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Abstract

Background: Telecare and telehealth are important care-at-home services used to support individuals to live more independently
at home. Historically, these technologies have reactively responded to issues. However, there has been a recent drive to make
better use of the data from these services to facilitate more proactive and predictive care.

Objective: This review seeks to explore the ways in which predictive data analytics techniques have been applied in telecare
and telehealth in at-home settings.

Methods: The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) checklist was adhered to alongside Arksey and O’Malley’s methodological framework. English language papers
published in MEDLINE, Embase, and Social Science Premium Collection between 2012 and 2022 were considered and results
were screened against inclusion or exclusion criteria.

Results: In total, 86 papers were included in this review. The types of analytics featuring in this review can be categorized as
anomaly detection (n=21), diagnosis (n=32), prediction (n=22), and activity recognition (n=11). The most common health
conditions represented were Parkinson disease (n=12) and cardiovascular conditions (n=11). The main findings include: a lack
of use of routinely collected data; a dominance of diagnostic tools; and barriers and opportunities that exist, such as including
patient-reported outcomes, for future predictive analytics in telecare and telehealth.

Conclusions: All papers in this review were small-scale pilots and, as such, future research should seek to apply these predictive
techniques into larger trials. Additionally, further integration of routinely collected care data and patient-reported outcomes into
predictive models in telecare and telehealth offer significant opportunities to improve the analytics being performed and should
be explored further. Data sets used must be of suitable size and diversity, ensuring that models are generalizable to a wider
population and can be appropriately trained, validated, and tested.
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Introduction

Technologies can play a role in addressing the challenges
associated with supporting people to live longer independently
at home. Telecare services have existed since the 1970s and are
systems designed to support vulnerable individuals living in
their homes, enabling them to maintain their autonomy while
ensuring protection from any anomalous situations that may
arise [1]. Telecare devices have gone through many iterations
since their introduction as simple user-triggered alarms and now
include, for example, bed occupancy sensors and automatic fall
detectors [1]. Today, telecare systems can work as lifestyle
monitors, collecting data relating to the individual and their
home environment in real time. Telehealth services are used in
the management of long-term conditions such as heart disease
or diabetes. Users are provided with equipment, such as vital
signs monitors, to record blood pressure, heart rate, or blood
glucose levels, for example. These data are shared with care
providers to allow remote assessment of the well-being of an
individual and to intervene if necessary.

Technology-enabled services have been a feature of care at
home for a number of years and the demand for these services
remains high. In Scotland alone, there are over 129,000 people
(2.4% of the total population) who make use of a telecare service
or community alarm [2], while an estimated 1.8 million people
across the whole of the United Kingdom (2.7% of the total
population) use either telecare or telehealth services [3]. In the
United States, a total of 2.3 million veterans used telehealth
services in 2022, representing more than a third of all veterans
receiving care from the Department of Veterans Affairs [4].

Newer telecare and telehealth devices collect increasing amounts
of data from a variety of connected sensors and systems.
However, most services respond to an anomaly once it has been
identified and do not intelligently use the data they receive to
identify those at higher risk of an adverse event in order to
pre-emptively plan what an individual may require. There are
significant benefits to more proactive services, such as a
reduction in secondary care use, including ambulance callouts
or eventual hospital admissions [5,6].

Recent policy has highlighted a desire to shift telecare and
telehealth services toward a more proactive model. The UK
Government state—in their plan for Digital Health and Social
Care—that anticipatory care promoting prevention through
machine learning–facilitated data analysis will be routinely
implemented by 2028 [7]. This has similarly been highlighted
in a number of other countries including Australia, Canada, and
New Zealand [8-10].

This scoping review, therefore, seeks to identify and explore
the ways in which predictive data analytics techniques have
been applied in the use of community-based telecare and
telehealth devices and services in order to identify the current
gaps and opportunities that exist for the future use of predictive
analytics in telecare and telehealth.

Methods

This review was conducted and presented in accordance with
the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
2020 checklist [11]. The protocol was informed by the
methodological framework proposed by Arksey and O’Malley
[12].

