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Laserharmonicgenerationwith independent
control of frequency and orbital angular
momentum

Raoul Trines 1 , Holger Schmitz 1, Martin King 2,3, Paul McKenna 2,3 &
Robert Bingham 1,2

The non-linear optical process of laser harmonic generation (HG) enables the
creation of high quality pulses of UV or even X-ray radiation, which havemany
potential uses at the frontiers of experimental science, ranging from lensless
microscopy to ultrafast metrology and chiral science. Although many of the
promising applications are enabled by generating harmonic modes with
orbital angular momentum (OAM), independent control of the harmonic fre-
quency and OAM level remains elusive. Here we show, through a theoretical
approach, validated with 3D simulations, how unique 2-D harmonic progres-
sions can be obtained, with both frequency and OAM level tuned indepen-
dently, from tailored structured targets in both reflective and transmissive
configurations. Through preferential selection of a subset of harmonic modes
with a specific OAM value, a controlled frequency comb of circularly polarised
harmonics can be produced. Our approach to describe HG, which simplifies
both the theoretical predictions and the analysis of the harmonic spectrum, is
directly applicable across the full range of HG mechanisms and can be readily
applied to investigations of OAM harmonics in other processes, such as OAM
cascades in Raman amplification, or the analysis of harmonic progressions in
nonlinear optics.

The generation of harmonic radiation (HG) with higher-order phase or
polarisation topology, especially Laguerre-Gaussian (LG) modes with
orbital angular momentum (OAM), opens up a vast panorama of novel
applications such as quantum computing1, enhanced optical
communications2, super-resolution microscopy3 and optical
tweezers4. The underpinning physics enables the detection of light-
beam OAM spectra to be used to diagnose the existence of rotating
massive astrophysical objects such as black holes5.

When a single laser beam is used to generate the harmonics, the
OAM level of a given harmonic frequency is often linked to its har-
monicorder. This involves both the transfer ofOAM fromapump laser
beam toharmonics in gas targets6–11 andHGusing a circularly polarised
(CP) beam without OAM, through exploiting spin-to-orbital momen-
tum conservation in laser-solid interactions12–15 or laser-aperture

interactions16–19. In all of these configurations, the harmonic genera-
tion follows the following principles: (i) no energy, linear or angular
momentum can be left behind in the medium or target because the
laser interactionwith themedium is isotropic20,21; (ii) HG in an isotropic
medium (gas) conserves spin and orbital angular momenta separately
within the EMwaves, soHGbypureCPwaves is not possible as itwould
violate spin conservation, while the OAM of harmonics generated by
linearly polarised (LP) beams carrying OAMwill be proportional to the
harmonic frequency14; (iii) HG in laser-solid interactions conserves
total angularmomentumwithin the EMwaves, and so a single CPwave
without OAM can produce CP harmonics with OAM via spin-to-orbital
angular momentum conversion12,13,16.

In this article, we demonstrate thatwhen a CP laser pulse interacts
with a target with a defined periodic surface structure, angular
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momentum can be left behind in the target, as in a q-plate22,23. The
OAM content of the harmonics can then differ significantly from the
prediction of the simple spin angular momentum (SAM) to OAM
conversion, and we exploit this behaviour to independently control
the frequency and OAM level of the harmonics. In parallel to this, we
introduce a systematic approach for the description of simultaneous
HG in multiple variables (e.g., frequency ω and OAM level ℓ) where all
fields are decomposed into modes with pure CP, constant amplitude
anddefinite spin σ = ±1, with theharmonic spectragiven as functionsof
“signed” frequencies and wave vectors ω/σ, k/σ instead of ω, k. We
show that the harmonic progression in (ω/σ, k/σ) space is always a
regular grid, defined by the (ω/σ, k/σ) spectrum of the initial pump-
target configuration, and tuneable via both the pump laser composi-
tion and the target structure: two initial modes generate regularly
spaced points on a single line and three independent modes drive a
regular 2-D grid. This important finding generalises previous results on
HG involving a “bicircular” pump configuration10,24–26 (where the
spectral peaks are forced onto a single line, but not regularly spaced),
and can also explain findings on CP pumps (2 initial peaks, 1-D spectral

