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ABSTRACT
Understanding how people interact with search interfaces is core
to the field of Interactive Information Retrieval (IIR). While vari-
ous models have been proposed (e.g., Belkin’s ASK, Berry picking,
Everyday-life information seeking, Information foraging theory,
Economic theory, etc.), they have largely ignored the impact of cog-
nitive biases on search behaviour and performance. A growing body
of empirical work exploring how people’s cognitive biases influence
search and judgments, has led to the development of new models
of search that draw upon Behavioural Economics and Psychology.
This full day tutorial will provide a starting point for researchers
seeking to learn more about information seeking, search and re-
trieval under uncertainty. The tutorial will be structured into three
parts. First, we will provide an introduction of the biases and heuris-
tics program put forward by Tversky and Kahneman [60] which
assumes that people are not always rational. The second part of the
tutorial will provide an overview of the types and space of biases
in search [5, 40], before doing a deep dive into several specific ex-
amples and the impact of biases on different types of decisions (e.g.,
health/medical, financial). The third part will focus on a discussion
of the practical implication regarding the design and evaluation
human-centered IR systems in the light of cognitive biases – where
participants will undertake some hands-on exercises.
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1 MOTIVATION AND OBJECTIVES
Interactive Information Seeking and Retrieval (IS&R) encompasses
the processes of searching, discovering, and retrieving relevant,
valuable, and trustworthy information [22]. This multifaceted jour-
ney involves various factors that impact how individuals partic-
ipate in this process, influence their search intentions and be-
haviours [45, 48], and affect their search and learning experiences
under varying tasks [44, 47, 61]. To understand ISR comprehen-
sively, a variety of conceptual and descriptive models have been
proposed. These models, such as Bates’ Berry Picking Model [8]
and the ISR framework presented by Ingwersen and Kalvero [23],
provide valuable insights into the intricacies of information seek-
ing and retrieval. Moreover, researchers have explored a diverse
array of determinants in this field, including user characteristics,
such as expertise, background, topic knowledge, and cognitive abil-
ities [30, 39, 46]. They have also investigated system functionalities,
such as interface design, presentation, and quality, along with task
attributes like difficulty, complexity, and topicality [29, 33]. These
models and determinants collectively contribute to a deeper under-
standing of the dynamic nature of information seeking and retrieval,
shedding light on the complex interplay between users, systems,
and the information itself. However, they have been largely agnostic
of the cognitive biases that impact people’s search behaviour.
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Figure 1: Thinking, Slow and Fast [25]: Cognitive biases [60],
or simple heuristics that make us smart? [59]

Over the past decade there has been growing interest in un-
derstanding the influence of cognitive biases on IS&R and their
consequences for information processing, knowledge acquisition,
and decision-making. This concern is particularly relevant in an era
marked by instant access to vast information volumes, as well as the
potential exploitation of cognitive biases by search engines, content
creators, and Artificial Intelligence (AI) systems [6, 11]. Moreover,
questions arise about the potential interaction between cognitive
biases and biases present in search engines, algorithms, and content,
andwhether these biasesmay contribute to or reinforce one another,
creating a “bias begets bias” cycle [6]. The amalgamation of system-
and user-sided biases can mutually amplify effects, both positively
and negatively [37, 41]. As an increasing portion of the popula-
tion relies on search and recommender systems for essential life
decisions, such as medical, political, social, personal, and financial
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choices, understanding and mitigating the (negative) impact of cog-
nitive biases is of considerable economic and societal significance
and is also essential for building, implementing, and evaluating
human-centered, responsible information systems in high-stakes
decision contexts [12, 41]. Thus, this tutorial aims to bring atten-
tion to this growing body of research and applications, provide
participants with an overview of cognitive biases in search, and
facilitate the discussions on the potential opportunities, challenges,
and practical implications of research on bias-aware IS&R. With
the knowledge about human biases, we hope to provide a psycho-
logically more realistic foundation for user models, IR evaluation
measures and bias mitigation techniques in search interactions [40].

