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Abstract In this paper, using the three-phase induction motor fifth order model in a stationary two
axis reference frame with stator current and rotor flux as state variables, a conventional backstepping
controller is first designed for speed and rotor flux control of an induction motor drive. Then in order
to make the control system stable and robust against all electromechanical parameter uncertainties as
well as to the unknown load torque disturbance, the backstepping control is combined with artificial
neural networks in order to design a robust nonlinear controller. It will be shown that the composite
controller is capable of compensating the parameters variations and rejecting the external load torque
disturbance. The overall system stability is proved by the Lyapunov theory. It is also shown that the
method of artificial neural network training, guarantees the boundedness of errors and artificial neural
network weights. Furthermore, in order to make the drive system free from flux sensor, a sliding-
mode rotor flux observer is employed that is also robust to all electrical parameter uncertainties and
variations. Finally, the validity and effectiveness of the proposed controller is verified by computer
simulation.

Keywords Artificial Neural Network, Backstepping, Induction Motor, Observer, Robust, Sliding-
Mode
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1. INTRODUCTION

In the last two decades, nonlinear control methods
such as input-output feedback linearization and
Sliding-Mode(SM) control have been applied to
the Induction Motor (IM) drive [1-2]. Especially in
recent years, in the field of adaptive and robust
control, there has been a tremendous amount of
activity on a special control scheme known as
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“backstepping” [3-5]. A major problem of the
backstepping control approach is that certain
function must be “linear in the unknown system
parameters” and in addition, some very tedious
analysis is needed to determine a ‘“regression
matrix” [5]. It must be noted that in adaptive
backstepping control, the problem of finding a
regression matrix is more difficult in comparison
with conventional backstepping method.
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Artificial Neural Network (ANN) has been
applied to system identification or identification-
based control. Uncertainty on how to initialize the
ANN weights leads to the necessity for “preliminary
off-line tuning”. Recently many ANN controllers
have been proposed for various control applications
that can provide closed-loop stability [6-8].

To overcome the above problems, in [9], a
combination of backstepping control and ANN has
been proposed. According to this method, in the
process of backstepping controller design, two ANN
are used to estimate two nonlinear functions.
Therefore there is no need to find the regression
matrix for on-line estimation of unknown parameters.

In [9], using the ANN, the theory of robust
backstepping control has been presented for strictly
feedback nonlinear systems. This method has been
applied to a single arm robot in [10] and to a rotor
flux Field Oriented Control (FOC) IM drives in
[11].

One may note that the FOC methods are in fact
a type of partial feedback linearization control
technique in which the zero dynamic stability can
not be proven. As a result, through this method, it
can not be guaranteed that the system model
preserves its robustness against the parameter
variations. In addition in these control methods, the
field orientation can be achieved only in the system
steady state conditions. Moreover, the control
method of [11] is only robust with respect to the
rotor resistance variation.

To overcome the above problems, in this paper,
using the fifth order model of IM in a fixed stator
reference frame, with stator currents and rotor
fluxes as state variables, using the nonlinear
method described in [9], a composite nonlinear
controller is designed that makes the IM drive
system control robust and stable against the motor
parameter uncertainties and external load torque
disturbance. In this control approach, a two level
SVPWM inverter feeds the IM drive.

Furthermore, the rotor flux is estimated by a
SM observer which is also robust to all electrical
parameter uncertainties.

2. IM MODEL

The IM fifth order model in a fixed two axis
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reference frame with rotor fluxes and stator
currents as state variables [12], is given by

do 3npM . . T
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where i ol Wig Wi Usg o Ugp  ATC the stator

currents, rotor fluxes and stator voltages,
respectively. Subscripts a,b indicate vector
components in the fixed stator reference frame.
Subscripts r,sindicate  rotor and  stator

components.® is the rotor angular mechanical
speed and 6 =1- M2 ILL)) -
LL, are per-phase stator and rotor special

inductances, respectively. M is the per phase
magnetizing inductance. n, is number of pole pairs.
R R are stator and rotor resistances, respectively.

