Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On semi-transitivity of (extended) Mycielski graphs

Humaira Hameed

Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1, 1XH, United Kingdom

ARTICLE INFO

Article history: Received 21 September 2023 Received in revised form 11 July 2024 Accepted 16 July 2024 Available online xxxx

Keywords: Semi-transitive graph Semi-transitive orientation Word-representable graph Mycielski graph Extended mycielski graph

ABSTRACT

An orientation of a graph is semi-transitive if it is acyclic and shortcut-free. An undirected graph is semi-transitive if it admits a semi-transitive orientation. Semi-transitive graphs generalise several important classes of graphs and they are precisely the class of word-representable graphs studied extensively in the literature.

The Mycielski graph of an undirected graph is a larger graph, constructed in a certain way, that maintains the property of being triangle-free but enlarges the chromatic number. These graphs are important as they allow to prove the existence of triangle-free graphs with arbitrarily large chromatic number. An extended Mycielski graph is a certain natural extension of the notion of a Mycielski graph that we introduce in this paper.

In this paper we characterise completely semi-transitive extended Mycielski graphs and Mycielski graphs of comparability graphs. We also conjecture a complete characterisation of semi-transitive Mycielski graphs. Our studies are a far-reaching extension of the result of Kitaev and Pyatkin on non-semi-transitive orientability of the Mycielski graph $\mu(C_5)$ of the cycle graph C_5 . Using a recent result of Kitaev and Sun, we shorten the length of the original proof of non-semi-transitive orientability of $\mu(C_5)$ from 2 pages to a few lines.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There is a long line of research dedicated to the theory of semi-transitive graphs (equivalently, word-representable graphs, e.g. see [2–5] and references therein). The motivation to study these graphs is their relevance to algebra, graph theory, computer science, combinatorics on words, and scheduling [4]. In particular, semi-transitive graphs generalise several fundamental classes of graphs (e.g. *circle graphs*, 3-*colourable graphs* and *comparability graphs*).

This paper is a contribution to the theory of semi-transitive graphs, where we characterise completely semi-transitive extended Mycielski graphs and Mycielski graphs of comparability graphs to be introduced next.

1.1. Mycielski graphs

The *Mycielski graph* of an undirected graph is a larger graph that preserves the property of being triangle-free but enlarges the chromatic number. These graphs were introduced by Mycielski in 1955 (see [8]) to prove the existence of triangle-free graphs with arbitrarily large chromatic number. Since its introduction, Mycielski graphs attracted much attention in the literature from various points of view; see, for example, [1] and references therein.

Let the *n* vertices of a given graph *G* be $v_1, v_2, ..., v_n$. The *Mycielski* graph $\mu(G)$ contains *G* itself as a subgraph, together with n + 1 additional vertices: a vertex u_i corresponding to each vertex v_i of *G* and an extra vertex *x*. Each vertex u_i is

https://doi.org/10.1016/j.dam.2024.07.028

E-mail address: humaira.hameed@strath.ac.uk.

⁰¹⁶⁶⁻²¹⁸X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

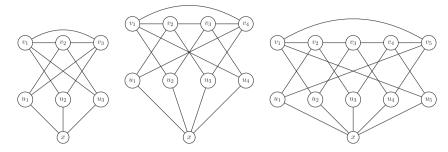


Fig. 1. The graphs $\mu(C_3)$, $\mu(C_4)$, and $\mu(C_5)$.

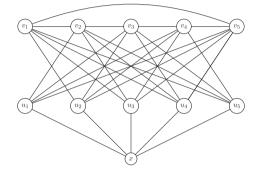


Fig. 2. The graph $\mu'(C_5)$.

connected by an edge to x so that these vertices form a subgraph in the form of a star $K_{1,n}$. In addition, for each edge $v_i v_j$ of G, the Mycielski graph includes two edges, $u_i v_j$ and $v_i u_j$.

Thus, if *G* has *n* vertices and *m* edges, $\mu(G)$ has 2n + 1 vertices and 3m + n edges. The only new triangles in $\mu(G)$ are of the form $v_i v_j u_k$, where $v_i v_j v_k$ is a triangle in *G*. Thus, if *G* is triangle-free, so is $\mu(G)$. The graphs $\mu(C_3)$, $\mu(C_4)$, and $\mu(C_5)$ are in Fig. 1, where C_n is the cycle graph on *n* vertices.