grid) versus LP pumps (4 initial peaks, 2-D spectral grid) reported in
Hickstein et al.27. To verify the above predictions of regular spectra, we
have developed dedicated diagnostic methods to determine the
(ω/σ, k/σ) spectrum from the results of 3-D numerical simulations of
structured reflecting and transmissive targets. This approach demon-
strates that a predictable, regular 1-D or 2-D harmonic progression can
be generated, in (ω/σ, ℓ/σ) space, where both frequency ω/σ and OAM
level ℓ/σ of the harmonics can be tuned independently. We also show
how the 2-D harmonic progressions with sufficiently large separation
can be used to generate a tuneable frequency comb in which all fre-
quencies have circular polarisation. Our approach unifies fields as
diverse as HG in gases, crystals and solid targets10,11,24,27, and even
Raman scattering28 and laser beat waves29,30.

Results
The essence of our HG scheme and corresponding data analysis is
shownschematically in Fig. 1. A relativistically intenseCPpumppulse is
incident on a target with either a periodically structured indentation
(Fig. 1a) or aperture (Fig. 1b). Shaped targets with a periodicity of three
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Fig. 1 | Schematic illustrating the generation of higher-order harmonics. Shown
are the LCP (σ = 1, blue) and RCP (σ = −1, green) harmonics of an incoming CP pump
pulse (red) in a reflection and b transmissive configurations, from a threefold
structured target. c–e Expected 2D harmonic spectrum from: c a flat target driven

by an LP pump pulse with ℓ = 1; d a circular aperture or dent target driven by a CP
pump pulse of ℓ =0; and, e a threefold reflective or transmissive target with a CP
pump pulse of ℓ =0. The blue shaded area indicates the potential for a frequency
comb at ℓ =0.
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are shown in this example. The irradiated target surface oscillates
relativistically, generating harmonics that are reflected or transmitted.

To visualise the resultant 2-D harmonic progression, for a real-
valued CP field ðEx ,EyÞ= ðcosðωt=σÞ, sinðωt=σÞÞ, we find that
Ex + iEy = exp iðωt=σÞ (see Supplemental section S1 for more detail).
Our data analysis approach involves calculating Ψ(t, r, φ) = Ex + iEy,
integrating over r and performing a 2-D signed Fourier transform to
obtain the “signed” spectrum ~Ψðω=σ,‘=σÞ. The three main advantages
of this approach are: (i) harmonic peaks are on a 1-D line or in a 2-D
regular grid; (ii) CP harmonics with helicity opposite to that of the
pump are not masked by the CP harmonics with the same helicity as
the pump; (iii) many aspects of the harmonic progression, like the
regular steps and the dimensionality of the progression, symmetries
and conserved quantities can be verified immediately from the gra-
phical representation of the data.

Figure 1c–e shows how various HG schemes can be represented
in a 2-D CP (ω/σ, ℓ/σ) spectrum. Figure 1c shows typical HG with an LP
pump laser pulse, incident on a planar target, with OAM level ℓ = 1;
the pump is decomposed into two symmetric CP modes represented
by the points (1, 1) and (−1, −1). The harmonic progression is then
given by the sequence of equidistant points ± (2n + 1)(1, 1), which
combine to yield all the odd LP harmonics with OAM level equal to
the harmonic number31. Figure 1d represents the HG when CP laser
light interacts with a circular dent12,13 or a circular aperture16,32. The
pump laser is represented by the point (1, 0) and the DC mode cor-
responding to the target shape by (0, −1). The harmonic spectrum is
again given by a sequence of equidistant points (n, n−1), which
includes CP harmonics with opposite spin-to the pump. These have
been predicted, but never demonstrated13. Finally, Fig. 1e shows the
spectrum of a CP pump laser interacting with a target with a three-
fold surface structure (as in Fig. 1a, b). The target is represented by
the points (0, −1) and (0, 2), and together with the pump laser at
(1, 0), these points drive a 2-D regular grid of harmonic modes. The
harmonic light on-axis, which preferentially selects the modes with
ℓ = 0, is a frequency comb of pure CP modes ωn/σn = (2n + 1)ω0. The
spacing in the comb is fully tuneable by tailoring the periodicity of
the structured target.