3. ROBUST BACKSTEPPING CONTROL

3.1. ANN Basics Define W as the collection of
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ANN weights, then the net output is [4]
y=WTo00) (©)

Let S be a compact simply connected set of R™,

with map f:S— R", define C™(S) the functional
space such that f is continuous. A general

nonlinear function f(x)e C™(S), x(t)eS can be
approximated by a neural network as

£(x) = WT§(x) +&(x) (7)

with g(x) an ANN functional reconstruction error
vector and ¢(x) is sigmoid activation function.

3.2. Robust Backstepping Control of IM
Using ANN  Using the well known fifth order
IM model in a stator two axis reference frame
where the rotor fluxes and stator currents are
assumed as state variables [12], the robust nonlinear
controller is designed in the following way.
Dividing the above IM model into two nonlinear
sub-systems, where isa’isb are the outputs for the

first sub-system which are simultaneously assumed
the fictitious inputs of the second sub-system. It is
assumed that:

o The reference trajectories o' and w; are
differentiable and bounded.
o The load torque is an unknown constant and

resistances, inductances and moment of inertia are
unknown and bounded.

In the first step of the controller design, i, .iy

are assumed as fictitious controls for the second
sub-system. The main objective is to obtain these
controls so that the desired rotor speed and rotor
flux amplitude signals are perfectly tracked in spite
of machine parameters and external load torque
uncertainties.

I

Considering o and \pi as references for ® and

V. tracking error equations are

el =0)—0)r

) (8)

2
_ 2 2 1 _ 2 T
€=V TV Ve =V Ve
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then
-T,L L
I“r JoL of
® . M M
Dle:F1+G11,F1: , . o
2 r r. r
_er TR M Ve Ve
L r |
L
—3np 3np j—L 0
_P M
Gi=| 2 Yib Vra |, D, = L,
2Wra 2\Vrb 0 R M
©)
Where
T
e= [ ep> & ]

It is clear that G; is known and invertible. By
treating i as a fictitious input, a controller for the

ideal i (i) is designed as

=67 [F -Kpe) K, >0 (10)

where K, a design parameter and 151 the estimate

of F; which will be estimated in the next section
with a two layer ANN. Substituting 10 into 9 gives

°
A

D,e=F —F

1 1~ F -Ke+Gm N=i—i (11)

In the second step, the control u(usa’usb) are

obtained in such a way that n in Equation 11,
becomes as small as possible. Differentiating n
with respect to time t, yields

D,n=F,+Gyu (12)
Where

u 1 0 1 0
u=| @ , G2: s D2 oL

u 0 1 § 1

sb
.-l .

F,=..+D,G, (B +Ke)+G,1H (13)

-1 -1 .
+G1 KD, (F1 -K —K1e+G1n)}
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To make n as small as possible, the following
control is chosen

u:Gz_l[—ﬁz—Kzn—GlTe} (14)

In 14, 1:“2 is an estimate of F, in that like the first
step, a two layer ANN is used to estimate it. In

addition a term —GlTe is added in 14 which is

necessary to cancel the effect of Gm inll.

Combining 12 and 14 gives

Dyn=F,-F -K,m-G,Te (15)

3.3. F1, F, Approximation In this section,
functions F, F, are approximated two-by-two layer
ANN. In adaptive backstepping control, it is
assumed that functions F,, F, are linear in terms of
known regression matrices, however in the ANN
method there is no limitation for these functions.
Using ANNs approximation property, F;, F, as
outputs of two two-layer ANN with constant
weights w; , is assumed to be as follows

Bty <ay e (16)
Fy=W, 0y +8, .

82” < 82N =cte

where 01595 provide suitable basis functions.