2 RELEVANCE TO SIGIR COMMUNITY
This tutorial is highly relevant to the core research interests of
the SIGIR community and can bring to the forefront the nuanced
interplay between human cognition and interactive information
retrieval (IR) systems in varying task contexts. This initiative is
not just timely but pivotal in an era where AI-assisted information
ecosystems are becoming increasingly sophisticated and integral
to societal functions. Our exploration into cognitive biases and
heuristics sheds light on the often-overlooked psychological dimen-
sions of search behaviors and offers a lens through which we can
re-evaluate existing IR models and systems. By delving into the
foundational theories of Tversky and Kahneman among others, and
their application in the context of IS&R, this tutorial will present
and discuss the insights regarding boundedly rational users and
their interaction and evaluation strategies. This is critical for the
development of next-generation search technologies that are not
only technologically advanced but are also attuned to the complex
tasks and cognitive processes of their users. This tutorial represents
a bridge between the computational and cognitive realms of IR,
presenting ideas and methodologies to better model, understand,
and support users’ interactions with information and IR systems.

3 SCHEDULE AND MATERIALS
The first half of this in-person tutorial will focus on the background
theory from cognitive psychology, and the second half will be fo-
cus on providing examples in the context of interaction modeling,
evaluation and bias mitigation. Our learning goals and referencema-
terials are available at our tutorial website: https://beiir.github.io/.

3.1 Detailed Schedule

Part 1 - Session 1: Biases and Heuristics (1.5h). To kick off the tuto-
rial, we will first organize a "How biased are you?" activity, where
we will hand out some standard survey questions known to reveal
cognitive biases, as a fun way to get participant actively engaged in
understanding different biases and reflecting on the possible impact
of biases in information search, IR evaluation, and decision-making.

Then, we will introduce the findings and implications on the
role of cognitive biases in judgment and decision-making under
uncertainty from classical behavioural experiments [e.g. 24, 58].

Part 2 - Session 2: Cognitive Biases in Search and Evaluation (1.5h).
After the coffee break, we will do a deep dive into the role and
impact of human cognitive biases in search interactions, document

judgments, and whole-session evaluation in IS&R, and discuss the
methodological challenges and practical implications of modeling
search interactions from a behavioral economics perspective [5, 40].
• Cognitive Biases in Query Formulation [54, 67].
• Biases in Evaluation of Search Engine Result Pages (SERPs) [50].
• Biases, in-situ Evaluation and Retrospective Evaluation [12, 43].
• Biases in Health Information Search [53, 64, 65].
• Study Design and Methodological Challenges.

After introducing IS&R research on cognitive biases, we will
ask participants to discuss in groups and propose relevant open
questions, theoretical and methodological challenges, and possible
practical applications they have in mind. During the discussions,
we will also offer Table 1 as a checklist for tutorial participants
to look up relevant papers under different domains and phases of
search processes in order to facilitate their discussions.

Part 2 (cont) - Session 3: Bias Mitigation Strategies (1.5h). After lunch
break, we will discuss the approaches and techniques applied to
mitigating human cognitive biases in information judgments and
decision-making. Our presentation will cover relevant research
from IR, Recommender Systems as well as broader HCI fields on
both explicit interventions (e.g. recommendation, re-ranking) and
reminders and implicit nudging on interfaces [10, 14].

Part 3 - Session 4: Cognitive Biases and GenIR (1.5h). Large lan-
guage models (LLM) are able to generate customized human-like
responses to users’ prompts, tasks, and preferences [62], and thus
may cause harmful behavioral impacts when the responses trigger
and reinforce users’ existing biases. After coffee break, we will first
discuss the potential opportunities and challenges in understanding
cognitive biases in human-AI interactions and mitigating the risks
of cognitive behavioral manipulation in Generative IR.

