively skewed
(-0.805). Similarly, in September 2008, during the great financial crisis, the average betas
spread was -1.3, which generated a conditional skewness of -0.529.

6.1 Evidence from a time-varying CAPM

The simulation results suggest that an asymmetric exposure to market risk may have the
potential to rationalize the origin of conditional skewness in momentum return. It is, there-
fore, natural to ask to what extent the pattern of time-varying skewness we document across
alternative momentum factors is just a reflection of potentially time-varying, state-dependent
betas. To answer this question Figure 10(a) shows the sample correlation between the condi-
tional skewness implied by the spread βt−β

t
(see Figure F2) and our estimated time-varying

skewness for the 12_2 portfolio (see Figure 5). The conditional beta estimates are based on
time-varying CAPM with asymmetric betas (see Ang et al., 2006 and Appendix E).

Figure 10: Momentum skewness and aggregate market return
The left panel reports the conditional skewness estimated from our model against the conditional skewness
generated from an asymmetric CAPM based on the simulation study. The right panel compares the conditional
skewness of the WML portfolio and the aggregate market portfolio estimated from our model time-varying
parameter model.

(a) Model-implied vs CAPM-implied skewness of WML (b) Model-implied skewness of the MKT vs WML

A positive correlation (0.39, pval = 0.000) exists between the skewness implied by the
state-dependent CAPM and our estimated conditional skewness. However, such correlation
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flattens during the two major momentum crashes of 1932 (red dots) and 2009 (blue dots). This
suggests that an asymmetric CAPM with normally distributed market return and residuals
is likely not flexible enough to capture the extent of the time variation in the conditional
skewness of momentum return. The reason is twofold. First, the CAPM residuals are not
normally distributed. A set of unreported results shows that the WML portfolio, net of market
risk exposure, is still negatively skewed. Second, the excess return on the market is also not
normally distributed. Table 1 shows that excess market return is negatively skewed, at least
unconditionally (skewness= -0.476, pval = 0.059).

The correlation between the market and momentum conditional skewness is far from ob-
vious. Figure 10(b) shows that the estimates of the conditional skewness of the market and
the WML portfolio are only mildly negatively correlated (light grey line), with the correlation
disappearing once two-year average estimates are compared (magenta line).

The fact that a state-dependent CAPM cannot reconcile the dynamics of return skewness
is instrumental in highlighting one key advantage of our framework. By accounting for the
conditional skewness of the return, our model can parsimoniously summarize sources of non-
normality beyond asymmetric market betas. Indeed, while state-dependent CAPM betas
can capture a fair deal of asymmetry in the return conditional distribution, there is still
a considerable amount of skewness in momentum return that the correlation between the
conditional skewness of the momentum strategy and the market portfolio cannot reconcile.

7 Conclusions
We investigate the dynamic of skewness in equity momentum return through the lens of a
flexible model that features time-varying location, scale, and asymmetry parameters. Empir-
ically, we uncover a pro-cyclical time variation of skewness, which tends to deepen during the
so-called momentum crashes. This has important implications for the dynamic of the risk-
return trade-off in momentum portfolios and, ultimately, for managing the risk associated
with momentum investing.
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Supplementary Appendix for:
Taming Momentum Crashes

This appendix provides an in-depth description of the econometric model and the circular
block bootstrap procedure implemented in Section 5 for performance testing. Specifically, we
provide detailed derivations for the scaled-scores vector and the conditional mean and variance
of the returns under the distributional assumptions outlined in the main text. In addition,
we provide an extensive discussion on the simulation results for the optimal choice of the
block size of the circular block bootstrap procedure. We also report a set of additional results
concerning the time-varying skewness for alternative momentum portfolio constructions and
the sample estimates of the state-dependent CAPM used to simulate momentum returns
based on an asymmetric exposure to market risk (see Section 6). All additional results are
referred to in the main text where appropriate.

A Likelihood-based test for conditional skewness
We outline a likelihood-based test for conditional skewness and its corresponding results. The
basic idea of the test is to assume a given moment is constant in the data-generating process
and then look at the information contained over time in the gradient of the log-likelihood
function (or score) with respect to that moment (see Harvey, 2013). Assume the conditional
distribution of the portfolio returns being a Skew-t of Gómez et al. (2007) with time-varying
location mt and scale σt, but fixed shape parameter ρ. The latter pin down the degree of
asymmetry in the conditional distribution of the returns that is rt|F t−1 ∼ Sktν(mt, σ

2
t , ρ).

The gradient associated with the transformed shape (asymmetry) parameter δ = arctanh ρ

is defined as

∇δ,t =
s (εt) (1− ρ2)

(1 + s (εt) ρ)
wtζ

2
t , (A1)

with ζt = ϵt/σt the standardised residuals ϵt = rt−mt, and wt = (1+ν)/ (ν (1 + s (εt)) ρ+ ζ2t )

the weight given to the squared of standardised residuals at each time t (see Section 3 and
Appendix B.1 for more details).
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By looking at the autocorrelation properties of the score in Eq.(A1), a Lagrange multiplier
principle (LM) can be employed to formally test for the time variation of ρ (see, e.g., Calvori
et al., 2017). More specifically, tests for the time variation of ρ can be carried out using the
score autocorrelation function and implementing Portmanteau (P ) and Ljung-Box (Q) tests
for the null hypothesis of absence of autocorrelation in the score ∇δ,t, i.e., no time variation
in ρ. The optimal lag length for the P and Q tests is selected following the methodology
by Escanciano and Lobato (2009). In addition to the Portmanteau and Ljung-Box tests,
we also report the results from a general test for the null of constant parameters against a
random-walk alternative based on the LM principle as proposed by Nyblom (1989). In our
case, the test statistics read as follows:

N = σ−2
∇ T−2

T∑
j=1

(
T∑

k=j

∇δ,k

)2

, (A2)

where ∇δ,k denotes the score of the distribution with respect to the transformed shape param-
eter δ = arctanh ρ at time k and σ2

∇ represents the sample variance of the score. Harvey and
Streibel (1998) showed that although Nyblom (1989) is regarded as a test against a random
walk alternative, it can also be interpreted as a general test against the alternative hypothesis
of time variation of a given model parameters (see, e.g., Delle Monache et al., 2021).

Table A1 reports the results. The null hypothesis of a constant skewness is strongly
rejected against the alternative of time variation, with test statistics which are well above 100
and p-values below the 0.01 threshold for both the long and the short legs of the momentum
strategy as well as the WML portfolio. The Nyblom test statistic follows a Cramer-von Mises
distribution with a 5% critical value of 0.462. The last column in Table A1 shows that the
Nyblom test suggests that the asymmetry, meaning the shape parameter, of the conditional
distribution of each portfolios and the WML strategy is likely not constant over time.