From 16, one can find that net reconstruction error

¢ Basis Basis
®" Functions Functions
. . 1
Sigmoid(x)=——
1+e

g;(x) is bounded by a known constant g -

o The ideal weights are bounded by known
positive values so that

HW1HF “Wim HW2HF <Wom (17)

or equivalently:

1Ze<zy » Z= diaglW,. W, | (18)

L] [ ]
The actual inputs to ANNI are \ur,mr,\yi,\y; and
[ ]
: r r T

actual inputs to ANN2 are 0,0 ,® WV WLV s

[ ]

T ,i,.e,e
Vrslsaslsh 10 €2 -

Considering F;, F,, it is clear why these inputs

are selected for each neural network. For example,

F, contains signals v, (that is measured) and
. .

“)r°‘V1rr°‘V1rr which are known as desired trajectories.
Uncertainties such as T, L.M,R_.J also exist in

F, that should be estimated by NN1. As shown in
Figure 1, W, and W, are second layer weights of
NN1 and NN2, respectively. For first weights of
these NNs, small positive constants are selected.
Each NN has two outputs that are first and second

NN2 Inputs

Basis
Functions

Basis
Functions

Figure 1. Neural networks structure with inputs and outputs.
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elements of estimated matrix functions F; and F,.
For example, first output of NN1 is estimate of

-TL, L. o ,
—TL_JLw" | and second output of NNI is
M M
L [ ]
. 2 2 T r r
estimate of vV —2W\yr\|1r .
r

On line ANN approximation of F, is
B = WTo, (19)

Then the error dynamic Equation of 11 becomes

D e:\A7\J/1Td)1—Kle+G1n+z~:1 (20)

1

where VNV1 =W, - Wl is the error in weight estimation.

Similarly, approximation of F, is assumes as
2 _wT
E, =W, ¢, 2n

then the error dynamic 15 will be

5 T T
Dyn=W, ¢, -K, -G e+e, (22)

Note that there is a term G in 20 and a term

—Gire in 22. This means there are couplings

between the error dynamics 20 and 22.

3.4. Updating ANNs Weights In this part, the
stability of the proposed controller is proven based
on Lyapunov’s stability theory. This analysis
shows that tracking errors and updated weights are
Uniformly Ultimately Bounded (UUB).

Theory: Let the desired trajectories ®, y, be
bounded. Take the control input 14 with weight
updates be provided by

[ ]

A T A
Wy =Tde’ —k Tfc[w, 23)
[ ]

A T A
Wy =Dhtpe” —k D[d[W,
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with any constant matrices r = FIT >0, T, = F2T >0

and scalar positive constant k,. Then the errors
n(t),e(t) are UUB. ANN updated weights are

bounded. The errors n(t),e(t) can be kept as small
as desired by increasing gainsK; .

Proof: Define the following Lyapunov function
_LrPr Ot (~T —1~)

V—ZQ {0 D, Q+2tr Z2'r 'z

Where

c=|el T7" 7 _ diag| W, W, |. = diag| .1
_esn > - ag 19 2 ) - ag 172

K:diag[KI, K, }

Derivation of V with using of 20 and 22 yields

CT(ZT¢+8—KCj+tr(zTF_1ZJ:
eTker T T2+ t{ zTr-1 Z}
We know (;T Z T(]) = tr( ZT ¢QT ) , then

v=-tTke+cTes tr(sz)QT + 71 Z]

Considering Equation 23 note that

v=—Tkg+cTe+ tr(szT"(;”Z) -

~cTRE+k | ||tr( 7T (Z—Z))+ Te
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Using Schwartz inequality

Ve
ikl 2] 12 -2 o

Where A nin is the minimum eigenvalue of K .

If ||g||>[ ko Zy 24+ ey ]/xmin or

[ ]
~ 2 .
“Z“F>ZM/2+\/ZM [4+ey k. then V is
negative outside a compact set. Therefore, the
control gainK , which is contained in xmin , can
be selected large enough so that

2
[kaM /4+8N}/Xmin< bc.

According to a standard Lyapunov theorem, this
demonstrates the UUB of both | 2”1: . [9]

>

) Small tracking error bounds may be
achieved by selecting large control gainK . The
parameter k offers a design tradeoff between the

relative eventual magnitudes of ||C|| and “Z“F’

smaller ko yields smaller ||C|| and larger “Z“F’

and vice versa.