Then, we will organize breakout group discussions and match
each group with a specific subtopic under the theme of session
4. Each group will discuss specific research questions under the
subtopic and collaborate on designing one or two user studies or
experiments that can answer some of the proposed questions.

4 PRESENTER BIOGRAPHIES
Jiqun Liu is currently an assistant professor of data science and
affiliated assistant professor of psychology at the University of
Oklahoma. He directs the OU human-computer interaction and rec-
ommendation (HCIR) Lab where he advises students from different
backgrounds on intelligent information retrieval and recommen-
dation, human-centered computing, and socially responsible AI
research. His current research focuses on the intersection of in-
formation retrieval, machine learning, and cognitive psychology.
His work applies the knowledge learned about people interacting
with information in user modeling, adaptive information search
and recommendation, bias mitigation and human-centered system
fairness evaluation. His research on bias-aware user modeling and
IR evaluation received grant support from National Science Foun-
dation (NSF) and has been published at premier venues, such as
ACM SIGIR, CHIIR, CIKM, IP&M, EMNLP, and TheWebConf. His
work has also been introduced in a research monograph entitled
"A Behavioral Economics Approach to Interactive Information Re-
trieval: Understanding and Supporting Boundedly Rational Users" by
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Table 1: A breakdown of IS&R papers investigating different cognitive biases
across domains and different parts of the search process.

.

Cognitive Biases Domains Search Process
Health Political Web Querying Examining Judging Sat.

Confirmation Bias [19] [34] [53] [55] [26] [36] [35] [54] [34] [54] [55] [63] [64] [19] [53] [35]
[63] [64] [68] [26] [36]

Too Much Anchoring [38] [53] [50] [51] [15] [57] [50] [51] [15] [38] [53] [57]
Information Availability [19] [53] [65] [50] [51] [50] [51] [19] [53]

Framing Effects [50] [51] [50] [51]
Bandwagon Effects [16] [19] [20] [15] [9] [31] [31] [9] [15] [16] [20] [19]

No Meaning Exposure Effects [19] [38] [53] [35] [17] [17] [19] [35] [38] [53]
Reinforcement Effects [38] [35] [17] [17] [35] [38]
Decoy Effects [15] [13, 15]

Act Fast Ambiguity Effects [35] [26] [15] [21] [27] [26] [15] [21] [27] [35]
Less is More [52] [52]
Dunning-Kruger Effect [18] [18]
Priming Effect [50] [51] [32] [54] [56] [67] [54] [67] [50] [51] [56] [32]

Remember Order Effects [7] [38] [53] [1] [17] [9] [28] [49] [66] [9] [28] [49] [66] [1] [7] [17] [38] [53]
Peak End Rule [42] [42]

Springer Nature and presented through numerous invited talks to
both academic audiences and tech industry practitioners.
Leif Azzopardi is a Associate Professor at the University of Strath-
clyde within the Department of Computer and Information Sciences.
Leif specializes in modelling and measuring how people interact
with search and recommendation systems using theory from eco-
nomics to ecology. He has over 200 peer reviewed publications on
Interactive Information Retrieval focus on howuser behaviour (with
over 7,000 citations). Key works relevant to this tutorial include
his work modelling people as economic actors [2–4] and his work
summarizing the different cognitive biases affecting search [5]. He
has given numerous invited talks on Formal Models of Information
Seeking and Retrieval throughout the world and lectured at the
Information Foraging Summer School (2011, 2012 and 2013) and
Symposium of Future Directions in Information Access (2007-2013).
He has given various tutorials at leading conferences, such as the
EconomicsModels andMeasures of Search (SIGIR 2019, ICTIR 2016),
Modelling the Costs and Benefits of Interaction, (CHIIR CHI2019,
CHIIR 2017), Simulation of Interaction (SIGIR 2016), Formal Models
of Search (CIKM 2015, ICTIR 2015).
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