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ABSTRACT
We model permanent and transitory changes of the predictive density of U.S. GDP growth. A substantial
increase in downside risk to U.S. economic growth emerges over the last 30 years, associated with the
long-run growth slowdown started in the early 2000s. Conditional skewness moves procyclically, implying
negatively skewed predictive densities ahead and during recessions, often anticipated by deteriorating
financial conditions. Conversely, positively skewed distributions characterize expansions. The modeling
framework ensures robustness to tail events, allows for both dense or sparse predictor designs, and delivers
competitive out-of-sample (point, density and tail) forecasts, improving upon standard benchmarks.
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1. Introduction

The Global Financial Crisis and the subsequent recession left
policymakers with several new challenges to face. In a world
of persistently sluggish growth, subject to infrequent but deep
recessions, the idea of central bankers as “risk managers” gained
renewed popularity (see, e.g., Cecchetti 2008). In this environ-
ment, policy makers pursuing a “plan for the worst, hope for
the best” approach rely on downside risk measures to assess the
distribution of risk around modal forecasts. Yet, gauging the
degree of asymmetry of business cycle fluctuations remains a
challenging task, and even more so it is to reliably assess the
time variation of downside risk. In addition, sound economic
policy should consider the evolution of secular macroeconomic
trends in pursuing the long-run goals of price stability and sus-
tainable economic growth. In this article, we introduce a gener-
alized, comprehensive framework fit to provide policy guidance
on the developments of downside risks, tracking permanent
and transitory changes in the conditional distribution of GDP
growth.

We provide novel evidence in support of time-varying condi-
tional asymmetry of GDP growth’s distribution. Despite uncon-
ditional asymmetry remains unsupported by the data, condi-
tional skewness, and thus downside risk to economic growth,
exhibits significant time variation. Motivated by this evidence,
we introduce a novel, flexible methodology that allows us to
track and predict time-varying skewed Student-t (Skew-t) con-
ditional densities, where the time variation of the location, scale,
and asymmetry parameters is driven by the score of the pre-
dictive likelihood function (Creal, Koopman, and Lucas 2013;
Harvey 2013), as well as by a set of observed predictors. The
latter allow us to explore to what extent downside risk to eco-
nomic growth reflects imbalances arising in financial markets
(Adrian, Boyarchenko, and Giannone 2019). When assessed
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based on its out-of-sample performance, our model delivers
well calibrated predictive densities, improving upon competitive
benchmarks in terms of point, density and tail forecasts, as well
as leading to timely predictions of the odds of forthcoming
recessions.

We provide novel evidence on the permanent and transi-
tory evolution of macroeconomic downside risk. Over the last
30 years, skewness has decreased steadily, implying a higher
exposure to downside risk, which partially accounts for the
slowdown in long-run growth observed since the early 2000s.
Similarly, we document that the fall in macroeconomic volatility
since the mid-1980s, the so called Great Moderation, reflects a
significant reduction of upside volatility, with downside volatil-
ity remaining stable over the same period. Over the short-
term, conditional skewness varies procyclically, so that at the
onset of downturns, business cycle exhibits significant nega-
tive skewness, while expansions are characterized by positively
skewed distributions. Therefore, the well-documented counter-
cyclicality of GDP growth’s volatility largely reflects increasing
downside volatility during recessions. The extreme realizations
of the pandemic quarters are captured through movements in
volatility and skewness, allowing the model to remain remark-
ably stable and suggesting that such outcomes were, to some
extent, tail events.

We show that the inclusion of the four subcomponents of the
National Financial Conditions Index (NFCI, Brave and Butters
2012), capturing risk, credit, leverage and nonfinancial leverage
developments, improves the out-of-sample forecasting accuracy
of our model, in particular during recessions. Financial deepen-
ing during expansions is associated with positive GDP growth’s
skewness, whereas tightening of financial conditions, especially
the build-up of household debt, consistently predicts down-
side risk episodes. Although aggregate measures succeed in
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summarizing a large amount of data, concerns that information
relevant for assessing risk can remain undetected persist. To
this end, we investigate whether different patterns of sparsity
can arise in predicting different features of the conditional
distribution of GDP growth. We follow the “shrink-then-
sparsify” approach of Hahn and Carvalho (2015), where sparsity
is achieved by means of the Signal Adaptive Variable Selector
(SAVS) of Ray and Bhattacharya (2018).1 The build-up of
financial institutions’ and households’ leverage, as well as credit
conditions, receive the least shrinkage over the full sample. We
also show that indicators of the balance sheet of the intermediary
sector (Adrian and Shin 2008), as well as growing imbalances in
the housing market (see, e.g., Gertler and Gilchrist 2018) were
important to timely assess increasing downside risks ahead and
during the financial crisis. Processing the signal from a large
panel of financial predictors leads to improvements in short-
term predictions, especially during 2020.

Our results highlight the importance of accounting for
asymmetric business cycle fluctuations. These can emerge
through nonlinearities in the transmission of Gaussian shocks
(see Fernández-Villaverde and Guerrón-Quintana 2020), or
reflect conditionally skewed shocks hitting the economy
(as in Bekaert and Engstrom 2017; Salgado, Guvenen, and
Bloom 2019). Our results emphasize (i) the necessity to
distinguish between “good” and “bad” uncertainty, which can
potentially impact economic activity in opposite directions
(Segal, Shaliastovich, and Yaron 2015), (ii) the need to account
for the nonlinear relationship between financial conditions
and credit availability, and the distribution of GDP growth
for policy monitoring and stabilization policy design (Adrian
et al. 2020), and (iii) that the fall in trend-skewness of economic
growth, and the associated increase of downside risk over the
last three decades, emerge as salient features of the data that
need to be accounted for by theoretical macroeconomic models
(see, e.g., Jensen et al. 2020).

1.1. Related Literature

This article builds on the growing literature exploring the
asymmetry characterizing business cycle fluctuations, and the
relationship between real economic activity and financial condi-
tions. Giglio, Kelly, and Pruitt (2016) and Adrian, Boyarchenko,
and Giannone (2019) uncover a significant negative correlation
between financial conditions and the lower quantiles of the
conditional distribution of future economic growth, by means
of quantile regressions. We introduce a novel approach based
on the modeling of the parameters of a Skew-t distribution.
Our approach is based on a rich, yet parsimonious structure,
and directly provides conditional densities. Our model captures
persistence in the skewness of the distribution of GDP growth,
consistently with the term structure of growth-at-risk displaying
stronger asymmetry for the short- than for the medium-
run (Adrian et al. 2022), and with the Survey of Professional
Forecasters’ short-term density predictions (Ganics, Rossi, and
Sekhposyan 2020). Differently to other contributions (see, e.g.,
Adrian, Boyarchenko, and Giannone 2019; Plagborg-Møller

1Huber, Koop, and Onorante (2021) note that in this setting sparsity is not an
artifact of strong a priori beliefs.

et al. 2020), we model permanent and transitory changes of the
distribution of GDP growth. This is essential to recover well-
known stylized facts, such as the Great Moderation (McConnell
and Perez-Quiros 2000; Stock and Watson 2002) and the fall in
long-run growth (Antolin-Diaz, Drechsel, and Petrella 2017; Eo
and Morley 2022), and to uncover negative, decreasing business
cycle skewness over the last 30 years.

A number of recent contributions have called into ques-
tion the presence of asymmetry in business cycle fluctuations
(see, e.g., Carriero, Clark, and Marcellino Forthcoming). Our
approach allows for, but does not impose, skewness in the con-
ditional distribution. Yet, we document significant variation
in the asymmetry of GDP growth. Allowing for time-varying
asymmetry leads to substantial gains in out-of-sample forecasts
and downside risk predictions over standard volatility models,
whose competitiveness has recently been highlighted by Clark
and Ravazzolo (2015) and Brownlees and Souza (2021).

Existing models for conditional skewness rely on ad hoc
laws of motion for the time-varying parameters, and the
asymmetry is updated as a function of higher-order powers
of the residuals (Hansen 1994; Harvey and Siddique 1999).
We, instead, rely on the score-driven framework put forward
by Creal, Koopman, and Lucas (2013) and Harvey (2013),
which readily accommodates parameters’ time variation under
different distributional assumptions (Koopman, Lucas, and
Scharth 2016). Hence, parameters update according to (highly)
nonlinear functions of past prediction errors, depending,
among other, on the shape of the conditional distribution.
Thus, not only the updating mechanism adapts to the local
properties of the data, but it is also robust to the presence
of extreme realizations, contrary to updates based on higher-
order powers of the residuals. Within the score-driven setting,
to the best of our knowledge, we are the first to rely on
Bayesian estimation methods. This allows us to jointly tackle
parameters’ proliferation and overfitting, as well as incorporate
estimation uncertainty when assessing the predictions of the
model.