. If Wl(O) are taken as zeroes the linear

proportional control term-K& stabilizes the system
on an interim basis.

4. SM-FLUX OBSERVER

In this section, a SM rotor flux observer is
employed that is robust subject to the IM electrical
parameter variations and uncertainties. This
method has already been applied to a primary type
Linear Induction Motor (LIM) for low speed
operation [13].

From (4,5), the IM current model can be
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represented by

(E+AE) Vra =C 'sa +F "sa +E Vra n Hia
Vi ish Ysb Yib Aib
(24)

where C,E.F are the nominal values of C, E, F
respectively; AC,AE,AF denote the lumped

uncertainty functions introduced by system
parameters and

i M
MR~ n Mo
2 oL L
E- GLSLr ST Rl 1
M b
Mo MR oL
GLer GLSLI‘Z
- . (25)
M2R_+L 2R
_ T T S 0
oL L2
C= ST
M2R_+L 2R
0 _ r T S
oL L 2
L ST i

The current model lumped uncertainty vector is

}”ia isa Usa Via
=AC| °° |+ AF +AE (26)
xib Isb Ysb Yib
The current model uncertainties are assumed to be
bounded i.e. kia <Ny ’Kib <Ny, Now,

1{I'

_— n_o vV
E{‘”ra}_ M Lr p P’ra]z K [ a]
- - 7B
Vi) OLshy o R v Vb
L

T

27
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Where K B

definition as shown in Equation 27, the IM current
model can be rewritten as

=M/oL.L . According to the

where KB,Va,Vb are the nominal parameters of

Kg.V,.V, . To design a SM current observer the

switching surfaces are defined as follows
S. (1)

S(t) = { 1a } =
Sip®

g t

(a + ijo ey (r)drt i

d ¢ -
_(a + ijo e (t)dr

e (D¢ (0)+Cle;, (de

e, (0= ey (0) + C ey (Dde

(29)

where &, o are positive values(note thatoin 29 is
the constant positive value not rotor speed). The
current estimation error vector is defined as

%a | iga ~iga
= (30)
Cib

isb _isb

The SM current observer is proposed in the
following form

isb (31)
Kia sgn( Sia (t) )

u A%
F [ usa }FKB Bl
sb Yo | Ky, sgn( S, (t))
{]a’{]b are from 27. Subtracting 28 from 31, gives
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e. e. \A/v —V
1a IE 1a +KB Aa _a i
: ib Vb~ Vb

€ib (32)

Kia sgn(Sia (t)) _[kia }

A
K,y sgn (Sib (1) j ib

Differentiating S(t) with respect to time, using
Equation 32, yields

é(t) _ Sia ® _ Cia™ Ceia - Ceia )
Sib (t) & T 0y (t)- wey (0)

- Cia + KB \:]a_ia N Kia Sgn(Sia () +
€ ViV Kib sgn(Sib (t))
Ceia (t- Qeia 0)- kia
ey, (t)— ey, 0) - xib

(33)

Candidating Lyapunov function as

LsT sy +

Vi (S0, i (0,755 (0 )= 5 G4)

1. 2 1. 2
ST (D427, (1)

Where k, v are positive constants and
ﬁia (= ﬁia (1) el ) ﬁib H= ﬁib (t) Nip (35)
Taking the derivative of the Lyapunov function
and using 31, one can obtain that
[ ] T ] 1 [ ] 1 [ ]

Vab =87 (1)S(t) + Eﬁia (t)ﬁia"‘ ;ﬁib (t)ﬁib =

e _ vV -V Kiasgn(Sial (t))
soTe| ® |+xg) 0 0

ib Vo=V | K. sgn(S (t))
ib ib
N Ceia (t) _Ceia (0)- xia \
we;, (t)— oe; (0)- }”ib

. AT .
;( ia (V=i j Mia * ;(”ib (O =" ) Mib

—_—

(36)
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The control gains are designed as
Kia] -_C