1.2. Extended Mycielski graphs

The *extended Mycielski graph* $\mu'(G)$ is obtained from a Mycielski graph $\mu(G)$ by connecting every vertex u_i to every vertex v_j except for when i = j. For example, $\mu'(C_5)$ can be found in Fig. 2. Note that for a complete graph K_n , $\mu'(K_n) = \mu(K_n)$.

It is easy to see that if G has n vertices and m edges then $\mu'(G)$ has 2n + 1 vertices and $n^2 + m$ edges. For $n \ge 3$, $\mu'(G)$ contains triangles even if G is triangle-free.

1.3. Semi-transitive graphs

An orientation of a graph is *semi-transitive* if it is acyclic (there are no directed cycles), and for any directed path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$ either there is no edge between v_0 and v_k , or $v_i \rightarrow v_j$ is an edge for all $0 \le i < j \le k$. An induced subgraph on vertices $\{v_0, v_1, \ldots, v_k\}$ of an oriented graph is a *shortcut* if its orientation is acyclic and non-transitive, and there is the directed path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$ and the edge $v_0 \rightarrow v_k$ called the *shortcutting edge*. A semi-transitive orientation can then be alternatively defined as an acyclic shortcut-free orientation. A non-oriented graph is *semi-transitive* if it admits a semi-transitive orientation.

The following results are important for us.

Lemma 1 ([6]). Suppose that an undirected graph *G* has a cycle $C = x_1x_2\cdots x_mx_1$, where $m \ge 4$ and the vertices in $\{x_1, x_2, \ldots, x_m\}$ do not induce a clique in *G*. If *G* is oriented semi-transitively, and m - 2 edges of *C* are oriented in the same direction (i.e. from x_i to x_{i+1} or vice versa, where the index m + 1 := 1) then the remaining two edges of *C* are oriented in the opposite direction.

A source (resp., sink) in a directed graph is a vertex with no incident to it edges oriented towards (resp., from) it.

Theorem 2 ([7]). Suppose that a graph G is semi-transitive, and v is a vertex in G. Then, there exists a semi-transitive orientation of G where v is a source (or a sink).

Relevant to our paper, Kitaev and Pyatkin [6] proved that $\mu(C_5)$ is non-semi-transitive. In Section 3.1 we use Theorem 2 to shorten the length of the original proof of non-semi-transitive orientability of $\mu(C_5)$ from 2 pages to a few lines.

1.4. The format of a proof of non-semi-transitivity

Proving that a given graph is not semi-transitive often involves going through all possible extensions of partial orientations of the graph and showing that none of them results in a semi-transitive orientation. Lemma 1 and Theorem 2 are of great importance here because they allow us to reduce dramatically the number of orientations to be considered. We refer to [7] for more details about the approach.

By a "line" of a proof we mean a sequence of instructions that directs us in orienting a partially oriented graph and necessarily ends with detecting a shortcut showing that this particular orientation branch will not produce a semi-transitive orientation. The idea is that if no branch produces a semi-transitive orientation then the graph is non-semi-transitively orientable.

Each proof begins with assumptions on orientations of certain edges, and there are four types of instructions:

- "B $a \rightarrow b$ (Copy x)" means "Branch on edge ab, orient the edge as $a \rightarrow b$, create a copy of the current version of the graph except orient the edge ab there as $b \rightarrow a$, and call the new copy x; leave Copy x aside and continue to follow the instructions". The instruction B occurs when no application of Lemma 1 is possible in the partially oriented graph.
- "MCx" means "Move to Copy x", where Copy x of the graph in question is a partially oriented version of the graph that was created at some point in the branching process. This instruction is always followed by an oriented edge *a* → *b* reminding on the directed edge obtained after application of the branching process.
- " $Oa \rightarrow b(Cabc)$ " means orient the edge ab as $a \rightarrow b$ in the cycle abc to avoid a directed cycle. If instead of a triangle we see a longer cycle, then we deal with an application of Lemma 1 to a cycle where all but two edges are oriented in one direction, and one of the remaining two edges is oriented in the opposite direction.
- "Oa \rightarrow b Oc \rightarrow d (Cxyz \cdots)" means that Lemma 1 is applied to cycle xyz \cdots to create new directed edges, $a \rightarrow b$ and $c \rightarrow d$.