Description and analysis of the harmonic progression
To describe this behaviour for laser-driven HG in an isotropicmedium,
the leading nonlinear term driving the process is usually cubic, e.g.,
∝A2A, where A is the vector potential of the laser field (see Supple-
mental Section S2 for conventions used throughout, and Supple-
mental Section S3 for a full description of harmonic progressions
generated by a cubic nonlinear term). However, for a laser beam with
oblique incidence (angle α) onto a flat solid surface, the nonlinear term
takes the form jA� tanðαÞex j2ðA� tanðαÞexÞ33. More generally, a solid
target with a shaped surface can result in a nonlinear term ∣A−ADC∣2(A
−ADC), where ADC is a time-independent, but space-dependent vector
field that will influence the topology of the generated harmonics (see
section II B). Theharmonicsgenerated in Lichters et al.33 (constantADC)
have a different topology than those generated in Wang et al.12 or Li
et al.13 for a circular dent target (ADC∝ er in polar coordinates). A similar
mechanismemergeswhen considering targetswith a circular aperture,
for which the role of ADC is played by the normal vector of the inner
aperture surface16,17,19,34,35. Here, we consider a variety of both reflective
and aperture targets with shaped vector fields ADC to achieve full
control of the topology of the generated harmonic spectrum. Our
approach has the following features:
(i) All EM fields are decomposed into pure CP modes, since these

have constant A2 and well-defined spin σ, in addition to frequency
ω and wave vector k.

(ii) We use signed frequencies and wave vectors ω/σ, k/σ rather than
ω, k, since ðcosðωtÞ,ð1=σÞ sinðωtÞÞ= ðcosðωt=σÞ, sinðωt=σÞÞ for a
pure CP mode with σ = ±1, while two CP modes A and B beat as

AA � AB / cos½ðωB=σB � ωA=σAÞt�. We useω/σ rather than σω since
ω=σ = _ω=ð_σÞ= E=Sz for a CP photon with energy E and spin Sz.

(iii) For a laser beam consisting of two CP modes A and B, the har-
monics will be generated by the factor 2AA ⋅AB, since A2

A,B are
constant; therefore, the harmonic progressions for ω and k
become ðn 2 ZÞ:

ωn=σn =ωA=σA +nðωB=σB � ωA=σAÞ ð1Þ

kn=σn =kA=σA +nðkB=σB � kA=σAÞ ð2Þ

(iv) Eq. (1) can readily be extended to multiple dimensions. Two CP
modes generate equidistant harmonics on a line, whereas three
non-degenerate CP modes produce a regular 2-D grid, and four
non-degenerate modes generate a regular 3-D lattice. Since all
these grids are regular, this approach can be generalised to many
different scenarios. In addition, this approach enables 1-D and 2-D
harmonic progressions to be easily distinguished, which was not
possible in previous works (e.g., ref. 10,27,36).

(v) The selection rules derived using either the “photon counting”
approach6,11,27,31,37–44 or the “symmetry-based” approach45–52 can be
derived from Eq. (1), thus providing a link between these two
approaches.

(vi) The collection of symmetries governing the harmonic progres-
sion can be described using this approach, and a connection can
even be made to the conserved quantities of Noether’s Theorem,
thus providing a generalised description of quantities like the
“torus-knot angular momentum”10,24–26.

(vii) In particular, we investigate targets that have n-fold rotational
symmetry; their DCmodeswill be represented by ℓDC/σDC = −1 and
ℓDC/σDC = −q, while n = ∣1 − q∣ (see the Methods section for details).

Our approach assumes that harmonic modes can be fully sepa-
rated by frequency, wave vector and spin. In practice, separation by
frequency and direction of propagation are common, while separation
by OAM level is possible but uncommon53. Separation by spin, i.e., left
and right CP modes, is not practical, especially for higher frequencies,
andnot normally done in experiments. The consequences for ourwork
are that whenever we identify twoharmonicmodes that have the same
values ofω and ℓ andonly differ by σ, the superposition of thesemodes
yields a mode with elliptic polarisation (EP) at ω and ℓ. This may hap-
penwhenweuse targetswith lowrotational symmetry and thepeaks in
the harmonic spectrum are too closely spaced; see the discussion of
our simulation results in Section II C for more details.