1.2. Structure

The remainder of the article is organized as follows. Section 2
provides evidence of time-varying business cycle asymmetry.
Section 3 presents the model, the estimation approach and the
forecasting procedure. In Section 4 we discuss the features of the
conditional distribution of GDP growth, and their relation to
financial predictors. Section 5 reports the out-of-sample forecast
and downside risk prediction evaluation. In Section 6 we inves-
tigate the predictive ability of the large set of financial indicators.
Section 7 concludes.

2. Motivating Evidence

Assessing the degree of skewness of GDP growth is notoriously
challenging. Over the 1973–2020 (1973–2019) sample, uncon-
ditional skewness is −2.58 (−0.42), but one cannot reject the
null of symmetry using the Bai and Ng (2005) test. However,
the absence of skewness in the unconditional distribution, does
not imply conditional distributions being symmetric as well
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Table 1. Score-based tests for time variation.

Time-varying Time-varying
Location Location & scale

Q Q∗ N Q Q∗ N

Scale2 7.187∗∗∗ 7.296∗∗∗ 0.979∗∗∗
Shape 8.497∗∗∗ 8.626∗∗∗ 0.603∗∗ 22.608∗∗∗ 22.951∗∗∗ 1.053∗∗∗

NOTE: Q is the portmanteau test, Q∗ is the Ljung-Box extension (both with
automatic lag selection) and N corresponds to the Nyblom test. Q and Q∗ are
distributed as a χ2

1 , while N is distributed as a Cramer von-Mises distribution
with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

(Carriero, Clark, and Marcellino Forthcoming). The low preci-
sion of skewness estimates can potentially reflect the dynamic
nature of the asymmetry of economic fluctuations.2

Harvey (2013, sec. 2.5) highlights that the Lagrange Multi-
plier principle can be employed to construct appropriate test
statistics for the time variation of parameters (see Appendix
A). Starting from the assumption that GDP growth follows an
AR(2) process with Skew-t innovations, with a shape parameter
pinning down the degree of asymmetry, we test for the time
variation of this parameter considering both the case of constant
volatility and the more realistic case of time-varying volatility.
Table 1 reports the statistics for the Portmanteau (Q), Ljung-Box
(Q∗), and Nyblom (N) tests. The null hypothesis of a constant
shape parameter is strongly rejected against the alternative of
time variation; the rejection of the Nyblom test suggests that the
parameter is likely to be highly persistent.

Starting from this novel evidence, we introduce a modeling
framework that allows us to track the time-varying asymmetry
in the conditional distribution of GDP growth.

3. A Time-Varying Skew-t Model for GDP Growth

Let yt denote the annualized quarter-on-quarter GDP growth at
time t. We assume its conditional distribution can be character-
ized by a Skew-t (Arellano-Valle, Gómez, and Quintana 2005;
Gómez, Torres, and Bolfarine 2007), with time-varying location
μt , scale σt , and shape �t parameters:

yt = μt + εt , εt ∼ Sktν(0, σt , �t), t = 1, . . ., T, (1)

with constant degrees of freedom ν > 3, σt > 0, and �t ∈
(−1, 1). The shape parameter fully characterizes the asymmetry
of the distribution, with 1+�t

1−�t
defining the ratio of the probability

mass on the right, over the probability mass on the left of the
mode, μt . Therefore, negative (positive) values of �t imply neg-
atively (positively) skewed distributions. The conditional log-
likelihood function of the observation is

�t = log p(yt|θ ,Y t−1) = log C(η) − 1
2

log σ 2
t

− 1 + η

2η

⎧⎨
⎩

log
[

1 + ηε2
t

(1+�t)2σ 2
t

]
, εt ≥ 0

log
[

1 + ηε2
t

(1−�t)2σ 2
t

]
, εt < 0

, (2)

2Using the Bai and Ng (2005) test over different rolling windows, we often
reject the null of symmetry, with significant negative and positive skewness
detected over the sample. See Figure A.1 in Appendix A.

with η = 1
ν

, C(η) =
√

η

( 1+η

2η

)
√

π

( 1

2η

) , and 
(·) is the Gamma

function. The vector θ ∈ � is the vector of static parameters
of the model, and Y t−1 is the information set up to time t−1.
For �t = 0 we have the symmetric Student-t distribution, for
η → 0 we retrieve the epsilon-Skew-Gaussian distribution of
Mudholkar and Hutson (2000), whereas the distribution col-
lapses to a Gaussian density when both conditions hold. Thus,
we allow for, but do not impose, skewness in the conditional
distribution of GDP growth. We model the time variation of
the parameters within the score driven framework of Creal,
Koopman, and Lucas (2013) and Harvey (2013). In order to
ensure the scale σt to be positive and the shape �t ∈ (−1, 1),
we model γt = log(σt) and δt = arctanh(�t).3 Therefore, the
vector of time-varying parameters is ft = [μt , γt , δt]′ and takes
values in the domain Fθ . The updating mechanism follows:4

ft+1 = Ast + Bft + CXt , t = 1, . . ., T, (3)

where A collects the parameters governing the learning rates
from the scaled score, st , which we define as an appropriate
transformation of the prediction error, B contains autoregres-
sive parameters, and C collects loadings on a potential set of
covariates Xt . Specifically, st = Ṡ−1

t ∇̇t is the scaled score, with
∇̇t = ∂�t

∂ft = J′
t∇t , where ∇t =

[
∂�t
∂μt

, ∂�t
∂σ 2

t
, ∂�t

∂�t

]′
is the gradi-

ent of the log-likelihood function with respect to the location,
squared scale and shape parameter, and Jt is the Jacobian matrix
associated to the nonlinear transformation of the time-varying
parameters. Ṡt is a scaling matrix, set as a smoothed version of
the diagonal of the Information matrix: Ṡt = (1 − χ)Ṡt−1 +
χ(J′

tdiag(It)Jt)
1
2 , where It = E[∇t∇′

t], and 0 < χ < 1
is estimated jointly with θ . Hence, each element of the score
vector has (approximately) unit variance, and is proportional to
the respective gradient.5 Smoothing Ṡt makes it less sensitive
to a single observation, avoids instabilities when |�t| → 1,
and renders the filtering process more robust (see, e.g., Creal,
Koopman, and Lucas 2013).

The resulting model belongs to the class of observation-
driven models, for which the trajectories of the time-varying
parameters are perfectly predictable one-step-ahead given past
information, and the log-likelihood function is available in
closed form (Cox 1981). The following Proposition provides
the closed form expressions for the gradient and the associated
Information matrix.

Proposition 1. Given the specification in (1) and the likelihood in
(2), the elements of the gradient ∇t , with respect to the location,

3Differently from the Skew-t distribution of Azzalini and Capitanio (2003), the
one of Gómez, Torres, and Bolfarine (2007) has an Information matrix which
is always nonsingular, provided |�t| < 1. For practical purposes, we set �t =
c tanh(δt), with c being a constant close but below 1, to ensure �t ∈ (−1, 1).
This results in a small change in the Jacobian of the transformation, and is
omitted to simplify the exposition.

4In Section 3.1 we allow the time-varying parameters to feature a permanent
and a transitory component.

5Scaling the gradient by the diagonal of the Information matrix ensures
that negative (positive) prediction errors translate into negative (positive)
updates of the conditional location and shape, and therefore of the con-
ditional mean. This desirable property is not always guaranteed by the full
information matrix.
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Figure 1. Prediction error and parameters’ updating.

NOTE: The figures plot the weighting scheme implied by wt , and the scaled scores, for different values of the standardized prediction error ζt = εt
σt

. We consider the
Gaussian case (black), the symmetric t5 (red), and positively (blue) and negatively (green) Skt5.

squared scale and shape parameters, are

∇μ,t = 1
σt

wtζt , ∇σ 2,t = 1
2σ 2

t
(wtζ

2
t − 1),

∇�,t = sgn(εt)

(1 + sgn(εt)�t)
wtζ

2
t , (4)

where wt = (1+η)

(1+sgn(εt)�t)2+ηζ 2
t

and ζt = εt
σt

denotes the stan-
dardized prediction error, and sgn(·) is the sign function. The
associated Information matrix reads:

It = E[∇t∇′
t] =

⎡
⎢⎢⎣

(1+η)

σ 2
t (1−�2

t )(1+3η)
0 4C(1+η)

σt(1−�2
t )(1+3η)

0 1
2(1+3η)σ 4

t
0

4C(1+η)

σt(1−�2
t )(1+3η)

0 3(1+η)

(1−�2
t )(1+3η)

⎤
⎥⎥⎦.