B Modelling framework
Assume that the return yt is generated by the observation density D(θ, ft), with θ collecting
the static parameters of the distribution and ft a series of time-varying parameters which

2



Table A1: Likelihood-based test for conditional skewness

The table reports the results for a likelihood-based test for the time variation of the conditional skewness in
the returns of the 12_2 momentum portfolio. Here, P is the portmanteau test, Q is the Ljung-Box extension,
and N corresponds to the Nyblom test. The lag length for the Portmanteau and Ljung-Box tests are selected
following Escanciano and Lobato (2009). P and Q are distributed as a χ2

1, while N is distributed as a Cramer
von Mises distribution with 1 degree of freedom. ∗p < 10%, ∗ ∗ p < 5%, ∗ ∗ ∗p < 1%.

Portfolios Autocorrelation tests
P Q N

losers > 100∗∗∗ > 100∗∗∗ 3.374∗∗∗

winners > 100∗∗∗ > 100∗∗∗ 7.991∗∗∗

WML > 100∗∗∗ > 100∗∗∗ 6.751∗∗∗

characterize the first three moments of the conditional distribution:

ft+1 = ft + Ast, t = 1, . . . , T (B1)

where A contains the structural parameters regulating the law of motion of the distribu-
tion parameters, and st containing the likelihood information from the prediction error ε̂t.
Specifically, st = St∇t is the scaled score, with ∇t = J ′

t

[
∂ℓt
∂mt ,

∂ℓt
∂σ2

t
, ∂ℓt

∂ρt

]′
being the gradient

of the log-likelihood function with respect to the (nonlinear transformation of the) location,
squared scale and asymmetry parameters, Jt the Jacobian matrix associated to the non-linear
transformation of the parameters for σt and ρt and

St = I−1
t = −E

(
∂2ℓt

∂ft∂f ′
t

)−1

,

the scaling matrix proportional to the square-root generalized inverse of the Information
matrix It−1.17 Within this framework, the parameters are updated in the direction of the
steepest ascent, in order to maximize the local fit of the model. In the following, we are going
to derive both gradient of the log-likelihood function and the Jacobian matrix in order to
define the scaled-scores vector.

17Refer to Creal et al. (2013) for additional details on this choice.
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B.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values.
For ℓt = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ sktν(mt, σ

2
t , ρt), the

log-likelihood takes the form

ℓt(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2

t −
1 + ν

2
log

[
1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

]
, (B2)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function and ν > 3 are the degrees of freedom. Differentiating
(B2) with respect to location, scale and asymmetry we obtain the gradient vector ∇t =[
∂ℓt
∂m ,

∂ℓt
∂σ2

t
, ∂ℓt
∂ρt

]′
. Recall that εt = yt − mt, ζt = εt

σt
and let

f(mt, σ
2
t , ρt) = 1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

=
ν(1 + s(εt)ρt)2σ2

t + ε2t
ν(1 + s(εt)ρt)2σ2

t

To avoid overburdening the notation, in what follows ∂f(x)
∂x

= f ′
x and a = −1+ν

2
. The score

with respect to the location parameter reads

∂ℓt
∂mt

= wt
ζt
σt

, with wt =
ν + 1

ν (1 + s (εt) ρt)2 + ζ2t
.

Proof. Define
g(mt) = a log f(mt, σ

2
t , ρt),

such that ∂ℓt
∂mt =

∂g(mt)
∂mt = a

f ′
mt

f(mt,σ2
t ,ρt)

. For

f ′
mt = − 2

ν(1 + s(εt)ρt)2σ2
t

εt,
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it follows:

∂ℓt
∂mt

=
1 + ν

2

2

ν(1 + s(εt)ρt)2σ2
t

· εt ·
ν(1 + s(εt)ρt)2σ2

t

ν(1 + s(εt)ρt)2σ2
t + ε2t

=
(1 + ν)

ν(1 + s(εt)ρt)2σ2
t + ε2t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂ℓt
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define
g(σ2

t ) = − log σ2
t

2
+ a log f(mt, σ

2
t , ρt),

such that ∂ℓt
∂σ2

t
=

∂g(σ2
t )

∂σ2
t

= − 1
2σ2

t
+ a

f ′
σ2
t

f(mt,σ2
t ,ρt)

, with f ′
σ2
t
= − ε2t

ν(1+s(εt)ρt)2σ4
t
. It follows that:

∂ℓt
∂σ2

t

= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t

ν(1 + s(εt)ρt)2σ4
t

· ν(1 + s(εt)ρt)2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2t

]
= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t

σ2
t

· 1

ν(1 + s(εt)ρt)2σ2
t + ε2t

]
= − 1

2σ2
t

+
wtζ

2
t

2σ2
t

=
(wtζ

2
t − 1)

2σ2
t

.

The score with respect to the shape parameter reads as

∂ℓt
∂ρt

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t .

Proof. Define
g(ρt) = a log f(mt, σ

2
t , ρt),
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such that ∂ℓt
∂ρt

= ∂g(ρt)

∂σ2
t

= a
f ′
ρt

f(mt,σ2
t ,ρt)

, with f ′
ρt = − 2(s(εt)+ρt)ε2t

ν(1+s(εt)ρt)4σ2
t
. It follows that:

∂ℓt
∂ρt

=
1 + ν

2
· 2(s(εt) + ρt)ε

2
t

ν(1 + s(εt)ρt)4σ2
t

· ν(1 + s(εt)ρt)2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2t

=
(s(εt) + ρt)ε

2
t

(1 + s(εt)ρt)2
wt

σ2
t

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t

.