The DC Mode in laser-solid interactions
To describe HG in laser-solid interactions, such as those considered in
the main text, we use the model by Lichters et al.33, which details the
interaction of a laser beam with a solid surface. For oblique incidence
at an angleαwith respect to the target normal, where the projection of
k on the target surface is given by k sinðαÞex , the model equations are
as follows (aDC = tanðαÞex):

ð∂2t � c2∇2Þða� aDC Þ= � ω2
p

n
γ cosα

ða� aDCÞ, ð3Þ

n=γ≈1 + δn� ða� aDCÞ2=2, ð4Þ

∂2
t δn= � c2

2γ2
∇2ða� aDCÞ2, ð5Þ

γ2 = 1 + ða� aDC Þ2: ð6Þ
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Similar to above, we define Ψ= ðax � tanαÞ+ iay and only retain
leading-order terms for small wave amplitudes. Then, for pump laser
with frequency ω0 and wave number k0 we can rewrite the above
system as:

cosα ∂2
t � c2∇2

� �
Ψ+ω2

pΨ= � 1
2
ω2

p 1 + c2k2
0=ω

2
0

� �
ðΨ*ΨÞΨ, ð7Þ

which has the required shape with a cubic nonlinear term. However,
this requires that Ψ does not just cover the EM vector potential a, but
also a synthetic “DC mode” aDC = tanαex , which is a consequence of
the laser-target geometry. The DC mode has ω =0, so its spin σ is
undefined, but k/σ and ℓ/σ are well-defined via the mode’s spatial
dependence. The presence of this DCmode explains why a single laser
beamwith circular polarisation can generate harmonics when hitting a
target at an oblique angle33: unlike in HG in gas, the circularly polarised
mode is not on its own but can beat against the DC mode.

The DCmode for oblique laser incidence onto a planar target has
ΨDC = tanα = const, which means that k/σ = ℓ/σ = 0. It should also be
regarded as having linear polarisation in x. With this, judicious appli-
cation of Eq. (1) will yield all the selection rules described in ref. 33.
Similarly, the DC mode for a cone-shaped dent12,13 takes the form
ADC∝ er or ΨDC / expðiφÞ, corresponding to ω/σ =0, ℓ/σ = −1, and the
selection rules from these works can all be recovered from Eq. (1).

The same strategy with DC modes can be used to describe, e.g.,
second-harmonic generation in nonlinear materials, see, e.g., ref. 54.
The cubic term in the equation for a can be rewritten as either
ða� a1Þ2ða� a1Þ or ða� a1Þ2ða� a2Þ or [(a−a1) ⋅ (a−a2)](a−a3). If one
then equips the DC modes with the right higher-order structure (e.g.,
OAM), the second-harmonic light can then be generated with intrinsic
OAM levels or other higher-order structure.

Simulation results
Figure 2 shows examples of 3-D simulation results for harmonic gen-
eration by a CP pump laser passing through either a circular or a

“trefoil” (threefold periodicity) aperture. Figure 2a–b shows the laser-
target configuration and the OAM topology of the second-harmonic
light generated during the interaction, as a function of time over one
laser period. Figure 2c shows the 2-D (ω/σ, ℓ/σ) spectrum for the cir-
cular aperture case, with the second-harmonic modes ringed: a CP
mode with the same (opposite) helicity to the pump and OAM level
ℓ = 1 (ℓ = 3). Figure 2d shows the corresponding 2-D spectrum for the
trefoil target; multiple CP modes are generated at ω/σ = 2ω0/σ0
(ω/σ = −2ω0/σ0) with the same (opposite) helicity to the pump and
OAM levels ℓ = 3n + 1 (ℓ = 3n), n 2 Z.