(5)

Defining ft = [μt , γt , δt]′, where γt = log(σt) and δt =
arctanh(�t), the Jacobian matrix, Jt = ∂[μt ,σ 2

t ,�t]
∂[μt ,γt ,δt]′ , is diagonal

with elements
[
1, 2σ 2

t , 1 − �2
t
]
.

Proof. See Appendix B.

Proposition 1 highlights the central role of re-weighting the
standardized prediction error for the updating of the time-
varying parameters. Weights, wt , penalize extreme innovations
depending on the thickness of the tails, as well as the estimated
volatility and asymmetry as of time t. The top left panel of Fig-
ure 1 displays the weights associated with the prediction error,
for alternative model parameterizations. In a Gaussian setting
(black line) weights are constant and equal to unity, implying no
discounting. When the asymmetry parameter is zero (red line),
the weights display the classic outlier-discounting typical of the
Student-t distributions. When the distribution is positively (neg-
atively) skewed, that is, for �t > 0 (�t < 0), negative (positive)
prediction errors, being less likely in expectation, command a
larger update of the parameters. This asymmetric treatment of
ζt is more pronounced as skewness grows larger (i.e., |�t| → 1).

To illustrate how the standardized prediction errors translate
into updates for the time-varying parameters, Figure 1 plots the
scaled scores for χ = 1 (i.e., no smoothing),

sμ,t =
√

(1 + 3η) (1 + �2
t )

(1 + η)
wtζt , sγ ,t =

√
(1 + 3η)

2
(wtζ

2
t −1),

sδ,t = sgn(εt)

√
(1 + 3η)(1 − sgn(εt)�t)

3(1 + η)(1 + sgn(εt)�t)
wtζ

2
t (6)
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against the standardized innovations. The location updates in
the direction of the prediction error. When the distribution
is Gaussian, the update is linear in the prediction error as in
traditional state-space models. Heavy tails introduce an outlier
discounting implying the typical S-shaped influence function
(see, e.g., Harvey and Luati 2014; Delle Monache and Petrella
2017), which in our case adapts to the asymmetry of the con-
ditional distribution. The shape updates in the same direc-
tion of the prediction error, such that for negative innovations
the distribution becomes more left skewed. On the contrary,
updates of the scale only depend on the magnitude of the pre-
diction errors: σt increases for wtζ 2

t > 1, and decreases oth-
erwise. Whereas the scores for the location and shape param-
eters are positively correlated (corr(sμ,t , sδ,t) = 4C√

3 ), updates
of σt are (unconditionally) uncorrelated with revisions of the
other parameter (see the Information matrix in (5)). Yet, at
the onset of recessions, when prediction errors are large and
negative, updates of the scale and shape parameters negatively
comove, such that dispersion increases and negative skewness
deepens.

The updating mechanism associated with the scores in (6)
depends on the parameters conditional at time t. For a given
prediction error, the magnitude of the updates is smaller when
large errors are expected, that is when the scale is large. The
asymmetry of the distribution plays a key role in mapping
the prediction error into parameters’ updates. When the dis-
tribution is left skewed, a positive (negative) prediction error
leads to stronger (weaker) updates, while the opposite is true
for positive skew. This property allows the model to timely
detect shifts in the skewness of GDP growth around business
cycle turning points. For instance, whenever a large, negative
innovation arrives at the peak of the cycle, the model promptly
updates �t , often resulting in a change of sing of the conditional
skewness. In addition, the updating mechanism is robust to
the presence of outliers, as parameters’ updates are inelastic to
extreme standardized innovations. Hence, the model remains
well-behaved despite abnormal prediction errors, as observed
in 2020.

Existing models allowing for asymmetric t innovations with
time-varying conditional skewness feature updating mecha-
nisms based on simple higher-order powers of the prediction
errors (see, e.g., Hansen 1994; Harvey and Siddique 1999).
These updating present two main drawbacks. First, the mapping
between innovations and time-varying parameters does not
depend on the local properties of conditional distributions.
For instance, these specifications do not account for the higher
probability of negative prediction errors when the conditional
distribution is negatively skewed. Second, higher-order powers
of the innovations make the time-varying parameters inherently
sensitive to large prediction errors, and can thus become
unstable in the presence of outliers. Both of those issues are
taken care of by our score-driven updates.

Blasques, Koopman, and Lucas (2015) show that, in line with
the logic of the Gauss-Newton method for optimization, score-
driven updates in a setting with a single time-varying parameter
reduce the local Kullback-Leibler divergence between the true
and the model-implied conditional density, provided the learn-
ing rate is positive and sufficiently small. We opt for a diagonal

scaling matrix for the score, such that the updates in our model
mimic a Quasi-Newton multivariate optimization methods.6
Then, for small and positive learning rates, updates are expected
to locally improve the log-likelihood, in that, after an update,
the fit would improve if the next observation was much like the
current.7 In Appendix E we show that this set up, in a simulation
setting, achieves lower KL divergence values and presents better
updating properties compared to the alternative specifications
of Hansen (1994) and Harvey and Siddique (1999).

3.1. Permanent and Transitory Components

When modeling the conditional distribution of GDP growth, it
is important to allow for permanent and transitory movements
of the moments. Several papers have documented significant
changes in the long-run mean of GDP growth (see, e.g., Antolin-
Diaz, Drechsel, and Petrella 2017; Doz, Ferrara, and Pionnier
2020; Eo and Morley 2022), as well as shifts in the volatility
(McConnell and Perez-Quiros 2000; Stock and Watson 2002),
and the skewness of the distribution (Jensen et al. 2020) since
the late 1980s. At the same time, Jurado, Ludvigson, and Ng
(2015) show that GDP growth volatility is countercyclical, while
Giglio, Kelly, and Pruitt (2016) and Adrian, Boyarchenko, and
Giannone (2019) argue that business cycle skewness falls sharply
during recessions.

To account for these features, we postulate a two-component
specification for the time-varying parameters, in the spirit of
Engle and Lee (1999). We posit a random walk updating for
the permanent components, where these are able to track both
smooth variations and sudden breaks of the parameters. More-
over, we allow a set of predictors, Xt , to have a transitory impact
on the parameters of the distribution. Introducing a perma-
nent and transitory decomposition of the time-varying param-
eters implies a linear transformation of the original parameters,
hence, leaving the scaled score unchanged.

The location is linear in the permanent and transitory com-
ponents: μt = μ̄t + μ̃t , with

μ̄t+1 = μ̄t + ςμsμ,t , and
μ̃t+1 = φμ,1μ̃t + φμ,2μ̃t−1 + β ′

μXt + κμsμ,t , (7)

where the AR(2) specification for μ̃t+1 is able to recover the
characteristic hump shaped impulse response of the data (Chau-
vet and Potter 2013). Following Engle and Rangel (2008), we
assume a multiplicative specification for σt ; hence, log(σt) =
γt = γ̄t + γ̃t , and

γ̄t+1 = γ̄t +ςγ sγ ,t , and γ̃t+1 = φγ γ̃t +β ′
γ Xt +κγ sγ ,t . (8)

Similarly, we set δt = δ̄t + δ̃t for the transformed shape
parameter, δt = arctanh(�t), with

δ̄t+1 = δ̄t + ςδsδ,t , and δ̃t+1 = φδδ̃t + β ′
δXt + κδsδ,t . (9)

6Tapia (1977) and Byrd (1978) show the “superlinear local convergence”prop-
erty of Newton’s method and its diagonalization for standard optimization
problems (see also Dennis and Schnabel 1996, chap. 6).

7We choose a prior for the learning rate that limits its size, so that it (a) reduces
the possibility of overshooting in the direction of the (local) optimum,
and (b) assumes conservative views on parameters time variation. See
Section 3.2.
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Therefore, the resulting vector of time-varying parameters
becomes ft = (μ̄t , μ̃t , γ̄t , γ̃t , δ̄t , δ̃t)′, with the law of motion being
a restricted specification of (3) (see Appendix B).