Inclusion or Exclusion Criteria
This review considered any study using quantitative methods
relating to the predictive use of data analytics in the fields of
telecare and telehealth. Qualitative studies were excluded. The
Population, Concept, and Context (PCC) framework was
applied. Database searches were conducted in August 2022 and
restricted to papers published within 10 years of the initial
searches being conducted. Only papers published in the English
language were considered.

Population
Papers focusing on any and all users were included. All
populations of users (anyone using a telecare and telehealth
device or systems) including both adult and child services were
valid for inclusion since the focus of this review was on the
methods of analytics being applied, rather than the specific
reason for accessing telecare or telehealth.

Concept
Any telecare or telehealth innovation that gathers or generates
data and electronically communicates it for use in an analytical
manner was valid for inclusion. This could be “passive”
technology, such as sensors and wearables, or “active”
technology where data are intentionally entered into a device
by a user. Papers investigating devices, which do not directly
monitor a health element of an individual, such as an educational
app, were excluded. Any data analytics that make inference or
predictions from the data they receive were included in this
review. This includes diagnosis, classification, and anomaly
detection and does not exclusively consider predictions of future
events. Additionally, this review only considers telecare and
telehealth devices related to a somatic condition, that is, physical
condition of the body. Papers focused on mental health and
loneliness, for example, were excluded because these conditions
may require a significantly different management approach.

Context
Any paper which had a “care in the community” setting was
suitable for inclusion (patient’s own home, assisted living
facilities, and sheltered accommodation). In-patient and
non–home-based settings were excluded with the exception of
papers that focus on technologies clearly designed for at-home
use that have thus far only been tested on individuals in an
in-patient setting.

Study Type
All reviews (systematic, literature, and scoping) were excluded
as this would cause duplicate data to be reviewed and could
lead to bias through overreporting. Any paper outlining an
entirely conceptual framework and not detailing on how it would
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work in practice was excluded. The review also excluded
editorials, summaries, and opinion pieces.

Databases Searched
Databases relevant to health and social care—MEDLINE
[OVID], Embase [OVID], and Social Science Premium
Collection [ProQuest]—were searched.

Search Strategy
The following 2 key domains were identified for inclusion in
the search strategy: data analytics and telecare or telehealth (see
Table 1). Search terms that were deemed most applicable to
each database were applied. MeSH (Medical Subject Headings)
terms and free-text entries were considered as appropriate.
Boolean operators such as “AND,” “OR,” and truncation codes
were used to refine and improve searches. A copy of the full
search strategy employed while searching the Medline database
can be found in Multimedia Appendix 1.

Table 1. Synonyms considered during literature searches for review.

SynonymsSearch term domains

Data analytics • Data analytics
• Big data
• Health analytics
• Electronic data capture
• Data management system
• Machine learning
• Data analysis
• Data mining

Telecare or telehealth • Telecare
• Telehealth
• Remote health care services
• Remote monitoring
• Telemonitoring
• Telecommunication
• Advanced assistive technology

Study Screening
Results from each database search were imported to EndNote
[13] where duplicates were removed. Studies were uploaded to
Covidence [14] for screening. Title and abstract screening were
completed by 6 reviewers (ML, NW, ED, DK, MR, and LL).
Every paper was screened independently by at least 2
researchers, with conflicts resolved through discussion. A third
reviewer was consulted when agreement could not be reached.

Full-text versions of the accepted papers were obtained for
full-text screening. There were 537 papers considered for
full-text screening by the lead author. Of these 537,
approximately 15% (n=80) were screened collaboratively by
the lead author (EA) and 2 other reviewers (NW and DK).
Interrater agreement (all 3 reviewers coming to the same
conclusion on inclusion or exclusion) was categorized through
the following thresholds: <70%=poor, 70%-79%=fair,
80%-89%=good and ≥90%=excellent [15]. Of the papers that
were collaboratively reviewed by all 3 researchers, there was
an interrater agreement of 81%. This was a sufficient level of
agreement for the remaining full-text papers to be independently
screened by the primary author only. A second opinion was
sought by the primary researcher during full-text screening when
required.