B.2 Scaled scores

Given we model γt = log σt and δt = atanh(ρt), for the chain rule we have:

∂ℓt
∂γt

=
∂ℓt
∂σ2

t

∂σ2
t

∂γt
,

∂ℓt
∂δt

=
∂ℓt
∂ρt

∂ρt
∂δt

, (B3)

where ∂σ2
t

∂γt
= 2σ2

t and ∂ρt
∂δt

= (1−ρ2t ). We can thus define the vector of interest as ft = (mt, γt, δt)
′

with the associated Jacobian matrix

Jt =
∂(mt, σ

2
t , ρt)

∂f ′
t

=

 1 0 0

0 2σ2
t 0

0 0 1− ρ2t

 . (B4)

The Fisher information matrix is computed as the expected value of outer product of the
gradient vector. Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′
t] =


(1+ν)

(ν+3)(1−ρ2t )σ
2
t

0 4(1+ν)

σt(1−ρ2t )(3+ν)

0 1
2(3+ν)σ4

t
0

4(1+ν)

σt(1−ρ2t )(3+ν)
0 3(1+ν)

(1−ρ2t )(3+ν)

 . (B5)

As a result, the vector of scaled scores reads as:

st = (J ′
tdiag(It)Jt)

−1J ′
t∇t =

 smt

sσt

sρt

 = χ


(1− ρ2t )wtεt

(ν + 1)(wtε
2
t − σ2

t )

s(εt)(1− s(εt)ρt)wt
ε2t
3σ2

t

 . (B6)

with χ = (ν+3)
(ν+1)

and wt =
ν+1

ν(1+s(εt)ρt)2+ζ2t
.
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B.3 Model properties

The scalar factor wt plays a key role as it serves as an implicit weight of the information
contained in the prediction error. We summarise some of its key properties in turn. Figure
B1(a) plots the weights associated with the prediction error for alternative model parametri-
sations. Under a Normal distribution assumption, prediction errors are assumed to carry the
same information regardless of their magnitude, i.e., wt = 1,∀t. When we consider thick tails
but no asymmetry (red line), the weights tend to discount symmetrically extreme prediction
errors, as is typical of Student-t distributions (see, e.g., Delle Monache and Petrella, 2017).
When the distribution is negatively skewed (dashed blue line), positive prediction errors are
less likely and, as such, command a more significant update of the parameters when they oc-
cur. The opposite holds when the distribution is positively skewed (green dashed line); large
negative prediction errors are less likely, and so command a larger update on the parameters.
The larger the asymmetry, i.e., ρt → 1, the larger the asymmetric effect of prediction errors.

The remaining plots display Engle and Ng (1993)’s news impact curve, i.e. how new
information – measured by the standardised prediction error – translates into updates of
the parameters of the model. Figure B1(b) shows that the location parameter updates in
the direction of the prediction error. Updates of the scale parameter (Figure B1(c)) are
positive whenever the prediction error is larger than the scale of the distribution, appropriately
adapted to account for the difference in positive and negative dispersion. Finally, Figure B1(d)
shows that the shape parameter updates in the opposite direction of the prediction error so
that for negative prediction errors, the distribution becomes more left-skewed.

Overall, the “news” contained in a given prediction error depends on how “unlikely” a
priori is such news, given the ex-ante conditional distribution of returns, and whether the
prediction error is perceived to be a tail observation. When the underlying distribution is
fat-tailed, prediction errors that are large – given the scale of the underlying distribution – are
discounted, as they are partially characterised as “outliers” and, as such, are associated with
smaller updates of the underlying distribution. For the location parameter (Figure B1(b)),
this property translates into the typical S-shaped function of the location in contrast with
a classical linear updating in a Gaussian setting (see, e.g., Harvey and Luati, 2014). The
asymmetry of the distribution also plays a key role in mapping the prediction errors onto the
updating mechanism. When the distribution is left-skewed, a positive (negative) prediction
error is ex-ante less (more) likely, and therefore when observed, it commands stronger (weaker)
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Figure B1: Updating weights and news impact curves
The figure reports the weighting scheme implied by wt, and the news impact curve (NICs) for different values
of the prediction error ζt = εt/σt. We consider the Gaussian (black), the Student-t with ν = 5 (red), and
positively (blue) and negatively (green) Skew-t with ν = 5.

(a) Updating weights (b) Location

(c) Scale (d) Shape

revisions in the underlying distribution. The opposite holds for right-skewed returns.

The joint role of the conditional estimates in the updating mechanism of the parameters
allows for the timely detection of shifts in the shape of the conditional distribution of the
returns, while at the same time discounting the effect of outlying observations. In addition,
while the scores for the location and shape parameters are negatively correlated, updates
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of σt are (unconditionally) uncorrelated with revisions of the other parameters. Yet, during
crashes, when prediction errors are large and negative, updates on the scale and the shape
parameters positively co-move so that the conditional distribution of the momentum returns
features negative shifts in the location, increasing dispersion and deepening negative skewness.

B.4 Estimation procedure

A feature of observation-driven models is the straightforward computation of the likelihood
function (see, e.g., Creal et al., 2013; Harvey, 2013). Arellano-Valle et al. (2005) show that a
Skew-t distribution can be expressed as a combination of strictly positive densities. For our
modelling framework, we follow Fernández and Steel (1998) and characterise the conditional
log-likelihood as a two-piece distribution;

ℓt(rt|θ, ft) = const − 1

2
log σ2

t −
1 + ν

2

log
[
1 +

ε2t
ν(1+sgn(εt)ρt)2σ2

t

]
, rt ≥ mt

log
[
1 +

ε2t
ν(1−sgn(εt)ρt)2σ2

t

]
, rt < mt

(B7)

where θ = (ν, A) collects the time-invariant degrees of freedom and the score loadings. Maxi-
mum likelihood estimation of the latent states ft and static parameters θ can be achieved via
a prediction error decomposition (see Blasques et al., 2022). However, given the random-walk
nature of the time-varying parameters, the maximum likelihood estimator tends to put a large
point mass at zero, an issue known as the “pile-up problem” (see, e.g., Sargan and Bhargava,
1983; Anderson and Takemura, 1986; Tanaka and Satchell, 1989; Stock and Watson, 1998).
To address this issue, we discipline the parameter space by introducing a minimum set of
priors on the score loadings and the degrees of freedom, which are quite uninformative in
that any evidence of time variation must reflect strong evidence in the data.

Let aj the jth element on the diagonal of A, ν is the Skew-t degrees of freedom and
f̄0 = [m̄0, δ̄0, γ̄0] collects the initial values of the time-varying parameters. Our prior specifica-
tions for these parameters are as follows: an inverse Gamma prior aj ∼ IG(aκ, bκ) for each
element in the diagonal matrix A, a truncated Gamma prior ν ∼ G(dν , Dν) · I(ν≥3) for the
degrees of freedom, and a multivariate Gaussian f̄0 ∼ N (m0,M0) for the initial values of
the time-varying parameters. The inverse Gamma prior for the score loadings is in line with
the properties of the score-driven filters (for further discussion, see Juárez and Steel, 2010;
Blasques et al., 2015). We set aκ = 3, and bκ = 1, so that a priori the loadings in A are
positive, with a mode of 0.25. This corresponds to a quite uninformative prior centred on the
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possibility of a smooth update of the time-varying moments in Eq. (2).