Plagborg-Møller et al. (2020) consider a time-varying Skew-t
specification for GDP growth and specify the time-varying
parameters (location, log-scale and shape) as linear functions
of a set of predictors. In this case—which remains nested within
our setting—the sole source of parameters’ variation stems from
the dynamics of the predictors. This modeling choice generates
substantial variability in the underlying parameters, and thus
uncertainty around the estimates. In contrast, our specification
allows for both secular and transitory shifts in the parameters,
where the autoregressive structure of the transitory components
makes them functions of discounted values of all past predictors
and past scores (i.e., nonlinear functions of past data). As a
result, the time-varying parameters we estimate are smoother
and less affected by the noise in the data.8

3.2. Estimation

A feature of observation-driven models is the straightforward
computation of the likelihood function (Creal, Koopman, and
Lucas 2013; Harvey 2013). However, the optimization and
computation of confidence intervals remain challenging, in
particular when these models feature rich parameterizations.
Bayesian estimators, which rely on Markov chain Monte Carlo
(MCMC) methods, represent a tractable and theoretically
attractive alternative to the extremum-based estimation and
inference (see, e.g., Vrontos, Dellaportas, and Politis 2000). In
fact, under appropriate regularity conditions, asymptotic results
guarantee that simulations from a Markov chain provide, after
some burn-in period and sufficient iterations, samples from
the posterior distribution of interest (for details, see Smith and
Roberts 1993; Besag et al. 1995).9 In addition, relying on MCMC
provides a simple approach to compute any posterior summary
of interest as a function of the parameters, for example credible
intervals for the time-varying moments of the distribution.
Lastly, within a Bayesian setting we can easily incorporate
parameter uncertainty when producing forecasts, which turns
out to be critical for enhancing the reliability of density forecasts,
in particular for downside risk predictions.

Taking a Bayesian perspective also allows us to impose real-
istic priors on the static parameters, π(θ). We choose priors that
in small samples alleviate the problem of parameter proliferation
and overfitting, while for large samples the estimation is even-
tually dominated by the information in the data. Our choices
encode the view that transitory components are smooth and
stationary, while permanent components capture slow-moving
trends. We assume inverse gamma priors for the score loadings,
as we expect these parameters to be positive. Moreover, we
expect the learning rate in the transitory components (κ) to be

8In addition, our framework allows for non-linearities through the mapping
of the predictors into the scores, further down-weighting extreme fluctua-
tions in the data. In Appendix C we highlight that these additional features
are important to recover salient features of the distribution of GDP growth.

9Importantly, Bayesian estimators are not affected by local discontinuities,
multiple local minima and flat areas of the likelihood, and they are often
much easier to compute, particularly in high-dimensional settings (see, e.g.,
Tian, Liu, and Wei 2007; Belloni and Chernozhukov 2009).

larger than those of the permanent components (ς), such that
on impact the former react more to innovations with respect
to the latter. This is reflected into a tighter scale for the prior
distribution of ς .10 We set Minnesota-type priors for the AR
coefficients (φ) of the transitory components, centered around
high persistence values. For the location’s AR parameters, we
also introduce a prior on the sum of coefficients. For the load-
ings on the explanatory variables (β) we assume Normal priors
centered around zero, with tight scales to avoid overfitting, in the
fashion of L2 regularization. We assume an inverse gamma prior
for η. Lastly, we also estimate the initial values of the permanent
components assuming independent Gaussian priors centered
around historical average values for the three parameters, and
with reasonably small variance.

Blasques et al. (2022) underline the importance of filter
invertibility for the consistency of the maximum likelihood
estimation, and provide the following sufficient condition
for invertibility: E log

{
supf ∈Fθ

∣∣∣B + A ∂s(f ,yt ,θ)
∂f ′

t

∣∣∣} < 0, (see
also Blasques et al. 2018).11 Ensuring the invertibility of
nonlinear time series processes with more than one time-
varying parameter is usually a major challenge, and so is
finding the compact set for which the condition is met for
our specification. Nonetheless, we can effectively restrict the
estimated parameters to verify the empirical version of the

invertibility condition, 1
T

T∑
t=1

log
∣∣∣B+A ∂s(f ,yt ,θ)

∂f ′
t

∣∣∣ < 0, by means

of a rejection step in our sampler.12

Draws from the posteriors are generated using an Adaptive
Random-Walk Metropolis-Hastings algorithm (Haario, Saks-
man, and Tamminen 1999), with the chain initialized at the
Maximum likelihood estimates. For each draw θ j, we compute
the time-varying parameters {ft|θ j}T

t=0, and the log-likelihood
�(y|θ j) = ∑T

t=1 �t . We accept the current draw with proba-
bility p = min{1, exp(π(θ j|y) − π(θ ′|y))}, where π(θ j|y) ∝
π(θ j)�(y|θ j) is the posterior distribution of θ j; when accepted,
we set θ ′ = θ j. Credible sets for both static and time-varying
parameters are obtained from the empirical distribution func-
tions arising from the resampling. Appendix D provides an
extensive description of the sampling algorithm, details on the
exact prior specification for the parameters and convergence
diagnostics. Moreover, we show that the informative priors that
we have chosen remain agnostic with respect to all the stylized
facts documented in Section 4 of the article.

3.2.1. Monte Carlo Exercise
Appendix E investigates the small sample properties of the
model through a Monte Carlo analysis. The model successfully

10Introducing priors for the coefficients governing the learning rate effec-
tively circumvents the “pile-up” problem, often arising when time-varying
parameters feature little variation (see, e.g., Stock and Watson 1998). At the
same time these priors are quite conservative, implying that any evidence
in favor of the time variation of permanent components reflects strong
evidence in the data.

11Intuitively, the invertibility property ensures that the effect of the initializa-
tion vanishes asymptotically and that the filter converges to a unique limit

process. We derive the elements of ∂s(f ,yt ,θ)
∂f ′t

in Appendix B.7.
12This comes closer to the idea of defining the estimator as the maximand of

the likelihood within the invertibility region (see Blasques et al. 2018, sec.
4.2).
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Figure 2. Time-varying mean and variance.
NOTE: The plots illustrate the time-varying mean and standard deviation (blue), along with the respective long-run components, in red, and 90% credible intervals. Shaded
bands represent NBER recessions.

tracks parameters’ time variation from different data generating
processes. When the distribution is symmetric throughout the
entire sample, the model estimates a null shape parameter,
with limited variability over time. In particular, the model does
not confound any correlation between the time variation of
the location and the scale (known to generate unconditional
skewness) for the presence of conditional asymmetry. We also
simulate a one-time break in the shape parameter: the model
correctly captures the break in the asymmetry, and the two-
component specification properly disentangles long- and short-
lived fluctuations, so that the break is tracked by the permanent
component whereas the transitory component features low
variability.

3.3. Forecasts

For any draw of the parameters, θ , the filter in (3) provides the
one-step ahead prediction of the parameters, fT+1. Therefore,
the associated forecast is p(yT+1) = ∫

p(yT+1|θ)p(θ |YT)dθ ,
with p(yT+1|θ) ∼ Sktν(fT+1(θ)) being the predictive density for
GDP growth. For longer horizons, we need to address two issues:
forecasting the conditioning variables and sampling the scores.
Due to the high persistence of the predictors, in Section 5 we
keep these fixed to their last observations.13 As for the score, we
adopt a “bootcasting” algorithm (Koopman, Lucas, and Zamo-
jski 2018). We sample multiple h−1 dimensional block from the
estimated score vector, thus avoiding any distributional assump-
tion on the latter. For a given draw, the h-step ahead forecast
reads p(yT+h) = ∫

p(yT+h|θ , XT+h = XT)p(θ |YT)dθ , with
p(yT+h|θ , XT+h = XT) ∼ Sktν(fT+h(θ)).

3.4. Data and Alternative Model Specifications

We use U.S. quarterly data over the period 1973Q1 to 2020Q4
on economic activity, the NFCI and its four subindices, tracking
developments in the credit, risk, leverage and nonfinancial lever-
age markets (Brave and Butters 2012). We consider alternative

13This is akin to assuming a random walk specification for their law of motion.
As an alternative, one could feed predictions for the explanatory variables
into the model. The latter approach produces results very similar to the ones
reported here.

models with either the NFCI or the disaggregated components.
While the risk and credit components closely track the dynamics
of the NFCI, the leverage indicators, in particular the nonfi-
nancial leverage, are often regarded as an “early warning” signal
for economic downturns (see Appendix F). Our framework can
accommodate several features of the conditional distribution of
economic growth. Specifically, it encompasses a wide spectrum
of specifications: from a simpler Gaussian AR(2) with time-
varying volatility, to the full-blown two-component specifica-
tion outlined above. In Appendix G we report the Deviance
Information Criterion and the log Marginal Likelihood for dif-
ferent model specifications. According to these measures: (i)
non-Gaussian features improves upon a Normal benchmark,
(ii) low-frequency variation in the parameters are supported
by the data, and (iii) including financial variables improves
the model fit. Therefore, we set as our baseline specification a
Skew-t model with a permanent and transitory component for
the time-varying parameters and with (two lags of) the four
subcomponent of the NFCI as exogenous predictors (Skt -4DFI).