Data Charting Process
A data extraction table was created in Microsoft Excel by the
primary author. The data extraction table was piloted by the
primary author for the first 10 papers before a discussion with
secondary authors was conducted to ensure the appropriateness

of the data being extracted. These discussions helped shape the
table further with modifications made so that all relevant pieces
of information were extracted. Data extracted related to key
study characteristics, data analyzed in the paper, the technology
employed, and the analytics techniques used.

Data Items and Synthesis of Results
Data were collected on paper characteristics (eg, title, authors,
year of publication, location of publication, and country of
origin) and study characteristics (eg, study design, stage of
implementation, study setting, primary or secondary analysis,
participant description, duration of study, and dropouts). Data
were also captured relating to the technology in use (eg, what
the technology is designed to assist with, the technology being
employed, and its function), the data used in the analyses (eg,
data streams, where the data are sent, and what it is being used
for), and the methods of analyses employed (eg, the statistical
method of analysis, the actions taken as a result of the analysis
and outcome measures). Information on the key findings from
each study and any potential limitations with the studies were
also collected. A summary of the data extracted for each paper
can be found in Multimedia Appendix 2.

Results

A total of 86 published papers were included in the review. A
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) flowchart of the full screening process
completed for this review can be found in Figure 1. Of the 86
selected papers, approximately one-third of papers (n=28)
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considered telecare services, with the other two-thirds
considering telehealth services (n=58).

The data analytics tasks employed in the studies reviewed (with
reference to Banaee et al [16]) can generally be categorized
into: anomaly detection (n=21, 24%), prediction (n=22, 26%),

and diagnosis and decision-making (n=32, 37%). Additionally,
this review identified a fourth data analytics task, which relates
to activity recognition systems (n=11, 13%). Table 2 provides
a breakdown of the papers, categorized by the type of data
analytics task applied.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram outlining the full screening process.

Table 2. Categories of data analytics in included papers.

ReferencesStudies, nType of data analytics applied

[17-48]32Diagnosis and decision-making

[49-70]22Prediction

[71-91]21Anomaly detection

[92-102]11Activity recognition

The most common areas of focus for overall technology systems
were general monitoring systems (n=14, 16%) and activity
recognition systems (n=11, 13%). The majority of the included
papers focused on the prevention, detection, treatment, or
monitoring of a specific health condition (n=53, 62%). Of these,

the most commonly studied was Parkinson disease (n=12, 14%),
followed by conditions of the cardiovascular (n=11, 13%) and
respiratory systems (n=8, 9%). Table 3 lists the number of
papers considered by the paper’s focus, split between technology
systems and by health condition.
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Table 3. Focus of papers included in review, grouped by monitoring systems, and by health conditiona.

ReferencesStudies, n

Focus of Paper (Technology System)

[30,53,55,59,71,73-75,80,84,85,88,90,91]14General monitoring system

[92-102]11Activity recognition system

[51,70,86,89,100]5Falls monitoring system

Focus of Paper (Health Condition)

[20,21,28,32,40,41,43,44,47,48,76,77]12Parkinson disease

[23,24,27,46,57,63,67,68,70,82,83]11Cardiovascular system (heart disease, heart failure, atrial fibrillation, cardiovascular
disease, blood pressure, and anticoagulation)

[49,56,58,60-62,69,79]8Respiratory system (lung transplant, chronic obstructive pulmonary disease, and
asthma)

[26,29,35,78]4Sleep apnea

[39,64,65,81]4Diabetes (including prediabetes)

[22,25,31]3Poststroke rehab

[18,33]2Cognitive assessment or dependence

[36,54]2Weight or diet

[37,45]2Multiple sclerosis

[17]1Craniosynostosis

[19]1Gait

[34]1Pressure injuries

[38]1Alzheimer disease

[42]1Typhoid

[50]1Cancer

[52]1Pancreatectomy

[66]1COVID-19

[72]1Knee arthroplasty

[87]1Pain management

aTable 3 does not sum to 86 as there are a small number of papers that have more than one area of focus.