The hyper-parameters for the Gamma prior on the degrees of freedom ν reflect a rather
uninformative view on the parameters, with dν = 3 and Dν = 5. These values allow to explore
a wide range of feasible values for ν with a mode at 8 (see, e.g., Juárez and Steel, 2010).18

The initial values of the time-varying parameters are drawn from a multivariate Gaussian
distribution, with mean vector m0, and M0, both calibrated over an initial training period of
one year of daily returns. A small time variation embedded into the prior of the latent states
is a prerequisite for the optimality of the score-driven updating (see, Blasques et al., 2014).

The posterior distribution is not available in closed form and is numerically evaluated
based on draws from the priors and the conditional likelihood in Eq. (B7). Specifically, for
each draw θi = (Ai, νi, f i

0) ∼ π (θ) for i = 1, . . . ,M , we simulate the time-varying parame-
ters {f i

t |θi, f i
0}

T
t=0, and evaluate the log-likelihood ℓ(r|θi) =

∑T
t=1 ℓt(rt|θi, f i

t ), such that the
parameters of the model are estimated as θ∗ = argmaxθ ℓ(r|θ); that is, by optimizing the
conditional likelihood given the prior hyper-parameters.

C Moments of the skew-t distribution
In this Section, we provide derivations for the moment of the Skew-t; for further details see
(De Polis, 2023, Chapter 5). In what follow, to simplify the notation, we drop the time
subscript from the time-varying parameters. Consider the Skew-t distribution proposed by
Gómez et al. (2007):

p(y|m, σ, ρ, ν) = C
σ

[
1 +

1

ν

(
y − m

σ(1 + sgn(y − m)ρ)

)2
]− 1+ν

2

, (C8)

where C =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
. Arellano-Valle et al. (2005) shows that any symmetric density on R

can be uniquely determined from a density on R+, and a Skew − t distribution can then
be expressed in terms of strictly positive densities. Specifically, we can re-parametrize the
density in Eq. (C8) as a two-piece distribution (Fernández and Steel, 1998):

18In order to ensure the existence of at least the first three moments, we assume ν > 3.
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p(y|m, σ, ρ, ν) =


C
σ

[
1 + 1

ν

(
y−m
σ+

)2]− 1+ν
2

, y ≥ m

C
σ

[
1 + 1

ν

(
y−m
σ−

)2]− 1+ν
2

, y < m
(C9)

where σ+ = (1 + ρ)σ and σ− = (1− ρ)σ are the scale parameters of the two Half-t densities
on each side

P (y ≥ m) =
σ+

σ+ + σ−
=

1 + ρ

2
, P (y < m) =

σ−

σ+ + σ−
=

1− ρ

2
. (C10)

The two-piece formulation allows to consider separately the two half of the distribution
when taking expectations: for y = m + σζ, where ζ ∼ Sktν(0, 1, ρ), the moments of y are
weighted averages of the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution (see, e.g.,
Gómez et al., 2007).19 Specifically, the r-th moment of ζ is defined as:

E[ζr] = µ̂r =
1

2

[
(1 + ρ)r+1 + (−1)r(1− ρ)r+1

]
dr(ν), (C11)

where dr(ν) =
∫∞
−∞ |ζ|rp(ζ)dζ < ∞ is the rth moment of the Half-t distribution (Johnson

et al., 1995). Starting from Eq. (C11), the moments of y are then computed as:

E[yj] =
j∑

k=0

(
j

k

)
σkmj−kµ̂k.

Therefore, the expected value y is given by:

E[y] = m + µ̂1σ

= m +
4νC(ν)
ν − 1

ρσ, ν > 1 (C12)

19Notice that the Half-t distribution is a special case of the folded-f distribution (Psarakis and Panaretoes,
1990).
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the variance is calculated as:

E[y2] = m2 + 2mσµ̂1 + σ2µ̂2

= m2 + 2mσ
4νC(ν)
ν − 1

ρ+ σ2 (1 + 3ρ2)ν

ν − 2
, ν > 2 (C13)

V ar(y) = E[y2]− E[y]

= m2 + 2mσ
4νC(ν)
ν − 1

ρ+ σ2 (1 + 3ρ2)ν

ν − 2
−
(

m +
4νC(ν)
ν − 1

ρσ

)2

= σ2

(
(1 + 3ρ2)ν

ν − 2
−
(
4νC(ν)
ν − 1

ρ

)2
)

= σ2

[
ν

ν − 2
+

(
3

ν − 2
−
(
4νC(ν)
ν − 1

)2
)
ρ2

]
, ν > 2 (C14)

and the skewness is defined as:

Skew(Y ) = V ar(y)−
3
2 E[y3]

=
g(ν)ρ [ρ2 ((5− 2g(ν)2)ν2 + (10g(ν)2 − 19)ν − 12g(ν)2)− ν(ν + 1)]

(ν − 3)(ν − 2)
(

ν
ν−2

+ h(ν)ρ2
) 3

2

, ν > 3,

(C15)

with g(ν) = 4C(ν)ν
ν−1

and h(ν) = 3
ν−2

− g(ν)2.

D Bootstrap testing procedure
Consider the return on two strategies a and b, ra,t and rb,t respectively, in excess of some
benchmark return. We observe a strictly stationary bivariate return distribution, rt =

[ra,t, rb,t]
′, for which T observations are available. Assume now that for each return se-

ries we wand to evaluate an almost everywhere differentiable function g(θ), such that ∇ =
∂g(θ)
∂θ′

̸= 0, ∀θ (θ ∈ Θ ∧ θ /∈ Θ). We now want to draw inference on g(θ) in order to compare
the performance of the return series. Define d(θ) = ga(θa) − gb(θb), such that θ = [θa, θb]

′,
and let θ̂ be the estimator of θ, such that under (mild) regularity conditions

√
T (θ̂ − θ)

d→ N (0,Ψ) ,
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where Ψ is a symmetric, positive semi-definite covariance matrix. By the Delta method,

√
T (d(θ̂)− d(θ))

d→ N (0,∇Ψ∇′) .

Given Ψ̂, a consistent estimator of Ψ (see, e.g., Andrews and Monahan, 1992; Newey and
West, 1994), the standard error for d(θ̂) is given by

s(d̂) =

√
∇Ψ̂∇′

T
.

Consider now resampling pairs of return series r∗r = [r∗a,t, r
∗
b,t] using a (circular) block

bootstrap method, with block size b and l = ⌊T/b⌋. As it is generally, θ contains sample
moments;20 hence, we can define y∗t , a set of moment conditions of the form y

∗(n)
j,t = r∗j,t−θ

∗(n)
j ,

where (n) indicates the nth element of θj, j = a, b. Therefore,

Ψ̂ =
1

l

l∑
k=0

ζkζ
′
k, (D1)

where ζk =
1√
b

∑b
t=1 y

∗
(k−1)b+t.