Figure 2a–b shows the oscillatory Cartesian electric field compo-
nents in space and time for the combined generated 2ω0 harmonic
direct from the simulations. As the analysis has been performed con-
sidering circular polarisation components, it is also useful to compare
the Cartesian spatial distribution of the −ω and +ω components of the
2ω0 harmonic (~Ψðω= ± 2ω0,x,yÞ). This can be observed, respectively,
in Fig. 3a–b for n =0 and similarly in Fig. 3c–d for n = 3. The distribu-
tions for n = 0 show the clear annular structures expected for the
predicted clean l = 1 and l = 3 modes in +ω and −ω, respectively. These
structures form at distinct radii, which may aid in detection. The n = 3
case is again more complex due to the interference of the different
spatial orders. Of note is the on-axis central component in the −ω case
that will have no OAM and will be discussed later. Up to this point, we
have been considering the near-field profile of the pulse. By perform-
ing a 2-D spatial Fourier transform, it is possible to construct the far-
field pattern in k-space (~Ψðω= ±2ω0,kx ,kyÞ). This is shown in Fig. 3e–h
for the same cases, respectively. For n =0, there is no significant
change in the spatial distribution of the 2nd harmonic light. For n = 3,
the profile is significantly less complex with the distinct central feature
on-axis for −ω and a triple lobed pattern in +ω. It is expected that the
2D harmonic spectrum does not vary when considering the far-field
and tests have been conducted using a moving window simulation
technique to verify this, as shown in Supplemental section S4. Example
results exploring the effects of varying the radius and corrugation
depth of the target are presented in Supplemental section S5.
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Fig. 2 | Simulation results for second-harmonic generation in an aperture tar-
get. The 3D simulation results showing the temporal behaviour (over 1 funda-
mental wave period τL) of the generated orthogonal electric field components
(Ex and Ey) forω=2ω0, from the interactionof a circularly polarisedpump laserpulse
of ℓ =0with a target comprising of a: a circular (0-fold) aperture; and, b, structured

(3-fold) aperture. These example results correspond to x = 5λL and t =0 indicates
the time when the peak of the pump laser pulse reaches this position. The target
profiles are indicated ingrey. c 2Dharmonic spectrumof the results for the target in
a. d corresponding results for the target in b. The blue circles indicate the OAM
levels present at ω = 2ω0.
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Reflective target results. We start with the analysis of the simulations
involving “reflective” targets. Due to the fact that for the reflective tar-
gets the forward and backward waves need to be separated, not all
predictedmodes are observable. The specific height functions h(x, y) of
the targets used are shown in Fig. 4a–c for q = 1, −1 and −4, respectively.
In Fig. 4d, the (ω/σ, ℓ/σ) spectra of the reflected light for a CP pump laser
with spin σ0 = 1 and noOAM (ℓ0 =0), corresponding to the point (1, 0), is
shown. The q= 1 cone-shaped dent leads to a DC mode ADC∝ er or
ΨDC / expðiφÞ with ℓ/σ = −1, corresponding to the point
(ω/σ, ℓ/σ) = (0,−1). These twopoints areexpected todefine theharmonic
progression (ω/σ, ℓ/σ) = (n, n, −1), which is found in the 2-D Fourier
spectrum from the simulation. Note that “negative”harmonicswith spin
opposite to that of the pump beam are observed; since their OAM level
is different from the corresponding “positive” harmonics, they are
genuine harmonics and not numerical echoes. While these have been
predicted in high-power laser-solid interactions by Li et al.13, they are
demonstrated here for the first time. One can vary the values for σ0 and
ℓ0 so the pump corresponds to the point (1/σ0, ℓ0/σ0), and this results in
a harmonic progression (n/σ0, n(1 + ℓ0/σ0) −1), defined by the points (1/
σ0, ℓ0/σ0) and (0,−1). Due to the resolution and fourfold symmetryof the
simulation grid, numerical artifacts are introduced as a result. These
spectral peaks are found off the (dashed) diagonal line in Fig. 4d.

Figure 4e–f shows the resultant spectrum when using structured
targets with q = −1 and q = −4, corresponding to the points (0, +1) and
(0, +4), respectively. We observe that the point (0, −1) is still present in
both cases, along with several additional peaks. Together with the
point (1/σ0, ℓ0/σ0) from the pump, these new peaks form a 2-D grid of
harmonic modes, as predicted by the model (see 2-D grid in Fig. 4e, f).
The vertical spacing is controlled directly by the value of q of the
target. The shape of the 2-D grid of harmonicmodes can be controlled

by σ0 and ℓ0 of the pump mode. We note that modes with ℓ =0 occur
for only specific values of ω/σ. By selecting the on-axis harmonic light
(where modes with ℓ = 0 dominate), one can obtain a controlled “fre-
quency comb”11,45,49,55; the vertical OAM spacing being converted into a
horizontal frequency spacing (see also Section II D).