Studies featuring primary data sources accounted for just over
half of the papers included (n=46, 53%). There were a further
36 papers (42%) that used data originating from secondary
sources, such as data gathered over the course of a separate
experiment or trial that was then applied to future studies, while
4 papers (5%) used a combination of both primary and
secondary sources [27,41,85,99]. There were a total of 3 papers
that focused on the predictive analytics of data that has been
routinely collected in telehealth practice, while there were no
such telecare papers [31,42,68]. Every paper reviewed was
either in a pilot or feasibility study or was undergoing
proof-of-concept tests.

Table 4 displays the different types of technologies featured in
this review. The most common technologies were wearable
sensors (n=38, 44%). The majority of the papers (n=68, 79%)
used at least 1 type of sensor—be it wearable, environmental
or motion or pressure, smartphone, or 3D motion scanners.
Other technologies included self-reported symptoms via
smartphone apps (n=17, 20%) and vital signs monitoring (n=11,
13%). These technologies do not map neatly onto the data
analytics tasks shown in Table 2. For example, wearable sensors
feature in papers that consider diagnosis and decision making,
anomaly detection, prediction, and activity recognition tasks.
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Table 4. Technology featured in papers under reviewa.

Studies, nTechnology used

38Wearable sensors

17Patient-reported outcomes via app

16Environmental/pressure/motion sensors

11Vital signs monitoring

10Smartphone sensors

43D motion scanners

2Computer or phone-based testing

2Virtual glove

1Virtual knee sleeve

1Video recording

1Voice recording

1Images

aTable 4 does not sum to 86 as a number of papers featured the usage of more than one technology.

Machine learning (ML) techniques were the most commonly
applied method of analysis of the data collected in the studies
reviewed (n=76, 88%). Table 5 breaks down the ML techniques
that have been reported in at least 2 papers in this review,
highlighting the variety of different possible methods of analysis.
For papers that consider multiple different ML methods, only
the technique found to be most accurate has been selected. Other
methods of analysis employed in this review were rules-based

inference systems (n=4, 5%) and nonmachine learning
algorithms (n=3, 3%). The most commonly applied ML methods
were decision trees (n=14, 16%), followed by neural networks
(n=12, 14%) and support vector machines (n=11, 13%).
Additionally, there are a number of papers (n=16, 21%) that
consider highly bespoke algorithms, employed in 1 instance
only, which do not feature in Table 5.

Table 5. Machine learning techniques applied in relevant papers.

Studies, nMachine learning technique

14Decision trees

12Neural networks

11Support vector machines

8Random forests

6Ensemble (combination of models)

5Logistic regression

2Hidden Markov Models

2k-Nearest neighbors

There were 68 papers (79%) in this review that reflected on
potential limitations with their studies. Of these, 2 limitations
were identified across multiple papers: small sample or study
sizes (n=32, 47% of papers reporting limitations) and the issue
of bias (n=13, 19% of papers reporting limitations). In total,
there were only 2 included papers that considered the calculation
of suitable sample sizes for their studies [31,79].

The main limitation identified in the papers reviewed is that a
significant number of papers are trained on very small data sets

or samples. In total, there were 32 papers that acknowledged
this as an issue. The other limitation that was identified a
significant number of times was the possibility of the
introduction of bias to the models. Bias presents a similar issue
to small sample sizes as it can invalidate the findings of a study,
as the model is trained on a group that is not representative of
the wider population of interest. The types of bias identified in
this review can be found in Table 6.
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Table 6. Sources of bias identified by researchers.