D.1 Performance measures

We first consider the benchmark performance measure, the Sharpe ratio, as an instructive
case. For this measure, our results are those of Ledoit and Wolf (2008). We then consider
several measures fit to measure the exposure of a portfolio to downside risks. Specifically,
we consider the Sortino ratio (Sortino and Van Der Meer, 1991; Satchell, 2001), the Value-
at-risk, the Expected Shortfall, the Stable Tail Adjusted Return Ratio (STARR) and the
Rachev ratio (Fabozzi et al., 2005). In what follows we lay down the performance measure,
the gradient and the moment conditions necessary to derive the covariance matrix of d(θ), as
in Eq. (D1).

Sharpe Ratio. Give a time series of returns, the Sharpe ratio is defines as the ratio between
the sample average and the sample standard deviation. Let d(θ) = µa√

γ2
a−µ2

a

− µb√
γ2
b−µ2

b

, where

20Consider the Sharpe ratio: g(θ) = µ√
(γ−µ2)

, then θ = [µ γ], where µ = 1
T

∑
t
rt and γ = 1

T

∑
t
r2t .
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µj =
1
T

∑T
t=0 rj,t, γ2

j = 1
T

∑T
t=0 r

2
j,t, and θ = [µa µb γ

2 γ2]′, so that

∇ =

[
γ2
a

(γ2
a − µ2

a)
3/2

, − γ2
b

(γ2
b − µ2

b)
3/2

, −1
2

µa

(γ2
a − µ2

a)
3/2

, 1
2

µb

(γ2
b − µ2

b)
3/2

]
.

Define µ∗
j = 1

T

∑T
t=0 r

∗
j,t and γ∗2

j = 1
T

∑T
t=0 r

∗2
j,t the bootstrapped first and second moment of

(r∗a,t, r
∗
b,t), and define y∗t = [r∗a,t − µ∗

a, r∗b,t − µ∗
b , r∗2a,t − γ∗2

a , r∗2b,t − γ∗2
b ]′.

Sortino Ratio. The Sortino ratio of Sortino and Van Der Meer (1991) is the ratio of the
average return in excess of some pre-specified threshold m, the so called minimum accepted
return, and a measure of downside volatility, ς. Define δ(rj,t,m) = min(rj,t,m)2 and ςj =
1
T

∑T
t=0 δ(rj,t,m), and let d(θ) = µa√

ςa
− µb√

ςb
, where µj = 1

T

∑T
t=0 h(rj,t,m) with h(rj,t,m) =

rj,t −m, and θ = [µa µb ςa ςb]
′, so that

∇ =

[
1

ςa
, − 1

ςb
, − µa

ς
3/2
a

,
µb

ς
3/2
b

]
.

Define µ∗
j =

1
T

∑T
t=0 h(r

∗
j,t,m) and ς∗j = 1

T

∑T
t=0 δ(r

∗
j,t,m) the bootstrapped mean in excess of

m and second partial-moment of (r∗a,t, r∗b,t), and define

y∗t = [h(r∗a,t,m)− µ∗
a, h(r∗b,t,m)− µ∗

b ,
√
δ(r∗a,t,m)− ς∗a ,

√
δ(r∗b,t,m)− ς∗b ]

′.

Value-at-Risk. Define the α-level Value at Risk (VaR), vαt as

vαj,t ≡ inf{x ∈ R/P (rj,t ≤ x) ≥ α}, (D2)

and let d(θ) = vαa,t − vαb,t, where θ = [vαa,t, vαb,t]
′ and ∇ = [1, −1]. Consider the Hit loss

function, g(rj,t, vαj,t) = I(rj,t < vαj,t)− α; when the VaR is correctly specified, that is when vαj,t

is the α−quantile of the (un-)conditional distribution of the data, we can express it as the
following moment condition

E[g(rj,t, vαj,t)rj,t] = 0,

in that E
[
I(rj,t < vαj,t)

]
= P

(
rj,t ≤ vαj,t

)
= α by Eq. (D2). Hence,

y∗t = [g(r∗a,t, v
α
a,t), g(r∗b,t, v

α
b,t)]

′.
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Expected shortfall & Value-at-Risk. The Basel III accord (Basel Committee on Bank-
ing Supervision, 2010) has shifted the focus from the VaR to the Expected shortfall (eαt , ES),
defined as the expected return on an asset, conditional on the return being below its VaR,

eαj,t =
1

α

∫ α

0

vsj,tds.

The pitfall of this measure is, however, its lack of elicitability, that is the ES is not the
minimizer of the expectation of any loss function, which makes the definition of a suitable
moment condition a difficult task.21 Fissler and Ziegel (2016) show that the VaR and the ES
are jointly elicitable, that is

(V aRα
t , ESα

t ) = arg min
(vαt ,e

α
t )
Et−1 L

FZ
t ,

where LFZ
t = − I(r≤vαt )

eαt
(vαt − rt) +

vαt
eαt

+ log (−eαt ) − 1, where I is an indicator function; then
the loss function differential is

d(θ) = − 1

αeαa,t
I(ra,t ≤ vαa,t)(v

α
a,t− ra,t)+

1

αeαb,t
I(rb,t ≤ vαb,t)(v

α
b,t− rb,t)+

vαa,t
eαa,t

−
vαb,t
eαb,t

+log

(
eαa,t
eαb,t

)
,

with θ =
[
vαa,t, vαb,t, eαa,t, eαb,t

]′. Following Patton et al. (2019), for rj,t ̸= vαj,t :

∇ =

[
λv
a,t

αeαa,tv
α
a,t

, −
λv
b,t

αeαb,tv
α
b,t

, −
λv
a,t + αλe

a,t

α(eαa,t)
2

,
λv
b,t + αλe

b,t

α(eαb,t)
2

]

with λv
j,t = −vαj,t

(
I(rj,t ≤ vαj,t)− vαj,t

)
and λe

j,t =
1
α
I(rj,t ≤ vαj,t)rj,t − eαj,t. Hence,

y∗t =

[
−
λv
a,t

vαa,t
, −

λv
b,t

vαb,t
, λe

a,t, λe
b,t

]′
.

Stable Tail Adjusted Return Ratio. The STARR replaces the denominator of the
Sharpe Ratio with a coherent measure of risk, e.g., the ES. Given all the above, define

d(θ) =
µa

eαa,t
− µb

eαb,t

21For example, the VaR is elicitable by means of the tick loss function; the mean and the median by mean
of quadratic and absolute loss functions, respectively.
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with θ =
[
µa, µb, eαa,t, eαb,t

]′, and

∇ =

[
1

eαa,t
, − 1

eαb,t
, − µa

(eαa,t)
2
,

µb

(eαb,t)
2

]
.