Kib
€, sgn(Sia (t)) _ (Va —Va )sgn(Sia (t))
Cib sgn(Sib (t)) (\A/b - Vb )sgn(Sib (t)j

Ceiy 05 Si, (0] Cejg Osen( 5, (0) =g, (0

wey (0) sgn(Sib (t)j - oey (0) sgn(Sib (t)) — ﬁib (1)
(37)
Where
Mia =Nia ~Mia » Mip = Nip ~Nip »

€. =1_—1_,€, =1 —1 .
ia” a a’>’ib~ b b

Ria(0) = K[S;, ) fip () = K[S; 0|

Then Equation 36 can be rewritten as follows

ﬁia(t)sgn (Sia (t)j +}”ia
(t) +

ﬁib (t)sgn (Sib (t)j +A
(ﬁia (- Nia j‘ Sia (t)‘ + (ﬁib (- b )‘Sib (t)‘ ==
i (0] Siq (0] =4, Si (0 =iy (O] S (O] =2, S5, (©
(g =15 )85, 0]+ (g O =g ) 835 0
= iy Sia (0 =4y Sip (0 =Ty S5, O] =T | Sy (V)

<[ o Sia (O]~ Tiig| Sia O] #2451 O] =i | Sip ¥

o
Vab = - sT

-| Sia(t)‘(nia ~Ha j_‘sib (t)‘(nib ~tib )S 0

(38)
Defining the following term
Pap(®) E‘Sia(t)[nia ~Pia )*‘ Sip (0]

(39)

(nib -
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o | == Vab(s00.5, 01, (0

Then

18P (905 = Vi 50075, 01, 0) ) -

(40)
V| SO, (0,0
The following result can be concluded
lim [P (1)dt<ow (41)
t =500 0" ab
By Barbalat’s Lemma [14]
lim P (t)=0 (42)

t—> o

That is S;,(0—>0,8, () >0 as t—oo. As a

result, the proposed sliding mode current observer
is asymptotically stable, even if system
uncertainties  exist. Moreover, the current
estimation errors will converge to zero according
to S(t) = 0. Consequently, the estimated flux can be
derived according to 27 and 31 as follows

where i ,f are from 31, K. ,K., from 37 and
sa’'sb ia’ ib
Sia’sib from 29.

5. SYSTEM SIMULATION

Based on the proposed control strategy described
in the previous section, the overall block diagram
of IM drive control is shown in Figure 2. In this
scheme, two ANNSs are used to estimate nonlinear
functions F;, F, that contain uncertainties.

Estimated functions (151 ,132) are delivered to

controllers to produce controls i,u.
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A C™ computer program was developed for
system simulation. In this program, the nonlinear
equations are solved based on static forth order
Range-Kutta method. The proposed control method
is tested for a three-phase IM with parameters
shown in Table 1.

In this simulation, the controller gains are
obtained by trial and error method and are given as

K, = diag {1525, 1550}, K, = diag {5000, 1550},
Ko =1,T;=10I

SM observer gains are as follows
€=1000, 0 =1000k=1,v=1

Simulation results shown in Figure 3 are obtained
in the case of an exponential reference flux rising
up from zero to 1.3W.t att=0 sec, down to 0.8W.t
at t = 3 sec with a time constant of T = 0.05 sec, an
exponential reference speed from zero to 220 rad/s
at t = 0.3 sec, rising up to 350 rad/s at t = 3 sec
with a time constant of T = 0.1 sec, a step load
torque disturbance from zero to 40N.m. at t = 2 sec

B Eq. (10) ) Eq. (19)
1 ! CONTROLLER B NN1 <
A
n
-K; Eq. 21)
2 NN2 e Eq. (43)
| —K SM Flux
|—2| E)bserver
T r \J
© > \V T Cl ) 62 T u
o — G1 P CONTROLLER - INVERTER .
system
Eq. (14)
states

Figure 2. Block diagram of the IM drive control scheme.

TABLE 1. IM Parameters.