ReferencesStudies, nType of bias

[51,71,83,93,100]5Technology trialed on young, healthy individuals

[18,26,39,54]4Female dominated data set

[24]1More complete data received from healthier individuals

[44]1Participants almost all White and college educated

[59]1Participants all recruited from one church in urban area

[67]1Male-dominated data set

Discussion

Within this review, the data analytics approaches can be
categorized, with reference to Banaee et al [16], as: anomaly
detection, prediction, and diagnosis or decision-making.
Additionally, a fourth analytics category, activity recognition
systems, has been identified. Table 2 features a breakdown of
the analytics approaches employed in the reviewed papers.

Diagnosis and decision-making systems were the most
commonly occurring data analytics task performed in the
literature (n=32, 37%), while systems designed to identify
anomalous events that have already taken place accounted for
21 reviewed papers (24%). Systems designed to make temporal
predictions—identifying anomalies or events before they
occur—only accounted for 22 of the papers reviewed (26%).
This branch of analytics approaches is of critical importance to
researchers and care providers due to the potential health care
savings that could be made through the timely and proactive
identification and resolution of anomalies before they occur.
As such, it is expected that in the future, studies focusing on
predicting anomalous events will be more frequently applied
in the field of telecare and telehealth. This is supported by recent
policy documents highlighting aspirations to move toward more
proactive and predictive models of care [7-10].

The final identified branch of data analytics tasks is activity
recognition systems (n=11, 13%). These systems typically use
a classification model to identify the activity performed (eg,
walking and falling), which is very relevant in the field of
telecare but found rarely in the literature. A few studies show
how such systems could be advanced toward more predictive
anomaly detection [92,100] but they do not currently have a
feedback loop whereby the recognition of an event taking place
leads to an action by the care provider. This is of critical
importance if aiming to identify people at risk of an adverse
event and take preventative measures and is likely to become
more commonly applied in telecare and telehealth moving
forward.

Analytics Focus
This review also highlighted that there has been significantly
more research into predictive analytics in telehealth (n=58)
compared to telecare (n=28). Telehealth data may be more
suitable to the application of predictive analytics because they
are often more structured and numerical in nature whereas social
care data more frequently rely on unstructured case notes.

Studies which considered a system or technology aimed at a
specific disease or condition made up the majority of papers
identified, with the most common disease of focus being
Parkinson disease [31-42]. The extensive focus on Parkinson
disease in research may be attributed, in part, to its features and
symptoms and their suitability for being measured by sensors
and then modeled by data analytics techniques. For example,
slowness of movement, uncontrollable shaking, and gait
problems are very common symptoms of Parkinson disease and
are all well suited to being captured through wearable sensors.
Such remote monitoring or assessment is also useful in diseases
like Parkinson disease where clinical features of the disease
may be intermittent in the early stages and thus may not be
present during a scheduled assessment [103].

Patient-Reported Outcomes
While patient-reported outcomes (PROs) were one of the more
commonly featured tools in this review (n=17, 20%), they are
not commonly used in telecare predictive data analytics models
(n=3/28 telecare papers, 11%). PROs can provide more nuanced
information than solely using clinical indicators which can lead
to an underestimation of the impact on a patient in combination
with an overestimation of the effectiveness of treatment being
provided [104,105]. As such, there is an argument to be made
for further use of PROs in predictive data analytics models,
especially in the field of telecare.

Including PROs in predictive modeling is challenging as it
involves the integrating both objective and subjective data.
However, this integration can enhance model results by
capturing the true reported experiences and outcomes of patients.
Indeed, evidence shows that PRO measurements are of
comparable accuracy to many objective clinical measures [106].
Appropriate testing, validation, and re-evaluation of PROs can
help improve the quality and consistent collection of data while
the move toward standardization of PROs through the use of
tools such as the National Institute of Health’s Patient-Reported
Outcome Measurement Information System (PROMIS) can
enable a rise in data quality levels across the board, facilitating
a greater integration of PROs in predictive modeling work [107].

Use of Routinely Collected Data
Routinely collected data can be defined as data that has not been
specifically captured for research purposes. There are only 3
studies featured in this review using data that have been
routinely collected in real-world health and care practice, with
all of these papers considering telehealth systems [31,42,68].
From a telehealth perspective, a lack of use of routinely collected
data makes sense due to these systems focusing on highly
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specific features that need to be extracted about a given
condition or illness. As such, the data considered in these
systems tend to originate from bespoke, highly targeted data
collection methods.