4. Time Variation in the Distribution of GDP Growth

Our framework allows us to study the characteristics of the
conditional distributions of GDP growth. Figure 2 reports the
time-varying mean and volatility of these distributions, which
can be computed as (see, e.g., Gómez, Torres, and Bolfarine
2007)

E[yt|θ ,Y t−1] = μt + g(η)σt�t ,

g(η) = 4C(η)

1 − η
, (10)

Var(yt|θ ,Y t−1) = σ 2
t

(
1

1 − 2η
+ h(η)�2

t

)
,

h(η) = 3
1 − 2η

− g(η)2. (11)

The mean moves along the business cycle, sharply contracting
during recessions, while volatility is markedly countercyclical,
with peaks occurring during recessions. Focusing on the last
year of the sample, volatility sharply increases and the mean
rebounds quickly, suggesting that Covid-quarters are, at least
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Figure 3. Time-varying asymmetry.
NOTE: The left panel illustrates the estimated time-varying moment skewness (blue), along with its long-run component (red). The right panel reports the upside and
downside volatilities, in blue and red, respectively. Shadings correspond to 90% credible intervals. Shaded bands represent NBER recessions.

partially, characterized as tail events. We also report, in red, the
low-frequency components, that is the moments of the distribu-
tion that would prevail in the absence of any transitory variation
of the parameters. These capture a fall in long-run growth, with
the expected value falling from roughly 4% in the 1970s, to
roughly 2.3% at the end of the sample. The Great Moderation is
reflected in a reduction of GDP growth’s volatility: starting in the
mid-1980s, transitory fluctuations in volatility dampen down as
the impact of the consecutive recessions of the 1970s and 1980s
fades away, and the long-run volatility is revised downward by
about 30%.

Time-varying skewness is reported in the left panel of Fig-
ure 3.14 This evolves in a procyclical fashion, such that sub-
stantially negative skewness characterizes recessions, whereas
expansions are marked by positively skewed distributions. Inter-
estingly, skewness tends to decrease in anticipation of recessions,
a feature which we show to be related to the information con-
tained in the financial indicators, suggesting that downside risk
dominates ahead of, and during downturns. Over the long-run,
skewness displays a downward trend starting in the late 1980s,
and falling markedly in the post-2000 sample. As a result, busi-
ness cycle fluctuations feature decreasing, but positive, trend-
skewness until the onset of the financial crisis in 2007. In the
aftermath of the subsequent recession, this trend turns negative,
implying negatively skewed long-run conditional distributions.
This signals the build-up of vulnerabilities, resulting in the
economy being increasingly exposed to downside risks.

4.1. Upside and Downside Volatility

In line with the “good” and “bad” volatility decomposi-
tion of Bekaert and Engstrom (2017), we define “upside”

14The moment skewness can be computed numerically as

Skew(yt|θ ,Y t−1) =
∫
R

(
yt − E[yt|θ ,Y t−1]

)3
p(yt|θ ,Y t−1)dy

V(yt|θ ,Y t−1)
3
2

,

where p(yt|θ ,Y t−1) denotes the conditional density of the Skew-t distribu-
tion at time t, and the (conditional) mean and variance are computed as in
(10) and (11).

(Vol+=√
Var(yt|yt ≥ μt)) and “downside” (Vol−=√

Var(yt|yt < μt)) volatility as a function of � (see Appendix B):

Vol+ = 1 + �t
2

√
Var(yt|θ ,Y t−1),

Vol− = 1 − �t
2

√
Var(yt|θ ,Y t−1). (12)

These two components are reported in the right panel of
Figure 3. Downside volatility spikes during recessions, whereas
upside volatility displays only modest (pro-)cyclicality. There-
fore, the countercyclicality of aggregate volatility (see, e.g.,
Jurado, Ludvigson, and Ng 2015) largely reflects transitory
developments in downside risks. While the financial crisis
appears as an episode of pure downside risk, the recent Covid-
recession featured a spike in downside volatility in the first half of
2020, swiftly receding in favor of upside risks in the second half.

4.2. Expected Value and Variance Decomposition

Fluctuations in the conditional skewness of GDP growth plays
an important role in determining the dynamics of the first and
second moments of the conditional distributions (see (10) and
(11)). Thus, the (time-varying) expected value and variance are
equal to those of a standard t distribution, plus a component
which is a function of the shape parameter. The impact of
the asymmetry on the conditional mean is magnified by larger
values of σt and it disappears when �t = 0.

Figure 4 isolates the contribution of the asymmetry in the
first and second moments. The location (red) is remarkably
stable over the sample, such that most of the fluctuations in
the expected value reflect shifts of the shape parameter (blue),
with recessions (expansions) characterized by negative (posi-
tive) skewness. The contribution of the asymmetry for positive
expected values becomes more muted during the Great Moder-
ation, whereas the negative drag from the asymmetry remains
important during recessions. In contrast, the effect of |�t| on the
second moment is less pervasive, despite deepening skewness
during recessions accounts for a nontrivial share of the increase
in variance.

Equations (10) and (11) also highlight that procyclical varia-
tions of skewness are reflected into a time-varying correlation
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Figure 4. Expected value and variance decomposition.
NOTE: The plot shows the decomposition of the expected value and variance of GDP growth. Location and scale are reported in red, while the contribution of higher order
moments is in blue. Central moments (black) are computed as in (10) and (11). Shaded bands represent NBER recessions.

Figure 5. Long-run GDP growth and volatility.
NOTE: The left plot shows the contribution of the long-run location μ̄t (red), and of higher order moments (blue) to the long-run expected value (black). Similarly, we
decompose the total long-run variance (black) into upside (blue) and downside (red) variance. Shaded bands represent NBER recessions.

between the mean and the volatility. The mean is positively
affected by shifts of the shape parameter, ∂E(yt |θ ,Y t−1)

∂�t
> 0, ∀�t .

When �t increases, the variance increases (decreases) if the
distribution is positively (negatively) skewed, as ∂Var(yt |θ ,Y t−1)

∂�t
=

2h(η)σ 2
t �t and h(η) > 0, in that the distribution becomes more

asymmetric. Therefore, procyclical skewness reduces volatility
during expansions, and increases it during recessions. These
nonlinearities in the interaction between uncertainty and aggre-
gate economic activity are consistent with findings in Segal,
Shaliastovich, and Yaron (2015), that “positive uncertainty” is
associated with positive (conditional) expected growth, whereas
this correlation turns negative during contractions.

4.3. Long-Run Growth Slowdown and the Great
Moderation

We use (10) and (11) to assess the properties of long-run growth.
Figure 5 shows that the decreasing skewness-trend maps into
a decline of long-run growth, as roughly two thirds of this
slowdown reflect a reassessment of risk. The downward trend
in long-run growth is temporarily reversed in correspondence

of the IT productivity boom of the mid-1990s, when growth is
revised upward by roughly 0.5%. This upward revision reflects,
to a large extent, a shift in upside risk to GDP growth. In the
post-2000, the slowdown in long-run growth accelerates, along
with a rebalancing of risks toward the downside. After the Great
Recession, long-run growth displays a pronounced left tail, thus
becoming a negative drag to long-term growth.

Similarly, we decompose long-run variance into the contri-
butions of long-run upside (blue) and downside (red) variance
in the right panel of Figure 5. Upside variance decreases over
the Great Moderation period, and by the end of the sample it
has halved with respect to its level in the 1970s. On the contrary,
the downside component has remained quite stable throughout
the sample. This highlights that the Great Moderation reflects
a reduction in upside risk not matched by an equal fall in
downside risk (in line with Jensen et al. 2020).

4.4. Conditional versus Unconditional Skewness

Figure 3 highlights that the skewness of the conditional
distribution displays a marked procyclicality: expansions are



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 1019

Figure 6. Unconditional skewness.
NOTE: The figure reports the distribution of the unconditional skewness, obtained
from 10,000 paths of GDP growth simulated from the model. The vertical lines
indicate the unconditional skewness estimated over two alternative samples.

characterized by right-skewness, whereas contractions are
associated with negatively-skewed distributions. What does this
mean for the unconditional distribution of GDP growth? We
answer this question by drawing inference on the unconditional
(a)symmetry of the data. We simulate 10,000 alternative
paths of GDP growth from the estimated model, and we
compute the associated (unconditional) skewness. The results
are summarized in Figure 6. Negative unconditional skewness
estimates turn out to be 20% more likely than positive estimates,
despite conditional distributions displaying positive skewness
for a large part of the sample. During expansions upside volatility
is, on average, 15% higher than downside volatility, while
the latter is almost double the former during recessions (see
Figure 3). Thus, despite expansions being typically characterized
by right-skewed conditional distributions, the occurrence of tail
events is impaired by lower dispersion. Differently, recessions
are characterized by higher downside uncertainty, resulting in
large negative observations being more likely. For the 1973–
2019 period, sample skewness value of −0.42 lies close to
the expected value of the empirical distribution; the sample

skewness of −2.58 due to the Pandemic-recession still lies well
within the 95% interval. Results are not affected by omitting
2020 from the sample. Testing the unconditional skewness on
simulated data fails to find significant evidence of any degree of
asymmetry. Therefore, significant variation of the conditional
skewness over the sample does not prevent the model from
generating unconditionally symmetric distribution of GDP
growth, consistent with what we find in the data.