Aperture target simulation results. For the simulations involving
aperture targets, Fig. 4g–i show the initial electron densities in the
(x, y)-plane for apertures with no periodic variation or periods of n = 2
and n = 5 (equivalent to q = −1 and q = −4), respectively, at z = 0.5λL. The
resultant (ω/σ, ℓ/σ) spectra of the generated light from aperture peri-
ods of n =0, 2 and 5 (q = 1, −1, −4) are shown in Fig. 4j–l, respectively.
Note that n for these apertures has the same symmetry as ∇ h for the
reflective targets displayed in Fig. 4a–f, which is observed in the
spectra.

Again, note the presence of negative harmonics with spin oppo-
site to that of the CP pump. These are clearly present in the harmonic
light and can be observed via Fourier analysis of the function
Ψ = Ex + iEy. Especially the negative harmonics at ω/σ = −ω0/σ0, which
would otherwise be masked by the transmitted light of the pump.

In Fig. 4e and k, a rotation by 180∘ around the origin will map
spectral peaks onto other spectral peaks; this means that those peaks
only differ by their spin σ and will combine in practice to yield modes
with elliptical polarisation. In Fig. 4f, l, however, the separation
between the rows of peaks is larger and this issue will not occur; each
peak in the (ω/σ, ℓ/σ) spectrum then stands for a pure CP mode.

In summary, we can generate tuneable harmonic progressions
with multiple levels of OAM per harmonic frequency, while both the
frequency and the OAM levels of the harmonics can be controlled
independently.
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e–h k-space profile for the same four cases (e: −2ω, n =0; f: +2ω, n =0; g: −2ω, n = 3;
h: +2ω, n = 3). These profiles are sampled at Z = 5λL.
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The 2-D grid for q≠1: a tuneable frequency comb
In the above simulation results, targets with q = 1 are represented by
ℓ/σ = −1, while targetswithq ≠ 1 are representedby ℓ/σ = −1 and ℓ/σ = −q.
In general, any target with CN symmetry (i.e. when the vector field ∇ h
or n is expressed in polar coordinates, its er and eφ coefficients will be
periodic in φ with period 2π/N) will usually lead to points (0, −1) and
(0, N −1). Such a target corresponds to a function ΨDC / expð�i‘φ=σÞ
where ΨDC expð�iφÞ is N-periodic, so ℓ/σ + 1 = nN, which includes the
points (0, −1) and (0, N −1). We note that the structured target for a q-

plate has C∣q∣+1 symmetry, see the Methods section for details. The
same holds for an aperture target whose edge has q lobes.

Any target with Cq symmetry for q ≠ 1 will thus be represented by
two points in Fourier space. The pump laser adds at least a third point
(when it is a pureCPmode) and togetherwith the targetwill drive a 2-D
grid in (ω/σ, ℓ/σ) space, as shown above. When the rows of points are
not parallel to the ℓ =0 axis, there will be a mode with ℓ = 0 for only
specific frequencies. This property can be used to obtain a frequency
comb. In fact, any 2-D grid in (ω/σ, ℓ/σ) space can potentially generate a
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frequency comb (see, for example, Rego et al.11), and our methods can
predict when this will happen. Also, a configuration showing a fre-
quency comb usually contains a 2-D progression11,45,46.

Any harmonic modes with ℓ =0 will have peak intensity on-axis,
while harmonic modes with ℓ ≠0 will have an intensity minimum on-
axis. By blocking out the off-axis HG, only those harmonic frequencies
will be obtained that have an ℓ =0 component (and thus peak intensity
on-axis). Such modes can be present in the harmonic spectrum even
when all the driving modes have an intensity minimum on-axis11. For
the case considered, for a nonlinear q-plate, the frequency step will be
∣1 − q∣ω0, and the offset will be ω0/σ0. The target shape can be inde-
pendent of the exact laser wavelength and since we use plasma targets
we can use this scheme for high-power laser systems, which have
previously been shown to produce harmonics into the x-ray regime in
laser-solid interactions56.

In Fig. 5a–f, we show the Fourier spectra of the on-axis light
(having ℓ =0) sampled behind aperture targets with q = 1, 0, −1, −2, −3
and −4 (n =0, …, 5), respectively. For q = 1 (circular aperture), we
obtained a 1-D spectrum in Fig. 4j, and thus obtain only a single peak at
the pump frequency. For other q, we obtain 2-D spectra (e.g. in
Fig. 4k–l), and thus a frequency comb in ω/σ with spacing ωσ0/
(σω0) = ∣q − 1∣. For any ∣q − 1∣ > 2, the peaks do not occur symmetrically
around 0, so all frequencies in the comb have circular polarisation.
AddingOAM to the pump laser changes the shape of the 2-D harmonic
grid and, thus, the frequencies of the comb.