Now, define
y∗t = [r∗a,t − µ∗

a, r∗b,t − µ∗
b , λe

a,t, λe
b,t]

′.

Rachev Ratio. Define the (1− α)-level Expected Longrise (e(1−αt), ES) as

e
(1−α)
j,t =

1

1− α

∫ 1−α

0

vsj,tds,

and consider

d(θ) =
e
(1−α)
a,t

eαa,t
−

e
(1−α)
a,t

eαb,t

with θ =
[
e
(1−α)
a,t , e

(1−α)
b,t , eαa,t, eαb,t

]′
, and

∇ =

[
1

eαa,t
, − 1

eαb,t
, −

e
(1−α)
a,t

(eαa,t)
2
,

e
(1−α)
b,t

(eαb,t)
2

]
.

Now, define
y∗t = [λ̃e

a,t, λ̃e
b,t, λe

a,t, λe
b,t]

′;

where λ̃e
a,t =

1
1−α

I(rj,t ≤ v
(1−α)
j,t )rj,t − e

(1−α)
j,t .

D.2 Simulation study

In this Section we report results for the asymptotic properties of the test derived above. We
consider two different sizes for the simulated history of returns, T = 2500 and T = 5000. We
report the empirical rejection probabilities (erp) for all the loss functions at the α = 1, 5, 10%

for N = 2000 replications and M = 500 bootstrap replication of the data. We consider
three different data generating processes (DGPs): i) Normal iid returns with unit mean
and variance, ii) heavy-tailed returns with unit mean and variance, for which a Student-t
distribution with 5 degrees of freedom is employed, and iii) bivariate t-GARCH(1,1) simulated
from a diagonal BEKK model of Engle and Kroner (1995). All returns are simulated with
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unit mean and variances.

Choice of the block size. Give a set of reasonable block sizes, we select the one that
minimizes the difference between the empirical rejection probability and a specified acceptance
level, generally set a 5%. The procedure is akin to the one of Ledoit and Wolf (2008), who
target coverage levels. We first pre-whiten the data by fitting a parametric linear model to
the data, e.g. a VAR(1), and we bootstrap the residuals by means of Politis and Romano
(1994) stationary bootstrap in order to remove any non-linear dependence not captured by
the linear model. We then generate K = 2000 pseudo-samples from the VAR(1) estimates
and the bootstrapped residuals to compute the empirical rejection probability (or empirical
p-value) as

erp =
1 +

∑
m∈M I(p̂m ≥ p̄)

1 +M
,

where p̂m is the p-value for the mth sample, p̄ is the p-value for the original data and I is
an indicator function. The size properties of the tests are reported in Table D1. Overall, all
tests seem to present adequate sizes, with the exception of the VaRs and ESs appear to be
slightly oversized.

E Additional Results
In this section, we report a set of additional results related to the dynamics of the conditional
volatility and skewness estimates for alternative momentum strategies, as well as additional
robustness checks for the portfolio implementation outlined in Section 5.

E.1 Conditional estimates for alternative momentum factors

Figure E1 presents the estimates of the conditional volatility
√
Vt(rt+1) and skewness Skt(rt+1)

for the short-term momentum 6_2 and intermediate momentum 12_7 strategies. The dynam-
ics of the conditional volatility and skewness for the 12_7 and 6_2 momentum portfolios are
broadly consistent with the benchmark 12_2 implementation (see Figure 5 in the main text).
For instance, both the short and intermediate momentum experience spikes in returns volatil-
ity during the great depression which coincide with deepening negative conditional skewness.

Again, similar to the 12_2 portfolio, conditional skewness tend to deteriorates during
economic recessions while becomes zero, in fact at times positive, during economic expansions,
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Figure E1: Conditional estimates for short-term and intermediate momentum
The plot reports the time-varying volatility (left) and skewness (right) estimates for the 12_7 and 6_2 WML
portfolio returns. The red dashed lines represent the sample mean, whereas green lines highlight 2-year
moving averages of the daily estimates. NBER recession are identified by gray shaded areas, while red shaded
areas highlight momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period
is from January 1st 1927 to December 31th 2020.

(a) 12_7 Volatility (b) 12_7 Skewness

(c) 6_2 Volatility (d) 6_2 Skewness

especially if upturn in economic activity are for prolonged periods. Overall, except for few
nuances, the dynamics of both volatility and skewness is rather consistent across different
momentum portfolios.
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Figure E2: Conditional estimates for momentum based on NYSE breakpoints
The left panel reports the skewness estimates for the 12_2 strategy implemented based on the NYSE break-
points as in Fama and French (1996). NBER recession are identified by gray shaded areas, while red shaded
areas highlight momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The right panel re-
port the correlation between the estimate in the main text and the estimates based on the NYSE breakpoints.
The sample period is from January 1st 1927 to December 31st 2020.
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E.2 Time-series estimates of the location parameter mt

The location parameter mt captures the centre of the distribution and is equivalent to the
conditional mean only under symmetric distributional assumptions – when the returns’ asym-
metry ρt = 0 as from Eq. (4). Figure Fig. E3 reports the estimates of mt for 12_2 momentum
portfolio. The estimates for the 12_7 and 6_2 momentum portfolios are similar (see the
dynamics of conditional skewness in Figure E1) and are available upon request. Two things
emerge: first, the dynamics of the location parameter mt (red line) is much more stable than
the conditional mean Et(rt+1). This implies that the majority of the variation in the dynamics
of expected returns is primarily driven by the interplay between conditional volatility and
skewness (see Figure 8(a)).

Second, there is a major disconnect between mt and the conditional mean Et(rt+1) (black
line). This is particularly pronounced during the momentum crashes of 1932-1939 and 2008-
2009. For instance, while the expected returns from the WML portfolio become largely negative
in the aftermath of the great depression and the great financial crisis, the location mt remains
persistently in positive territory for both periods.22

22Recall that for a given σt, the disconnect Et(rt+1) < mt implies that ρt < 0 (see Eq. (4)).
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Figure E3: Expected returns and the location parameter
The plot reports the time-varying location parameter mt (red line) and the conditional expected returns
as in Equation (4) (black line). We report the values for the WML portfolio (left panel), the past losers
(bottom-right panel) and the past winners (top-right panel) sub-portfolios. NBER recession are identified by
gray shaded areas, while red shaded areas highlight momentum crashes periods, as indicated in Daniel and
Moskowitz (2016). The sample period is from July 1st 1926 to December 31th 2020, daily.