Stator Resistance

RS =0.18Q

Rotor Resistance

R_=0.15Q
r

Rotor Nominal Flux Linkage

\Vi =1.3 Wb.turns

Number of Pole Pairs ny, = 1
Stator Inductance L, =0.0699H
Rotor Inductance L =0.0699H

Mutual Inductance M = 0.068H

Nominal Rotor Speed

o' =220rad/s

Moment of Inertia

J=0.0586kg.m?

1JE Transactions A: Basics
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and motor electromechanical parameters assumed
to be twice their nominal values at t = 1 sec.

Figure 4 shows the simulated results obtained
for an exponential reference flux rising up from
zero to 1.3W.t at t = 0 sec and an exponential
reference speed rising up from zero to 220 rad/s at
t = 0.3 sec, a load torque profile which is also
shown in Figure 4 and motor electromechanical
parameters assumed to be twice their nominal
values at t = 0 sec.

The IM rotor flux control is obtained for an
exponential reference speed, rising up from zero to

(V8]
ul
o

b

b

[
T
]
]

w(rad/s)

100

50

isa (A)

-50

-100 A
0

S€C.

220 rad/s at t = 0.3 sec and an exponential flux
reference from zero to 1.3W.t at t = 0 sec, down to
0.8 W.tatt=2 sec and rising up to 1.3 W.tatt=
3.5 sec, a step up load torque from zero to 40N.m.
at t = 1 sec is shown in Figure 5. In addition the IM
speed control is obtained for an exponential
reference flux rising up from zero to 1.3W.t att=10
sec and an exponential reference speed from zero
to 220 rad/s at t = 0.3 sec, down to -220 rad/s at t =
2 sec, rising up to 220 rad/s at t = 3.5 sec, a step
load torque from zero to 40N.m. at t = 1 sec is
shown in Figure 6. In flux and speed control

-100
0

Figure 3. IM speed and flux control using robust backstepping controller.

1.4
220 F-5 I{ i
11 i
@
3 i
IS
P
k<t 0E 7
I | =
< g I 1
0 sec. 5 0 sec. 5 a sec. 5

Figure 4. IM torque control.
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performance, the motor electromechanical parameters
are assumed to be twice their nominal values at t =
0 sec and the rest of the conditions are assumed the
same as described for Figure 4.

6. CONCLUSIONS

In this paper, a composite nonlinear controller has
been proposed for the IM flux and speed control that
is robust to all electromechanical parameter
variations and uncertainties. First a backstepping
controller is designed for a three-phase IM. This
controller provides speed and flux tracking for
desired trajectories, but it needs electrical and
mechanical parameters to be known and if some
uncertainties exist in the control system, the
controller can not do its rule properly. So, to

overcome this problem, a method is used that
estimates nonlinear functions through uncertainties.
Artificial neural networks have the ability to do this.
Combining backstepping controller with ANNSs, a
composite controller that is robust to all
electromechanical — uncertainties is  obtained.
Stability of this composite controller is proved by
the Lyapunov theory. Also small tracking errors are
obtained through selecting large control gains. The
above method has advantages in comparing
conventional ~methods such as  Adaptive
Backstepping. It is simple, it includes less and
simpler equations but more computer calculations.
In addition, to making a control system free from
physical flux sensor, a SM flux observer is designed
that is also robust with respect to electrical
parameter uncertainties. Computer simulation
results show that by this control method, a perfect
speed and rotor flux tracking control can be

290 k- - 13 71" L i
( 40 |
Q | ]
he] o .
< 0.8 f-mmmmm e e <
T = 1
g 20k .
< I ]
|:| __________________
a o
0 sec. 5 0 sec. 5 0 sec. 5
Figure 5. IM flux control.
1.5
220 t . i
40
E
2 z
3 =
Nl 20
S
=220
] ]
0 sec. 5 EI sec. 5 o1 sec. 5

Figure 6. IM speed control.

1JE Transactions A: Basics

Vol. 20, No. 3, October 2007 - 231



achieved in spite of parameter uncertainties and
external load torque disturbances.
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