Discussion
Our approach enables investigation of harmonic generation in multi-
ple variables in numerous laser-plasma interaction scenarios and
beyond. These include: combining an OAM pump laser and a struc-
tured target to produce a plasma J-plate57,58, tilting the target15 or
designing higher-order plasma q-plates59 using magnetic multipoles.
Our approach is also applicable to Raman scattering28,60,61, beat wave
generation29,30 and more general HG scenarios in nonlinear
optics10,11,24,27. Further details of these are provided in Supplemental
section S6.

Generation of CP harmonics with tuneable OAM can also be
achieved via two counter-rotating CP beams with frequencies

ω2 = 2ω1 = 2(2πc/λL) (λL = 800 nm is used in most cases, corresponding
to Ti:sapphire laser light), spin σ2 = − σ1 = −1 and OAM levels ℓ1 and
ℓ2

10,24–26. For this configuration, the harmonic peaks are regularly
spaced along a single line in (ω/σ, ℓ/σ) space: ðω=ðσω1Þ,‘=σÞn =
ð1,‘1Þ+nð3,‘1 + ‘2Þ, which is tuneable via the choice of ℓ1,2. Configura-
tions explored in previous work include ℓ1 = 1, ℓ2 = 2 (Xie et al.25),
ℓ1 = 1, ℓ2 = 1 (Pisanty et al.10), ℓ1 = 1, ℓ2 = −1 and ℓ1 = −2, ℓ2 = 1 (Dorney
et al.24), and ℓ1 = 2, ℓ2 = 1 (Minneker et al.26). Whilst all harmonic peaks
are on a single line in some of these works, e.g., Pisanty et al.10, the
regular spacing observed in the presentwork is not achieved, nor is the
variety of configurations. For the targets with a circular dent or aper-
ture, the harmonic peaks are regularly spaced on a single line in
(ω/σ, ℓ/σ) space, which canbe tuned via theOAM level of the drivingCP
laser pulse. For the targets with one- to five-fold symmetry, the peaks
form a 2-D regular grid, not seen in references10,24–26, with the spacing
between the diagonal rows equal to the symmetry level. Via our 2-D
harmonic grid, we are also able to generate tuneable frequency combs
(via choosing those harmonics with ℓ =0), something that cannot be
achievedusing the 1-Dharmonic progressions used in references10,24–26.
Our generic approach to harmonic generation can also be used to
resolve apparent differences between the results reported in Fleischer
et al.36, which concludes a 1-D harmonic progression, and Pisanty
et al.42 and Milošević et al.43, which suggest it is 3-D. Our framework
shows that a harmonic progression generated by three independent
CP modes will be a 2-D grid, since it has 2 degrees of freedom.

To conclude, we have developed a general approach to harmonic
generation and harmonic progressions in (ω/σ, k/σ) space, in terms of
the beating of “fundamental modes” with purely circular polarisation.
We have demonstrated a method to analyse the harmonic (ω/σ, k/σ)
spectrum via Ψ = Ex + iEy and the signed, multi-dimensional, complex
Fourier transform ofΨ. We have reproduced earlier results on conical
dent targets12,13 and aperture targets16, and extended these results to
show, for the first time, the presence of “negative harmonics” with
polarisation opposite to that of the pump. We have demonstrated the
generation of a rich two-dimensional harmonic spectrum from a single
CP laser interacting with structured reflective and aperture targets.
Finally, we can now generate a tuneable harmonic frequency comb, via
preferential selection of the harmonics (ω/σ, 0) from the 2-D spectrum.
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By revealing theunderlying symmetryof theseHGprocesses, thiswork
can be readily applied to other laser-plasma interactions and to more
general HG scenarios in nonlinear optics, simplifying analysis and
facilitating a step-change in fundamental understanding.

Methods
Target description
We describe our reflective targets with a structured surface via a
“height function” h(x, y). We use h(x, y) = 0 for a flat target,
hðx,yÞ= x tanα for a tilted target, and hðx,yÞ= tanðαÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
for a

target with a conical dent12,13. For a pump laser A0 hitting any non-flat
target, the leading nonlinear factor (which drives the harmonics) is
given by A0 ⋅ ∇ h, where ∇ h is constant in time but not in space. For a
conical dent, we have ∇ h∝ er and obeys ℓDC/σDC = −1. We aim to use
structured surfaces whose height function contains modes with
ℓDC/σDC different from 0 or −1.