Each line ends with "S: $xy \cdots z$ " indicating a shortcut with the shortcutting edge $x \rightarrow z$ is obtained.

1.5. Organisation of this paper

In Section 2 we discuss semi-transitivity of extended Mycielski graph $\mu'(G)$ and characterise it completely in Theorem 4, our main result in this paper. In Section 3 we consider semi-transitivity of Mycielski graph $\mu(G)$ and characterise it completely for comparability graphs in Theorem 6. Section 3 also provides short proofs of non-semi-transitive orientability of the graphs $\mu(C_3)$, $\mu(C_5)$ and $\mu(C_7)$; the longer proofs of non-semi-transitivity of $\mu(C_9)$ and $\mu(C_{11})$ can be obtained (and verified) using the software [9]. In Section 4 we provide concluding remarks and conjecture a complete characterisation of semi-transitive Mycielski graphs.

2. Semi-transitivity of $\mu'(G)$

The following theorem is important in proving our main result.

Theorem 3. The graph $\mu'(C_{2k+1})$ is non-semi-transitive for all $k \ge 1$.

Proof. Suppose a semi-transitive orientation of $\mu'(C_{2k+1})$ exists. By Theorem 2 we can assume that 1' is a source. We distinguish four cases.

Case 1. $1 \rightarrow 2 \rightarrow 3$; see Fig. 3 and its caption for an argument leading to a contradiction.

Case 2. $1 \leftarrow 2 \rightarrow 3$; see Fig. 4 and its caption for an argument leading to a contradiction.

Case 3. $1 \leftarrow 2 \leftarrow 3$; see Fig. 5 and its caption for an argument leading to a contradiction.

Case 4. $1 \rightarrow 2 \leftarrow 3$; see Fig. 6 and its caption for an argument leading to a contradiction.

Hence, we conclude that no semi-transitive orientation for $\mu'(C_{2n+1})$ exists. \Box

The main result in this paper is the following theorem.

Theorem 4. The graph $\mu'(G)$ is semi-transitive if and only if G is a bipartite graph.

Proof. Suppose that *G* is *not* a bipartite graph. Then *G* must contain an odd cycle. A minimal odd cycle in *G* is an induced odd cycle, namely C_{2k+1} for some $k \ge 1$. Then, $\mu'(G)$ contains $\mu'(C_{2k+1})$ as an induced subgraph, so by Theorem 3, $\mu'(G)$ is not semi-transitive.

Suppose that *G* is a bipartite graph with *n* vertices. Orient *G* transitively from one part to the other so that the longest directed path in such an orientation will be of length 1. Extend this transitive orientation of *G* to a semi-transitive orientation of $\mu'(G)$ by letting *x* be a source and orienting edges $z \to y'$ for all $z, y \in \{1, 2, ..., n\}$ (the longest directed path in such an orientation is of length 2, so no shortcut is possible and clearly the orientation is acyclic). Hence, $\mu'(G)$ is semi-transitive in this case. \Box

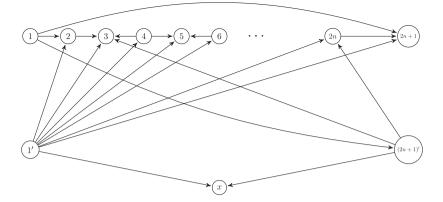


Fig. 3. A subgraph of the graph $\mu'(c_{2n+1})$ in Case 1, for which the proof goes as follows: $04 \rightarrow 3$ (C1'234) $01 \rightarrow (2n+1)' O(2n+1)' \rightarrow 3$ ($C123(2n+1)') O(2n+1)' \rightarrow (2n+1)' O(2n+1)' \rightarrow (2n+1)' \rightarrow (2n+1$

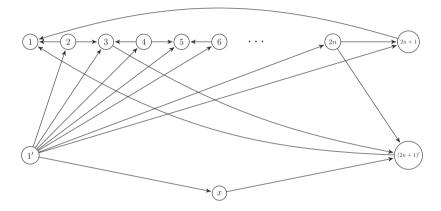


Fig. 4. A subgraph of the graph $\mu'(C_{2n+1})$ in Case 2, for which the proof goes as follows: $O(2n + 1) \rightarrow 1$ (C1'21(2n + 1)) $O4 \rightarrow 3$ (C1'234) $O4 \rightarrow 5$ (C1'345) $O6 \rightarrow 5$ (C1'456)... $O(2n) \rightarrow (2n + 1)$ (C1'(2n - 1)(2n)(2n + 1)) $O(2n) \rightarrow (2n + 1)' O(2n + 1)' \rightarrow 1$ (C1(2n + 1)(2n)(2n + 1)') $Ox \rightarrow (2n + 1)' (C1'(2n)(2n + 1)'x) Oi \rightarrow (2n + 1)' (C1'(2n + 1)'x) Vi \in \{2, 3, ..., 2n - 1\}$ S: 23(2n + 1)'1.