E.3 Additional portfolio results for monthly rebalancing

Table 8 reports the results for the monthly rebalancing for the 12_2 benchmark momen-
tum implementation. In this Section, we report additional monthly performances for the
short-term 6_2 and intermediate 12_7 momentum portfolios (see Section 2 for a description).
Similar to the daily results, the monthly performance across different momentum implemen-
tations is fairly comparable to the benchmark 12_2 momentum portfolio.

This is due to a fairly similar dynamics in the conditional skewness and volatility, which,
except for few nuances during the 2001 burst of the dot-com bubble and the crash over the
great financial crisis, are quite comparable across different momentum implementations.

E.4 Risk aversion

In this Section, we repeat the economic evaluation of Table 6 controlling for different levels
of risk aversion. Table E2 reports the performance fees F for risk aversion levels of 2, 7 and
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15. These levels compare agents with a strong risk aversion to investors prone to take on
more risks. Overall, the main results largely hold: considering time-varying skewness when
maximising the Sharpe ratio delivers the highest performance fees across different levels of
risk aversion. These results suggest hedging for predictable variations in the returns skewness
is economically meaningful, regardless the level of risk aversion.

F Auxiliary results for the asset pricing implications
In this section we report a series of estimates of the conditional CAPM specification as in
Eq. (11), both static and dynamic. These estimates are used to implement the simulation
study in Section 6 which compares the conditional skewness estimates from our model against
a state-dependent CAPM regression.

F.1 State-dependent CAPM estimates

Figure F1 reports the unconditional estimates of the upside and downside market betas for
both the past losers and winners as well as the WML strategy. The left (right) panel reports
the estimates based on daily (monthly) returns. The estimates of the upside, β, and downside,
β betas are based on the following regression:

rit = α + βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The daily estimates show that the losers’ portfolio is more exposed to upside market
risk (β = 1.36) as compared to downside market risk (β = 1.27), in relative terms compared
to the unconditional market beta (β = 1.31). The opposite holds for the winners’ portfolio
(β = 1.09, β = 1.22, β = 1.16), consistent with the findings in Grundy and Martin (2001).
As a result, the WML strategy has a quite sizable and negative up-market beta (β = −0.27),
while the down-market beta is close to zero (β = −0.04). The magnitude of the spreads in
the upside and downside market betas is even higher at the monthly frequency.

Time-varying market betas. We follow Ang et al. (2006), and calculate the downside
market beta over time for the losers, winners portfolios and the WML at different points in
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Figure F1: Static upside vs downside market betas
The figures plot the upside, β, and downside, β, for the losers, winners and WML portfolios give by the
following regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The sample period is from July 1st 1926 to September 30th 2020. The left (right) panel reports the estimates
based on daily (monthly) returns.

(a) Daily (b) Monthly
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time based on a time-varying CAPM with asymmetric betas as follows,

βi

t
=

covt(r̃
i
t+1,min{m̃t+1, 0})

vart(min{m̃t+1, 0})
i = losers, winners, WML, (F1)

where r̃it and m̃t are the demeaned returns for the momentum strategy and the demeaned
excess market returns, respectively (see, e.g., Hogan and Warren, 1974). The denominator
of Eq. (F1) captures the variance of the downside market excess returns, and is generally
referred to as the relative semi-variance. Therefore, high downside betas imply that return is
significantly exposed to market’s downswings. Upside betas β

i

t hold a similar interpretation
and are computed by substituting the min function in Eq. (F1) with the max operator.

Figure F2: Momentum crashes and the exposure to downside and upside risk
The plots report the spread between the upside and downside betas, Bt. The left panel span the 1927-1940
period, while the right panel cover from 2000 to 2020. Gray shaded bands highlight NBER recession. Red
shaded bands indicate momentum crash periods, as indicated in Daniel and Moskowitz (2016).

(a) 1927-1940 period (b) 2000-2020 period

Figure F2 reports the estimates for the spread Bt = β
WML

t − βWML

t
for the periods indicated

as momentum crashes by Daniel and Moskowitz (2016).23 To estimate the time-varying
downside and upside betas for the momentum strategy returns, we follow Bali and Engle
(2010); Tsai et al. (2014) and implement a dynamic conditional correlation (DCC) model as

23For the ease of exposition, the estimates for both the losers and the winners portfolios are not reported
in the main text. They are available upon request to the authors.

23



originally proposed by Engle (2002). For the easy of exposition we report both the daily DCC
estimates of Bt as well as a smoothed version of the estimates based on a quarterly moving
average of the daily estimates. Recessions are highlighted in gray where momentum crashes
are color-coded in red shading. Except few nuances, the spread Bt is primarily negative during
the momentum crash of the 30’s (left panel). The difference between upside and downside
betas tend to spike in 1935 and 1938, although remains persistently large and negative for the
entire decade. The momentum crash of the 2001/2002 (right panel) shows a slightly different
dynamics, with Bt > 0 during the dot-com bubble collapse, which then switch negative
towards the tail of the recession. The momentum crash during the great financial crisis of
2008/2009 is characterised by a large negative spread between upside and downside betas for
the WML portfolio returns. The Bt difference is persistently negative and is as large as -2.5.

G State-dependent betas and returns asymmetry
In this section we provide some simple intuition on how a state-dependent CAPM with
asymmetric market betas can generate asymmetry in the marginal distribution of returns.
Let consider the conditional regression model in Eq.(10),

rt = α + βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (G1)

with mt ∼ N (µm, σ
2
m) the normal distributed market portfolio and I(mt ≥ µm) (I(mt < µm))

an indicator function that takes value one if the market returns are above (below) the mean
µm and zero otherwise. Theoretically, Ang et al. (2006) show that this upside vs downside
CAPM formulation can be rationalised based on a disappointment aversion utility function
that embeds downside risk following Gul (1991). The distribution of βmt conditional on the
indicator I(·) can be defined as a split-Normal (or two-piece Normal) distribution of the form
(see Johnson et al., 1995; del Castillo and Daoudi, 2009),

f (βmt) =

{
C exp

{
− 1

2σ2
m

(
βmt − βµm

)2} if mt ≤ µm

C exp
{
− 1

2σ2
m

(
βmt − βµm

)2} if mt > µm

(G2)
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with C =
√

2
π
(σm + σm)

−1 and σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. Following Wallis (2014), the

expected value of the distribution takes the form

E [βmt] =

√
2

π
(σm − σm) + βµm, (G3)