For an aperture target, the leading nonlinear factor is given by
A0 ⋅n, where n is the normal vector of the inner surface of the
aperture16. For a circular aperture, we have n = −er and ℓDC/σDC = −1.
Different values of ℓDC/σDC can be obtained using apertures with dif-
ferent shapes.

For a pump laser (ω0, ℓ0, σ0) and a structured target with
ℓDC/σDC = −q, Eq. (1) yields: ωn/σm = nω0/σ0 and ℓn/σn + q =n
(ℓ0/σ0 + q) = (ℓ0/σ0 + q)(ωn/σm)/(ω0/σ0). For q = 1, this expresses con-
servation of angular momentumwithin the EMwaves. For q ≠ 1, the HG
process will leave angular momentum behind in the target.

For the “height function” of the reflective targets, we derive for
q ≠ 1 (details in the Supplemental section S7):

hðr,φÞ= r1�q cos½ðq� 1Þφ�:

The case q = 1, covers both the conical shape of ref.12 and the
“spiral plate” of ref.13. For q = 0, we obtain hðr,φÞ= r cosðφÞ= x, which
corresponds to a laser beam with oblique incidence onto a plane, as
described by Lichters et al.33. We see that we can design target surfaces
to obtain the harmonic generation patterns corresponding to any q.

For the aperture targets, we use a “corrugated” inner surface
RðφÞ=R0 +dR cos½ð1� qÞφ�. This shape has been chosen such that the
topology of n for a given value of qmatches the topology of ∇h for a
“reflective” target with the same q.

Simulation setup
Simulations were performed with EPOCH Particle-in-Cell code62. For
the reflective targets, the simulation domain is defined as −8μm ≤
x, y, z ≤ 8 μm with 512 × 512 × 1024 grid cells. The electron density is
defined by the height function zint = h(x, y) such that n(z < zint) = 0 and
n(z ≥ zint) = 4nc where nc is the critical density calculated for a laser
wavelength of λL = 1μm. In the reflective case the ions are immobile.
The simulations are initialised with 5 particles per cell. The incoming
laser pulse has a Gaussian profile with a half width of w0 = 4μm and a
Gaussian temporal envelope with a duration of 100 fs. The wavelength
is λ = 1μm and the peak intensity is Imax = 6:6× 1018 Wcm�2. The
boundaries are periodic in the x and y–directions, and a perfectly
matched layer absorbs the reflected laser pulse in the negative z-
direction.

For the aperture targets, the simulation domain is defined as
−10μm ≤ x, y≤ 10μmand −5μm ≤ z≤ 15μmwith 720× 720× 1000 grid
cells. All boundaries were defined as free space. The plasma was com-
posed of a slab of Al13+ ions of thickness λL with an empty circular
aperture with a periodically varying radius, R(φ) with R0 = 3.75λL and
dR =0.75λL. Thiswasneutralisedwith anelectronpopulationwithapeak
density equal to 40nc and an initial temperature of 10 keV. The front
surface of the target was set at z=0. Each species was initialised with 80
particles per cell. The laser pulse was circularly polarised (σ0 = 1, l0 =0)
in the [x, y] direction and focused with a Gaussian spatial profile at z=0

resulting in w0 = 4μm. The temporal profile was also defined as Gaus-
sianwith a FWHMof40 fs. Thepeak intensitywas Imax = 1 × 10

19 Wcm�2.
The slightly higher laser intensity than the reflective target case was
choosen because higher signal-to-noise ratio is acheived and therefore,
the harmonic features are more visible. This is discussed in Supple-
mental Section S8, which includes simulation results for the transmis-
sion case that have been run with the same parameters as the reflective
case (Imax = 6:6× 1018 Wcm�2 and 100 fs) to enable direct comparison.

Data availability
The data that support the figures within this paper and other findings
of this study are available at https://doi.org/10.15129/09b8b425-b71e-
4f07-ad7a-b163946670e9.

Code availability
The EPOCHparticle-in-cell code used in thiswork is available at https://
epochpic.github.io/.
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