A direct corollary to Theorem 4 is the following statement, where P_n is the path graph on *n* vertices.

Corollary 5. $\mu'(P_n)$ and $\mu'(C_{2k})$ are semi-transitive for all $k, n \ge 1$ and $\mu'(K_n)$ is not semi-transitive for $n \ge 3$.

Proof. Clearly, P_n and C_{2k} are bipartite graphs, while K_n is not (it contains a triangle), and we obtain the desired result by Theorem 4. \Box

3. Semi-transitivity of $\mu(G)$

Unlike the case of extended Mycielski graphs, we cannot classify completely semi-transitivity of $\mu(G)$, even though we conjecture such a classification in Section 4. However, we can characterise semi-transitive $\mu(G)$ in the case when G is a comparability graph.

Theorem 6. Let G be a comparability graph. Then $\mu(G)$ is semi-transitive if and only if G is bipartite.

Proof. If *G* is not bipartite, it contains a triangle, so $\mu(G)$ contains $\mu(C_3) = \mu'(C_3)$ as an induced subgraph, and hence $\mu(G)$ is not semi-transitive by Theorem 3.

If *G* is bipartite then orient *G* transitively (from one part to the other). The longest directed path in such an orientation is of length 1. Extend this transitive orientation of *G* to a semi-transitive orientation of $\mu(G)$ by letting *x* be a source and

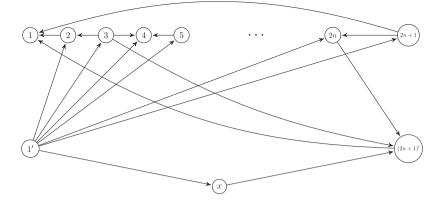


Fig. 5. A subgraph of the graph $\mu'(C_{2n+1})$ in Case 3, for which the proof goes as follows: $03 \rightarrow 4$ (C1'234) $05 \rightarrow 4$ (C1'345)... $0(2n + 1) \rightarrow (2n)$ (C1' $(2n - 1)(2n)(2n + 1)) 0(2n + 1) \rightarrow 1$ (C121' $(2n + 1)) 0(3 \rightarrow (2n + 1)' 0(2n + 1)' \rightarrow 1$ (C123 $(2n + 1)') 0x \rightarrow (2n + 1)'$ (C1' $(3(2n + 1)'x) 0(2n) \rightarrow (2n + 1)'$ (C1'(2n)(2n + 1)'x) S: (2n + 1)(2n)(2n + 1)' 1.

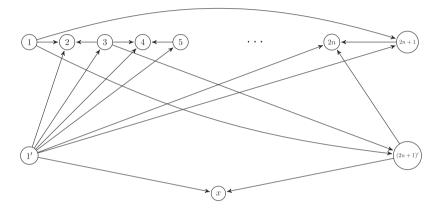


Fig. 6. A subgraph of the graph $\mu'(C_{2n+1})$ in Case 4, for which the proof goes as follows: $O3 \rightarrow 4$ (C1'234) $O5 \rightarrow 4$ (C1'345) $O5 \rightarrow 6$ (C1'456)... $O(2n + 1) \rightarrow (2n)$ (C1'(2n - 1)(2n)(2n + 1)) $O1 \rightarrow (2n + 1)$ (C1'(2n + 1)(2n)(2n + 1)) $O1 \rightarrow (2n + 1)(2n)(2n + 1)' \rightarrow (2n)$ (C1(2n + 1)'(2n)(2n + 1)') $O(2n + 1)' \rightarrow (2n + 1)' \rightarrow (2n$

orienting edges $z \rightarrow y'$ for all $z, y \in \{1, 2, ..., n\}$ (assuming *G* has *n* vertices). Hence, $\mu(G)$ is semi-transitive in this case. \Box

As an immediate corollary to Theorem 6, we get the following result.