Notice that for β = β = β, then we have σ2
m = σ2

m = σ2
m, such that E [βmt] = βµm. That

is, the mean and the mode of the conditional distribution of the momentum returns coincide,
i.e., E [rt] = α+ βµm. Similarly, the variance of the split-Normal in Eq.(G2) takes the form ,

V [βmt] =

(
1− 2

π

)(
σ2
m − σ2

m

)2
+ σmσm (G4)

such that for no asymmetry in the betas estimates the first component
(
1− 2

π

)
(σ2

m − σ2
m)

2
=

0, and we are left with V [βmt] =
√
β2σ2

m

√
β2σ2

m = β2σ2
m. As a result, for β = β = β,

and given et ∼ N(0, σ2
e), we obtain that the marginal distribution of the momentum strategy

returns is rt ∼ N (α + βµm, β
2σ2

m + σ2
e). Now let us assume that β ̸= β, and indicator of the

asymmetry of the returns distribution can be defined as the difference between the expected
value E [βmt] and the mode βµm, which is given by

E [βmt]− βµm =

√
2

π
(σm − σm) ∝

√
β
2
σ2
m −

√
β2σ2

m,

= σm

(√
β
2 −

√
β2

)
= σm

(
β − β

)
(G5)

that is, for β = β there is no returns asymmetry, whereas for β < β (β > β) the expected
value is lower (higher) than the mode, that is the marginal distribution of the returns is
negatively (positively) skewed.
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Table D1: Calibration of the bootstrap block size
T 2500 5000

10% 5% 1% 10% 5% 1%
Gaussian-iid

Sharpe 0.100 0.052 0.010 0.081 0.038 0.008
Sortino 0.098 0.056 0.009 0.092 0.039 0.008
VaR(5%) 0.086 0.045 0.008 0.098 0.042 0.011
ES(5%) 0.084 0.042 0.008 0.101 0.051 0.012
ES(5%) 0.093 0.044 0.012 0.101 0.051 0.012
Rachev 0.102 0.051 0.006 0.085 0.037 0.006
STARR 0.104 0.052 0.011 0.087 0.038 0.006

t5-iid
Sharpe 0.086 0.043 0.007 0.100 0.049 0.006
Sortino 0.083 0.041 0.007 0.097 0.052 0.011
VaR(5%) 0.097 0.042 0.009 0.126 0.065 0.016
ES(5%) 0.120 0.054 0.012 0.153 0.094 0.028
ES(5%) 0.118 0.055 0.013 0.148 0.089 0.029
Rachev 0.096 0.047 0.010 0.114 0.063 0.013
STARR 0.086 0.046 0.007 0.098 0.047 0.006

Bivariate t5-GARCH
Sharpe 0.092 0.037 0.006 0.107 0.053 0.012
Sortino 0.091 0.039 0.004 0.105 0.047 0.010
VaR(5%) 0.143 0.083 0.016 0.169 0.097 0.029
ES(5%) 0.130 0.056 0.012 0.143 0.071 0.019
ES(5%) 0.141 0.068 0.019 0.135 0.072 0.014
Rachev 0.092 0.042 0.008 0.104 0.045 0.009
STARR 0.097 0.046 0.008 0.096 0.044 0.008
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Table E1: Monthly rebalancing for alternative momentum portfolios

The table reports monthly returns on our skewness-adjusted maximum conditional Sharpe ratio strategy
(mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and Moskowitz
(2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on aggregating daily recursive
estimates of the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021)
and Hanauer and Windmüller (2023). We report in parentheses the bootstrapped p-values for all performance
measures (see Appendix D). The out-of-sample period is from January 1930 to December 2020. Panel A
reports the results for intermediate momentum 12_7. Panel B reports the results for short-term momentum
6_2.

Panel A: Intermediate momentum 12_7

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.004 2.238 2.914 2.340 −0.485 −0.769 8.340 0.411 0.436 0.771

cdVol 1.389
(0.000)

2.942
(0.188)

3.498
(0.000)

1.785
(0.912)

−0.727
(0.000)

−0.886
(0.020)

8.777 0.055 0.301 1.260

DM2016 1.058
(0.523)

1.959
(0.356)

2.544
(0.551)

1.784
(0.495)

−0.609
(0.081)

−0.928
(0.129)

10.041 0.240 0.541 1.095

BS2015 1.061
(0.534)

1.835
(0.218)

2.181
(0.504)

1.386
(0.306)

−0.780
(0.001)

−1.085
(0.106)

10.749 0.029 0.611 0.405

WML 0.668
(0.137)

0.904
(0.028)

1.393
(0.057)

1.144
(0.043)

−0.745
(0.016)

−1.071
(0.058)

13.750 −0.029 1.251

Panel B: Short-term momentum 6_2

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.015 2.125 2.805 2.256 −0.581 −0.807 8.879 0.347 0.470 0.710

cdVol 1.266
(0.013)

2.484
(0.336)

2.831
(0.008)

1.506
(0.522)

−0.784
(0.006)

−0.998
(0.376)

9.475 0.031 0.824 1.104

DM2016 1.113
(0.329)

2.147
(0.948)

2.417
(0.575)

1.668
(0.715)

−0.728
(0.050)

−1.027
(0.182)

9.635 0.226 0.318 0.841

BS2015 0.964
(0.613)

1.580
(0.103)

1.816
(0.666)

1.154
(0.138)

−0.913
(0.000)

−1.184
(0.069)

11.343 −0.063 1.046 0.365

WML 0.494
(0.008)

0.651
(0.008)

0.844
(0.003)

0.859
(0.012)

−0.852
(0.032)

−1.305
(0.044)

14.110 −0.163 2.117
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Table E2: The role of risk aversion

The table reports the performance fees, F , relative to the managed portfolios for different values of risk
aversion. We consider δ = 1, 7, 15. The fees are computed with respect to the plain WML strategy. All
the measures are reported in annual basis points. The first column reports the level of transaction costs,
expressed in basis points (bps). The sample period is from January 1nd 1927 to December 31th 2020, daily.
Portfolio weights are generated in real-time by recursive forecasts of the conditional mean and variance of the
returns based on the model parameters.

mSSR cdVol DM2016 BS2015

c (bps) δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15

0 12.234 9.586 5.171 9.838 7.189 2.775 8.829 6.180 1.766 6.937 4.162 0.000
1 11.856 9.081 4.793 9.586 6.937 2.523 8.829 6.054 1.766 6.937 4.162 0.000
5 10.090 7.441 3.027 8.829 6.180 1.766 8.703 5.928 1.640 6.811 4.162 0.000
10 7.946 5.297 0.883 7.820 5.171 0.757 8.450 5.802 1.387 6.811 4.162 0.000
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