4.5. The Contribution of Financial Predictors

To gauge the contribution of financial indicators to the variation
of the parameters, we exploit the moving average representation
of the transitory components γ̃t and δ̃t , and decompose
them into a “score-driven” component (κγ

∑t−1
j=0 φ

j
γ sγ t−j

and κδ

∑t−1
j=0 φ

j
δsδt−j) and a component reflecting the share

of variation driven by the predictors (β ′
γ

∑t−1
j=0 φ

j
γ Xt−j and

β ′
δ

∑t−1
j=0 φ

j
δXt−j), for which we highlight the contribution of

each financial index (Figure 7). The dynamics of financial
risks is the key driver of the countercyclical movements of
the dispersion of the conditional distribution. Leverage is an
important determinant of the dynamics of �t , and thus of
skewness. In particular, nonfinancial leverage drives most of
asymmetry’s variation, consistently with the leverage-cycle
narrative of Jordà, Schularick, and Taylor (2013). The build-
up of household leverage is identified as the main contributor
to the increase in downside risk in the first half of the 2000s,
and the subsequent deleveraging is associated with a substantial
fall in downside risk. Indicators of credit spread and credit risk
mainly predict the sharp increase in downside risk at the height
of major recessions.

5. Out-of-Sample Evaluation

In this Section we investigate the out-of-sample forecasting per-
formance of our baseline model (Skt -4DFI) against a Gaussian
autoregressive model with GARCH innovations, which has been
proven to be a competitive benchmark for forecasting GDP
growth (Clark and Ravazzolo 2015) and GDP growth-at-risk

Figure 7. Predictive financial conditions.

NOTE: The figures plot the decomposition of γ̃t and δ̃t (black) into a “Score-driven” (yellow) and “Predictor-driven” components. Shaded bands represent NBER recessions.
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(Brownlees and Souza 2021). We also consider a Skew-t model
without predictors, and a version including the NFCI. We re-
estimate the models every quarter over the period 1980Q1–
2020Q4, and produce one-quarter and one-year horizon fore-
casts; we report the latter as cumulated output growth over four
quarters. Forecasts are obtained from real-time GDP vintages,
and evaluated at the latest available release. We compare the
performance of the models for the entire out-of-sample period,
as well as for the post-2000s, and for the recessive periods in the
forecasting sample.15 We assess point forecast accuracy via the
mean square forecast error (MSFE). Density forecast accuracy is
evaluated via the predictive log-score (logS) and quantile scores
of Gneiting and Ranjan (2011). For the latter we consider (a) the
Continuously Ranked Probability Score (CRPS, Gneiting and
Raftery 2007), which assigns equal weight to each quantile of
the empirical distribution function, and (b) a scoring rule that
assigns higher weights to the lower quantiles of the distribution
function (wQS), emphasizing the accuracy in predicting out-
comes in left tail.16 Similarly, we evaluate the calibration of the
predictive densities explicitly considering the calibration of the
left side of the distributions, and we assess the models’ ability to
predict tail risks and time recessions. For all measures, we report
ratios (differences for the logS) with respect to the Gaussian
benchmark, and we report p-values for Diebold and Mariano
(1995) test, applying Harvey, Leybourne, and Newbold (1997)
small sample correction.

5.1. Point, Density and Downside Risk Forecasts

5.1.1. Asymmetry and the Value of Financial Predictors
Table 2 reports the performance of competing models, for one-
quarter and one-year ahead predictions. Simply introducing
fat tails and time-varying asymmetry improves forecast accu-
racy with respect to the benchmark specification under all loss
functions. Conditioning for the four financial indices leads to
additional gains, in particular in the post-2000 and during reces-
sions, over both horizons. Compared to the benchmark, Skt -
4DFI produces roughly 20% (30%) improvement in MSFE, and
5% (12%) and 10% (25%) improvements in the CRPS and wQS,
respectively, for the one-quarter (one-year) ahead forecasts.

5.1.2. Comparison with Adrian, Boyarchenko, and Giannone
(2019)

In Table 3 we report the comparison of the baseline specifica-
tion against the model of Adrian, Boyarchenko, and Giannone
(2019).17 Our baseline specification is associated with better
point and density forecasts, and with significant improvements,
especially in the post-2000s sample. These gains, especially dur-
ing recessions, stem from the adaptiveness of the score filter,
which allows the shape parameter to promptly adapt to turn-
ing points, thus, generating longer left tails during downturns.
In fact, compared to the model of Adrian, Boyarchenko, and

15Recessions are considered as 3 quarters before and after NBER recession
quarters. See Appendix F.

16Specifically, quantile scores are weighted by (1 − α)2, where α represent
the quantile.

17For comparability, we follow exactly the procedure of Adrian, Boyarchenko,
and Giannone (2019), but re-estimating the model using real-time vintages
of GDP growth.

Table 2. Forecasting performance.

Skt Skt Skt Skt Skt Skt
NFCI 4DFI NFCI 4DFI

One-quarter ahead
MSFE logS

Full 0.842
(0.000)

0.817
(0.000)

0.812
(0.000)

0.122
(0.000)

0.140
(0.000)

0.060
(0.084)

Post ’00 0.809
(0.000)

0.804
(0.000)

0.793
(0.000)

0.181
(0.000)

0.211
(0.000)

0.167
(0.001)

Rec. 0.831
(0.000)

0.807
(0.000)

0.795
(0.000)

0.227
(0.034)

0.265
(0.056)

0.148
(0.269)

CRPS wQS

Full 0.964
(0.047)

0.941
(0.005)

0.952
(0.025)

0.960
(0.064)

0.926
(0.006)

0.926
(0.009)

Post ’00 0.934
(0.000)

0.912
(0.000)

0.918
(0.000)

0.919
(0.000)

0.894
(0.000)

0.891
(0.002)

Rec. 0.961
(0.191)

0.945
(0.135)

0.938
(0.112)

0.925
(0.030)

0.907
(0.030)

0.868
(0.019)

One-year ahead
MSFE logS

Full 0.720
(0.000)

0.716
(0.002)

0.694
(0.003)

0.486
(0.000)

0.585
(0.000)

0.518
(0.001)

Post ’00 0.720
(0.000)

0.696
(0.000)

0.718
(0.002)

0.849
(0.000)

0.978
(0.000)

0.970
(0.000)

Rec. 0.743
(0.063)

0.764
(0.163)

0.656
(0.044)

1.071
(0.004)

1.209
(0.007)

1.238
(0.015)

CRPS wQS

Full 0.912
(0.003)

0.902
(0.002)

0.883
(0.003)

0.778
(0.001)

0.747
(0.001)

0.766
(0.005)

Post ’00 0.843
(0.000)

0.826
(0.000)

0.820
(0.000)

0.725
(0.000)

0.703
(0.000)

0.711
(0.000)

Rec. 0.942
(0.193)

0.957
(0.316)

0.890
(0.099)

0.725
(0.008)

0.737
(0.028)

0.668
(0.016)

The table reports the average forecast scores relative to the Gaussian model.
Positive logS differences, and ratios smaller than 1 for the MSFE, CRPS, and wQS
indicate that the column-specific model performs better than the benchmark.
The p-values for equal forecast accuracy are in parentheses. Values in bold are
significant at the 10% level; gray shaded cells highlight the best score. Out-
of-sample periods: Full, 1980Q1–2020Q4; Post’00, 2000Q1–2020Q4; Rec., three
quarters before and after NBER recession dates.

Table 3. Forecast performance with respect to Adrian, Boyarchenko, and Giannone
(2019).