However, a significant amount of data is being generated by
providers of telecare services globally as they deliver care, and
the application of data analytics in these real-world data sets
needs to be explored further than it has been to date. One key
barrier to the analytical use of routinely collected telecare data
is that these data are typically siloed in different locations, with
systems lacking interoperability. For example, call handling
data are frequently maintained in a different system than other
social care data, resulting in the outcomes of calls being
inaccessible to social care organizations. This has been identified
by the Scottish Government as being a key issue preventing the
use of data-driven care [108].

Additionally, work must be done to improve other issues
surrounding the use of routinely collected data such as patient
consent and data governance and security [109]. If researchers,
care providers, and any commercial suppliers in control of these
rich data sources can collaboratively overcome these identified
issues, then a whole new avenue for the use of predictive data
analytics will be opened.

Limitations Within Studies
Limitations noted by researchers were typically specific to the
technology employed. These limitations include low quality
data being captured [84]; the technology being uncomfortable
to wear and with a short battery life [86], and there being a
limited number of sensors employed [93]. Limitations related
to the analytics techniques included low impact falls being
missed by a model [89], large volumes of missing values [61],
and a model that struggled to differentiate between an individual
sitting and standing [101].

The main limitation identified in this review is that a significant
number of papers are trained on very small data sets or samples.
In total, there were 32 papers (47% of the total papers reporting
limitations) that acknowledged this as an issue. This is a critical
problem as having a small sample size could undermine the
legitimacy of the findings of the paper—particularly when the
outcome of interest is rare. Small sample sizes make it harder
to accurately train, validate, and test ML models with the
findings less conclusive and less reliable.

To ensure that the strongest evidence base possible sample size
calculations should be conducted prior to the study, however
only two of the papers featured in this review reported prior
sample size estimation [31,79]. This may be attributed to the

pragmatic nature of recruitment, where it is difficult to recruit
sufficient numbers of individuals with a certain condition, but
it remains critical for ensuring the validity of the findings.

The other limitation that was identified a significant number of
times was the possibility of the introduction of bias to the
models, as can be seen in Table 6. Bias could invalidate study
findings as the model is trained on a group that is not
representative (eg, gender, age) of the target population meaning
that its performance may not translate in reality. In the field of
telecare and telehealth, it is critical that data sets consider
individuals of appropriate age—generally elderly—and that
disease-specific systems have been trialed on individuals with
the illness or condition of interest. For example, a study using
young, healthy volunteers to classify falls—and other
activities—requires participants to simulate falls [100]. This
may have an impact on the accuracy of the model, and a data
set featuring genuine falls captured by elderly individuals would
be significantly more appropriate. The key sources of bias
identified in this review are the use of exclusively young, healthy
adults to trial technologies that are designed for an older
population and data sets, which are dominated by women.

Limitations of This Review
The quality of the studies selected for inclusion in this review
was not assessed using any official appraisal tool. This is typical
of a scoping review, which seeks to synthesize the available
literature rather than provide a systematic analysis; however,
this means that the quality of the papers featured in this review
cannot be guaranteed. Another limitation of this review is that
it may have missed commercially developed data analytics tools
that have been implemented in practice, as these may not
necessarily be documented in research literature. Finally, only
papers available in the English language were considered, which
may preclude a number of relevant papers from this review.

Conclusions
Predictive data analytics have been widely used in the field of
telecare and telehealth but all of the studies featured in this
review are still small-scale pilot studies and must be extended
to larger trials. Additionally, opportunities for predictive
analytics revolving around routinely collected data and PROs
should be explored further. Using larger and more diverse “real
world” data will enable models to be built that have less bias,
can predict more accurately, and could be adapted more widely
within other telecare or telehealth settings. Ultimately,
appropriate consideration of these factors could lead us to more
predictive and preventative data driven models of telecare and
telehealth.
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