Corollary 7. $\mu(P_n)$ and $\mu(C_{2k})$ are semi-transitive for all $k, n \ge 1$ and $\mu(K_n)$ is not semi-transitive for $n \ge 3$.

Proof. The same proof as that of Corollary 5, with Theorem 4 replaced by Theorem 6.

3.1. Semi-transitivity of $\mu(C_n)$

By Corollary 7, $\mu(C_{2k})$ is semi-transitive for all $k \ge 1$. Unlike the case of $\mu'(C_{2k+1})$, we cannot completely describe semi-transitivity of $\mu(C_{2k+1})$, even though we conjecture non-semi-transitivity for all $k \ge 1$. Using the software [9], for the graphs $\mu(C_3)$, $\mu(C_5)$, $\mu(C_7)$, $\mu(C_9)$ and $\mu(C_{11})$ we have 1, 2, 4, 12 and 30 line proofs, respectively. Next, we present the proofs for $\mu(C_3)$, $\mu(C_5)$ and $\mu(C_7)$, and refer to [9] for producing the longer proofs for $\mu(C_9)$ and $\mu(C_{11})$ that can be verified within reasonable time. In all these proofs, for C_{2k+1} , we label vertex i' by i + 2k + 1, for $1 \le i \le 2k + 1$, and xby 4k + 3, and also we assume, without loss of generality, that

- (i) x = 4k + 3 is a source (by Theorem 2);
- (ii) the edges 12 and 23 are oriented as $1 \rightarrow 2 \rightarrow 3$ (because in an acyclically oriented odd cycle, we must have a directed path of length 2; the rest is given by symmetry).

The non-semi-transitivity of the graphs $\mu(C_3)$, $\mu(C_5)$ and $\mu(C_7)$ is proved as follows (of course, $\mu'(C_3) = \mu(C_3)$ and Theorem 3 can be applied).

• Graph $\mu(C_3)$:

 $01 \rightarrow 3$ (C132) $01 \rightarrow 5$ $05 \rightarrow 3$ (C1532) $01 \rightarrow 6$ (C1675) $02 \rightarrow 6$ (C1623) $02 \rightarrow 4$ (C2674) $03 \rightarrow 4$ (C1342) S: 7534

- Graph μ(C₅) (the original, much longer proof can be found in [6]):
 1. 01→7 07→3 (C1732) 01→10 (C1(10)(11)7) 09→3 (C39(11)7) B2→8 (Copy 2) 02→6 (C28(11)6) 01→5 05→6 (C1562) 05→9 (C59(11)6) 05→4 04→3 (C3954) 0(10)→4 (C1(10)45) 04→8 (C2843) S: (11)(10)48
 2. MC2 8→2 08→4 04→3 (C2843) 06→2 (C28(11)6) 0(10)→4 (C4(10)(11)8) 05→4 01→5 (C1(10)45) 06→5 (C1562) 05→9 (C3954) S: (11)659
- Graph $\mu(C_7)$:

1. $01 \rightarrow 9 \ 09 \rightarrow 3 \ (C1932) \ 01 \rightarrow (14) \ (C1(14)(15)9) \ 0(11) \rightarrow 3 \ (C3(11)(15)9) \ B2 \rightarrow (10) \ (Copy \ 2) \ 02 \rightarrow 8 \ (C2(10)(15)8) \ 01 \rightarrow 7 \ 07 \rightarrow 8 \ (C1782) \ 07 \rightarrow (13) \ (C7(13)(15)8) \ B5 \rightarrow (13) \ (Copy \ 3) \ 05 \rightarrow (11) \ (C5(13)(15)(11)) \ 05 \rightarrow 4 \ 04 \rightarrow 3 \ (C3(11) \ 54) \ 04 \rightarrow (10) \ (C2(10)43) \ 04 \rightarrow (12) \ (C4(12)(15)(10)) \ 06 \rightarrow (12) \ 05 \rightarrow 6 \ (C4(12)65) \ 07 \rightarrow 6 \ (C5(13)76) \ 0(14) \rightarrow 6 \ (C1(14)67) \ 0(11) \rightarrow 5 \ (C5(13)(15)(11)) \ 0(12) \rightarrow 6 \ (C6(14)(15)(12)) \ 0(12) \rightarrow 4 \ 04 \rightarrow 5 \ (C4(12)65) \ 04 \rightarrow 3 \ (C3(11)54) \ 04 \rightarrow (10) \ (C2(10)43) \ S: \ (15)(12)4(10)$ **3.** MC2 (10) $\rightarrow 2 \ 0(10) \rightarrow 4 \ 04 \rightarrow 3 \ (C2(10)43) \ 08 \rightarrow 2 \ (C2(10)(15)8) \ 0(12) \rightarrow 4 \ (C4(12)(15)(10)) \ B6 \rightarrow (14) \ (Copy \ 4) \ 06 \rightarrow (12) \ (C6(14)(15)(12)) \ 06 \rightarrow 5 \ 05 \rightarrow 4 \ (C4(12)65) \ 05 \rightarrow (11) \ (C3(11)54) \ 05 \rightarrow 13 \ (C5(13)(15)(11)) \ 07 \rightarrow (13) \ 06 \rightarrow 7 \ (C5(13)76) \ 01 \rightarrow 7 \ (C1(14)67) \ 08 \rightarrow 7 \ (C1782) \ S: \ (15)(12)(12)) \ 0(13) \rightarrow 7 \ (C7(13)(15)8) \ 0(13) \rightarrow 5 \ 05 \rightarrow 6 \ (C5(13)76) \ 05 \rightarrow 4 \ (C4(12)65) \ 05 \rightarrow (11) \ (C3(11)54) \ 05 \rightarrow 13 \ (C1782) \ 0(12) \rightarrow 6 \ (C6(14)(15)(12)) \ 0(13) \rightarrow 7 \ (C7(13)(15)8) \ 0(13) \rightarrow 5 \ 05 \rightarrow 6 \ (C5(13)76) \ 05 \rightarrow 4 \ (C4(12)65) \ 05 \rightarrow (11) \ (C3(11)54) \ S: (15)(13)5(11)$

4. Conclusion

In this paper we completely characterised semi-transitive extended Mycielski graphs (in Theorem 4) and Mycielski graphs obtained from comparability graphs (in Theorem 6). We believe that a complete characterisation of Mycielski graphs is identical to that of extended Mycielski graphs, which we state as the following conjecture.

Conjecture 1. The graph $\mu(G)$ is semi-transitive if and only if G is a bipartite graph.

Because of Theorem 6, only the case of non-comparability graphs need to be considered, and Conjecture 1 will be true if the following conjecture is true.

Conjecture 2. The graph $\mu(C_{2k+1})$ is non-semi-transitive for all $k \ge 1$.

In this paper, we verified Conjecture 2 for $k \le 3$ (and omitted the longer proofs for k = 4, 5 produced by the software [9]).

Acknowledgements

We are grateful to the anonymous referees for their helpful comments, which have improved the presentation of this paper.

References

- E.Z. Bidine, T. Gadi, M. Kchikech, Independence number and packing coloring of generalized Mycielski graphs, Discuss. Math. Graph Theory 41 (3) (2021) 725–747.
- [2] M.M. Halldórsson, S. Kitaev, A. Pyatkin, Semi-transitive orientations and word-representable graphs, Discrete Appl. Math. 201 (2016) 164–171.
- [3] S. Kitaev, A comprehensive introduction to the theory of word-representable graphs, Lect. Not. Comput. Sci. 10396 (2017) 36-67.
- [4] S. Kitaev, V. Lozin, Words and Graphs, Springer, 2015.
- [5] S. Kitaev, A. Pyatkin, On representable graphs, J. Autom. Lang. Combin. 13 (1) (2008) 45-54.
- [6] S. Kitaev, A. Pyatkin, On semi-transitive orientability of triangle-free graphs, Discuss. Math. Graph Theory 43 (2) (2023) 533-547.
- [7] S. Kitaev, H. Sun, Human-verifiable proofs in the theory of word-representable graphs, RAIRO Theor. Inform. Appl. 58 (2024) 10, Special Issue: Randomness and Combinatorics - Edited by Luca Ferrari & Paolo Massazza. 10pp.
- [8] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955) 161–162.
- [9] H. Sun, Software available at personal.strath.ac.uk/sergey.kitaev/human-verifiable-proofs.html.