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.890
(0.000)

2.473
(0.000)

0.983
(0.221)

1.006
(0.599)

1.014
(0.562)

0.571
(0.000)

0.989
(0.425)

1.026
(0.672)

Post ’00 0.837
(0.000)

4.499
(0.000)

0.920
(0.000)

0.941
(0.006)

0.894
(0.098)

0.436
(0.000)

0.902
(0.046)

0.944
(0.224)

Rec. 0.877
(0.000)

8.567
(0.000)

0.962
(0.111)

0.966
(0.197)

1.073
(0.649)

1.407
(0.015)

0.948
(0.332)

0.975
(0.425)

The table reports the average forecast scores of the Skt -4DFI model relative to
Adrian, Boyarchenko, and Giannone (2019). Positive values of logS differences,
and ratios smaller than 1 for the MSFE, CRPS, and wQS indicate that the Skt -
4DFI model performs better than Adrian, Boyarchenko, and Giannone (2019). The
p-values for equal forecast accuracy are in parentheses. Values in bold are sig-
nificant at the 10% level. Out-of-sample periods: Full, 1980Q1–2020Q4; Post’00,
2000Q1–2020Q4; Rec., three quarters before and after NBER recession dates.

Giannone (2019), the Skt -4DFI specification appears to be faster
and more precise in capturing increases (decreases) in downside
(upside) risk ahead of recessions, and it adapts to the subsequent
rebounds in GDP growth in a more timely manner.

5.1.3. Density Calibration
Table 4 evaluates the calibration of the density forecasts.
Berkowitz (2001) highlights that the Normal transform of the
probability integral transforms (PITs) of correctly calibrated
predictive densities is standard Normal, and it is independent
at the one-step ahead. The upper part of Table 4 reports the
estimates of the mean and variance of the normal transforms of
the PITs, their autocorrelation coefficient for the one-quarter
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Table 4. Density calibration tests.

Skt Skt
AR(2) ABG 4DFI AR(2) ABG 4DFI

PITs: One-quarter ahead One-year ahead

Mean −0.352
(0.000)

−0.238
(0.028)

0.030
(0.755)

−0.941
(0.000)

−0.225
(0.248)

0.011
(0.951)

Var 0.963
(0.801)

0.983
(0.904)

1.041
(0.745)

2.009
(0.007)

2.071
(0.001)

1.290
(0.125)

AR(1) −0.026
(0.742)

0.171
(0.028)

0.120
(0.126)

RS test:
Full 2.102 1.925 0.883 4.865 2.306 1.162

Left-half 1.798 1.415 0.805 4.865 2.306 1.162

Left tail 1.074 1.166 0.501 4.757 2.306 1.162

The table reports the mean and variance of the normal transform of the PITs, and
the coefficient of an AR(1) model estimated on the one-step ahead transform.
We report in parentheses the p-values, computed with HAC variances, for the null
of zero mean and unit variance of the normalized forecasts, and we test the null
of no persistence for the one-step ahead. We also report Rossi and Sekhposyan
(2019, RS) calibration tests, considering the full density support (Full), the left-half,
defined over the [0 0.5] support, and the left-tail, over the support [0, 0.25]. Values
in bold indicate the rejection of the null hypothesis at the 10% confidence level.
Critical values for the RS tests are obtained by 1000 bootstrap simulations.

ahead, and the p-values associated with the relevant null
hypotheses. Both the Gaussian specification and the model of
Adrian, Boyarchenko, and Giannone (2019) overestimate, on
average, upside risk one-quarter ahead, while producing overly
disperse densities at the one-year horizon. Our baseline model,
on the other hand, does not display any sign of miscalibration.
The remainder of Table 4 reports the test statistics of Rossi
and Sekhposyan (2019) test for the correct calibration of the
forecast distributions, evaluated over the full densities, the left-
half and the left-tail. The test rejects the null hypothesis of
correctly calibrated densities for both competing models, at both
horizons. In contrast, our baseline model delivers well calibrated
forecasts for the entire density, as well as for the left part of the
predictive distributions, capturing movements in downside risk.

5.2. Tail Risk Predictions

Measures such as Value at Risk (VaR), as well as the Expected
Shortfall (ES), are readily obtained within our framework.
ESα

t+h = α−1 ∫ α

0 VaRa
t+h|tda describes the expected growth level

for yt+h < VaRα
t+h, corresponding to the (100α)th percentile of

the h-step ahead predictive distribution, whereas the Expected
Longrise (EL) is the upper counterpart of the ES. The left hand
panel of Figure 8 contrasts the ES5% and the EL95% for the
Gaussian model, the Skt model without financial predictors and
our baseline model, considering 10 years around the financial
crisis. The Gaussian model fails to capture the building-up of
risk ahead of the Great Recession, predicting an ES around zero
as the economy enters the recession. In addition, assuming a
symmetric distribution implies that a fall in the ES is often
associated with peaks in the EL. In that, the minimum ES
corresponds to the maximum EL in 2009Q2. Allowing for
Skew-t innovations alleviates both problems, delivering more
conservative risk measures, with less erratic longrise figures
and anticipating the build-up of downside risk ahead of the
recession. Conditioning the forecasts on financial conditions
increases the timeliness of the prediction of risk, due to the
prompt discounting of financial overheating. The prediction of
the ES falls to roughly −5% in the first quarter of the recessions,

and decreases consistently until the first quarter of recovery,
when it is sharply revised upwards. Timely updates of the
asymmetry parameter, especially at turning points, induce a
reduction in the mean and an increase in downside risk.18

Brownlees and Souza (2021) argue that a GARCH model pro-
vides competitive out-of-sample forecasts for the lower quantiles
of the GDP growth distribution. In Table 5 we show that allowing
for time-varying skewness produces large and significant gains
with respect to the Gaussian model, with improvements of 35%
at the one-quarter ahead horizon, and up to 70% at the one-
year ahead. These results remains robust to different scoring
functions.

We also investigate the ability of the model to predict reces-
sions, which we define as the probability of observing any two
consecutive negative forecasts over the next four quarters. The
right panel of Figure 8 highlights that combining financial con-
ditions and conditional asymmetry produces a realistic assess-
ment of the risk of recession. Compared to the other models, the
probability of recession produced by the Skt -4DFI specification
starts picking up earlier, warning against an imminent output
contraction, and it sharply recedes at the end of the recession,
being already below 5% in 2009Q3. Unreported Brier scores
highlight that deviating from the Gaussian assumption provides
gains of around 10% in timing recessions, and an additional
20% gain can be directly ascribed to the inclusion of financial
predictors. Overall, these results underline the importance of
allowing for time variation in the skewness of the conditional
distribution of GDP growth for predicting downside risk, both
in terms of magnitude and timing.

5.3. Robustness

Here, we provide a summary of additional robustness exercises,
reported in Appendix H. Using lagged GDP growth as additional
predictor of the time-varying parameters leads to weaker fore-
cast performance. Explicitly accounting for parameters’ uncer-
tainty in the forecast delivers significant gains in terms of both
point and density forecast. We show that the results reported
above are robust to the exclusion of 2020 from the sample, and
to the targeting of different GDP releases. We also show that
the gains are associated with the time variation in asymmetry,
as opposed to the presence of unconditional asymmetry. Lastly,
we show that our gains are not distorted by the use of the
latest vintages of the NFCI as opposed the real-time data, only
available from 2013.

6. Dissecting the Financial Condition Index

We investigate whether the predictive power of the model can be
further improved by considering the full set of 105 indicators of
financial activity that constitute the NFCI. In particular, we use
the individual contributions to the NFCI, as made available by
the Chicago Fed, which measure how each individual indicator
contributes to the aggregate NFCI. We start our forecasting

18In Q1 of 2009, the Skt -4DFI model predicts a negative mean and substantial
downside risk, whereas the Gaussian model only predicts a slightly negative
growth, with a roughly symmetric assessment of the risk surrounding this
prediction; see Figure J2, in Appendix J.
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Figure 8. Expected shortfall and expected longrise.

NOTE: We report the ES5% and EL95%. Probabilities of recessions are computed as the probability of observing two consecutive negative growth forecasts over the next
four quarters. Shaded bands represent NBER recessions.

Table 5. Tail risk scores.

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead

Full 0.831
(0.040)

0.819
(0.028)

0.959
(0.111)

0.948
(0.028)

0.978
(0.246)

0.900
(0.003)

Post ’00 0.693
(0.002)

0.720
(0.003)

0.912
(0.012)

0.926
(0.038)

0.943
(0.066)

0.915
(0.040)

Rec. 0.741
(0.014)

0.651
(0.013)

0.880
(0.030)

0.850
(0.044)

0.925
(0.072)

0.821
(0.012)

One-year ahead

Full 0.241
(0.000)

0.310
(0.001)

0.397
(0.000)

0.424
(0.000)

0.692
(0.002)

0.622
(0.002)

Post ’00 0.246
(0.001)

0.371
(0.003)

0.361
(0.000)

0.398
(0.001)

0.727
(0.003)

0.600
(0.003)

Rec. 0.192
(0.000)

0.300
(0.000)

0.263
(0.000)

0.308
(0.000)

0.551
(0.000)

0.495
(0.003)

The table reports the average downside tail risk scores, expressed as ratios relative to
the Gaussian model. Ratios smaller than 1 indicate that the column-specific model
performs better than the benchmark. The p-values for equal forecast accuracy
are reported in parentheses. Values in bold are significant at the 10% level; gray
shaded cells highlight the best score. FZG: Fissler, Ziegel, and Gneiting (2016) loss
function; ALS: Taylor (2019) loss function; TLF: Giacomini and Komunjer (2005)
tick loss function. Out-of-sample periods: Full, 1980Q1–2020Q4; Post’00, 2000Q1–
2020Q4; Rec., three quarters before and after NBER recession dates.

exercise at the beginning of the 2000s, and at each point in
time, we only consider indicators for which at least four years
of data are available. Hence, the first forecast we produced relies
on about 70% of the total available indicators, and we reach
approximately 85% around the 2007–2009 recession.19

6.1. Variables Selection: “shrink-then-sparsify”

A potential concern of this exercise lies in the steep increase
in the number of parameters our model needs to accom-
modate. We tackle this dimensionality problem through a

19As these data are not available in real-time, we assume that at time t
the set of predictors corresponds to the quarterly average of the financial
indicators from the third week of the previous quarter to the second week
of the current quarter. This approach mimics the information set available
to the econometrician in real-time, and avoids dealing with overlapping
quarters. Once a new indicator enters the model, missing observations
are set to 0, while the Euclidean norm required for the sparsification step
is computed on the available data (appropriately rescaled to reflect data
availability).

“shrink-then-sparsify” strategy (see, e.g., Hahn and Carvalho
2015, and Appendix D.2). Shrinkage is achieved by means of
Horseshoe (HS) priors: bi ∼ N (0, λiτ), where the hyperparam-
eters λi and τ control the local and the global shrinkage of the
predictor loadings, respectively. Specifically, λi ∼ HC+(0, 1)

and τ ∼ HC+(0, 1), where HC+(0, 1) denotes the standard
Half-Cauchy distribution. Unlike other common shrinkage
priors (e.g., Ridge, Lasso), HS priors are free of exogenous
inputs, implying a fully adaptive shrinkage procedure. We then
apply the Signal Adaptive Variable Selector (SAVS) algorithm
of Ray and Bhattacharya (2018) to reduce the estimation
uncertainty associated with the shrinkage. This data-driven
procedure specifies the sparsification tuning parameter as mi =
|b̂i|−2 such that each predictor i receives a penalization “ranked
in inverse-squared order of magnitude of the corresponding
coefficient” (Ray and Bhattacharya 2018). Thus,

b∗
i = sgn(b̂i)||Xj||−2 max

{|b̂i| · ||Xj||2 − mi, 0
}

, (13)

where || · || represents the Euclidean norm of the vector Xj.
Note that by applying the sparsification step at each draw of the
MCMC algorithm, the approach fully accounts for model uncer-
tainty, akin to the idea of Bayesian model averaging (Huber,
Koop, and Onorante 2021).

6.2. On the Importance of Financial Indicators

Table 6 reports the forecasting performance of the sparse model,
based on the b∗

j coefficients, against our baseline specification
(Skt -4DFI), over the full sample (2000–2020), the 2000–2019
sample, and all the post-2000 recessions. Over the full sample,
the sparse model realizes gains of up to 10% (12%) in point (den-
sity) forecast accuracy, at the one-quarter-ahead; these trans-
late into gains up to 25% (20%) with respect to the Gaussian
benchmark.

These performances are only slightly affected by 2020, sug-
gesting the model is well suited to cope with such extraordinary
realizations. Looking at the cumulative sums of the relative
forecast scores it emerges that the sparse model gains advantage
over the Skt -4DFI throughout the entire sample and, especially,
during the second quarter of 2020, where the model is able to
timely capture the fall in GDP and the surrounding uncertainty.
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Table 6. Sparse forecast performance.

One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.900
(0.000)

0.327
(0.000)

0.896
(0.000)

0.883
(0.000)

1.003
(0.214)

0.239
(0.075)

0.954
(0.160)

0.943
(0.310)

Pre-2020 0.899
(0.012)

0.100
(0.001)

0.915
(0.003)

0.907
(0.010)

0.940
(0.518)

0.082
(0.355)

0.964
(0.348)

0.965
(0.648)

Rec. 0.906
(0.000)

0.716
(0.000)

0.897
(0.000)

0.890
(0.002)

0.935
(0.968)

0.312
(0.807)

1.011
(0.896)

1.005
(0.972)

The table reports the average forecast scores from the sparse model relative to
the Skt -4DFI. Positive values of logS differences, and ratios smaller than 1 for
the MSFE, CRPS, and wQS indicate that the sparse model performs better than
Skt -4DFI. The p-values for equal forecast accuracy are in parentheses. Values
in bold are significant at the 10% level. Out-of-sample periods: Full, 1980Q1–
2020Q4; Post’00, 2000Q1–2020Q4; Rec., three quarters before and after NBER
recession dates.

Large gains are documented during recessions, indicating that
closely monitoring financial market distress can improve the
assessment of macroeconomic (downside) risk ahead and dur-
ing times of crisis, in line with Alessi et al. (2014).

We further investigate the importance of sparsity when
relying on a large number of predictors. Specifically, we compare
the sparse model to a “dense” specification, where the SAVS
step is omitted. The sparse model is associated with large
gains in forecasting performance under any loss function
pointing at the importance of reducing estimation uncertainty
relative to the predictors’ loadings in a large data setting (see
Appendix I).

In Figure 9 we illustrate the evolution of sparsity in the
financial information set over time, for the asymmetry and
scale parameters. Financial information appears to be more
informative for capturing the time variation of the asymmetry
parameter, rather than the scale, and for both we observe a
decreasing pattern in sparsity. On average, about 7.5% of the
predictors feed into the prediction of the asymmetry parameter,
while only about 2% contribute to the scale; toward the end of the
sample, more than 10% of the indicators inform the asymmetry

parameter, while only 5% relate to σt . During the financial crisis
we document a decrease in sparsity for �t , highlighting the
importance of monitoring developments in financial markets to
gauge the severity of the Great Recession. Ranking predictors
by their average posterior probability of inclusion shows that
leverage indicators provide most of the information relevant to
predict the evolution of the asymmetry parameter, along with
credit conditions and household debt. Credit spreads appear
most informative for the scale parameter. In line with the nar-
rative in Adrian and Shin (2008), during the Global Financial
Crisis the size of the shadow-banking sector, and the issuance
of mortgage-backed securities, provide useful signals to gauge
increasing downside risks.

7. Conclusions

The severity of the latest financial crisis and the ensuing
recession has spurred the interest of both academics and
practitioners in developing models that allow us to better
understand and predict downside risk to economic growth. We
introduce a framework that allows to characterize permanent
and transitory variation of the whole conditional distribution of
GDP growth, ensuring robustness to tail events and delivering
competitive out-of-sample (point, density and tail) forecasts.
Our model highlights how the properties of GDP growth have
changed over the last 50 years. Downside risks have steadily
increased, adversely affecting long-run growth. The fall in
volatility observed since the mid-1980s reflects a substantial fall
in upside volatility, with downside volatility remaining relatively
stable over the entire sample. Procyclical skewness emerges as
a strong feature of the data, which strongly relates to leverage
developments and credit availability. When financial markets are
overheating, future economic growth becomes more uncertain,
and downside risk arises, reflecting the negative skewness of the
predictive distributions of GDP growth.

Figure 9. Sparsity.
NOTE: The panels reports the evolution of the financial predictors selected for the asymmetry and scale parameters. Names in red indicate the 10 predictors with the highest
posterior probability of inclusion (pip); names in bold indicates predictors with the highest pip around the Global Financial Crisis.
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Supplementary Materials

The Supplemental Material reports additional results discussed through-
out the paper. Appendix A provides further details on the testing proce-
dure for time-varying conditional asymmetry, as discussed in Section 2.
Appendix B offers additional details and derivations of the econometric
model. Appendix C highlights the relevance of modeling time-varying
asymmetry in the conditional distribution and contrasts our model with
the one in Plagborg-Møller et al. (2020). Appendix D provides details on
the estimation procedure. Appendix E reports the results of the Monte Carlo
experiment, summarized in Section 3, and compares our model to existing
ad-hoc approaches to time-varying asymmetry. Appendix F provides details
about the data. Appendix G discusses in-sample model fit. Appendix H
presents additional detailed results about the forecasting exercise described
in Section 5. Appendix I offers additional results about the Sparse model in
Section 6. Appendix J collects additional tables and figures.
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