
A Trust Management Delegation Protocol for Fog 

Computing Applications 

Phongsathon Fongta 

Department of Computer and Information Sciences 

University of Strathclyde 

Glasgow, United Kingdom 

phongsathon.fongta@strath.ac.uk 

Sotirios Terzis 

Department of Computer and Information Sciences 

University of Strathclyde 

Glasgow, United Kingdom 

sotirios.terzis@strath.ac.uk 

Abstract—Fog computing applications involve collaboration 

among several devices, end and fog nodes. Trust management can 

enhance the security and reliability of fog applications by 

supporting the selection of trusted nodes to collaborate. Although 

several mechanisms for managing trust in fog computing have 

been proposed, they have not considered the difference in the 

ability of devices to perform trust management. Devices with 

limited resources are unable to manage trust on their own without 

support from resource-rich devices. We propose a trust 

management delegation protocol based on the Constrained 

Application Protocol (CoAP) to address this. Our protocol allows 

resource-constrained devices to delegate trust management to 

resource-rich devices that can manage trust on their behalf. 

Experimental evaluation results show that using our protocol for 

trust management delegation consumes less resources compared 

to managing trust locally. Our protocol enables resource-

constrained devices to exploit the resources available in fog 

computing environments to manage their trust. 

Keywords—trust management, internet of things, fog 

computing, delegation protocol. 

I. INTRODUCTION

Fog computing has been developed to overcome cloud 
computing issues like network congestion, high response 
latency and location awareness [1]. It consists of heterogeneous 
devices including routers, switches and other kinds of 
networking equipment with enhanced computation and storage 
capabilities acting as fog nodes located in close proximity to 
users at the edge of the network. End devices with limited 
resources, particularly Internet of Things (IoT) devices, can 
offload their heavy tasks and data to the fog nodes for further 
processing and storage rather than offloading them to cloud data 
centres. As a result, fog computing can provide lower network 
latency and decrease application response time and can support 
real-time interactions for time-sensitive applications that could 
not be supported by cloud computing [2]. 

However, fog computing raises concerns about the 
trustworthiness of different devices, end and fog nodes. To 
ensure the security and reliability of systems in fog computing, 
it is important for all devices to avoid interactions with 
misbehaving and malicious devices, and to isolate them from the 
system. Trust management can help devices select interaction 
partners that will be well behaved and provide good services. 
Trust management monitors the behaviour of devices in a 
system and determines their trustworthiness in particular 
contexts. 

Several researchers have proposed trust and reputation 
models to manage trust in fog computing environments [3], [4], 
[5]. However, these models tend to assume a single trust 
management architecture with all devices in a fog system treated 
the same without consideration of the differences in their 
computational and storage capabilities. This is in contrast to the 
reality of fog computing [6], [7] where devices have a wide 
range of capabilities. So, although some devices have the 
resources to manage trust on their own, others do not.  

In fog computing, devices like fog nodes with high 
computational and storage capabilities could make their 
resources available to resource limited devices allowing them to 
overcome resource constraints and manage their trust. To enable 
this, we propose a trust management delegation protocol for fog 
computing. The protocol allows resource-constrained devices to 
delegate trust management to resource-rich devices in a fog 
computing environment. Thus, managing trust while reducing 
their resource consumption and preserving their resources. 

More specifically, our contributions are: 

• The design of a trust management delegation protocol on top
of the CoAP that uses self-describing messages to allow 
delegates (resource-rich devices) to offer delegation 
services to delegators (resource-constrained devices). The 
protocol uses a trust discovery server to allow delegators to 
find delegates that meet their trust management 
requirements. The protocol supports both pull and push 
discovery of trust discovery servers using CoAP multicast 
groups. Leasing is used when offering delegation services 
to deal with device volatility.  

• An implementation and experimental evaluation of the
protocol. The protocol is implemented in Python using a 
Raspberry Pi Zero to act as an end node, and a Raspberry Pi 
desktop running on Oracle VirtualBox to simulate fog 
nodes. Using this setup, we have compared the CPU time, 
RAM, HDD space and energy used by an end node when 
delegating trust management to a fog node against that used 
by an end node when performing trust management locally. 

Our results show that delegation consumes less CPU time, HDD 
space and energy, with the difference becoming more prominent 
when managing trust for multiple devices, while RAM remains 
stable but higher when trust is managed for a small number of 
devices, a limitation of the CoAP implementation used. Overall, 
our protocol allows resource-constrained devices like end nodes 

1

This is a peer-reviewed, accepted author manuscript of the following conference paper: Fongta, P & Terzis, S 2024, 
'A trust management delegation protocol for fog computing applications', Paper presented at 2024 IEEE International 
Conference on Cyber Security and Resilience, London, United Kingdom, 2/09/24 - 4/09/24.



to overcome their resource limitation by delegating trust to 
resource-rich devices like fog nodes.    

The rest of this paper is organised as follows: related work is 
reviewed in Section 2; our trust management delegation protocol 
is presented in Section 3; the experimental evaluation of the 
delegation protocol is presented in Section 4; finally, the 
conclusion and future work are discussed in Section 5. 

II. RELATED WORK 

 This section introduces trust management terminology used 
in this paper and summarises recent work on trust management 
in IoT, fog computing, and cloud environments.  

Trust refers to the relationship between two parties and the 
beliefs of one party towards the behaviour of the other. Trust is 
related not only to security, but also several other aspects of an 
entity, such as reliability, availability, etc. Trust management is 
about the mechanisms that allow entities to build trust with one 
another [8]. In computing systems, devices may cooperate to 
perform tasks or pool their resources to handle resource-
intensive tasks. These devices must be trusted. However, the 
trustworthiness of a device may change over time, as a device 
may work in a satisfactory manner only from time to time. 
Therefore, trust management monitors devices and allows trust 
establishment between two devices, trustor and trustee. The 
trustor is the device who needs to assess the trustworthiness of 
the trustee. The trustee wants to have high trust values to be 
selected as a collaborator. So, trust management allows the 
trustor to select a trustee who will provide good service and be 
well-behaved relying on its future behaviour, even when it is 
uncertain. 

More specifically, the trustor collects evidence about a 
trustee by monitoring its behaviour. The evidence is used to 
update the trust value for the trustee. There are two schemes for 
updating the trust values: event-driven and time-driven. In the 
former, the trust value is updated when new evidence becomes 
available. In the latter, trust values are updated periodically. In 
both cases, a trust calculation scheme is needed to combine the 
available evidence into the new trust value. Trust values are then 
used to make decisions on whether to collaborate with trustees. 
Decisions are made either by comparing the trust value against 
a set threshold, with trustees above the threshold considered 
trusted, or by selecting the trustee with the highest trust value 
from a set of candidates. 

Trust management approaches that have been proposed in 
the fog computing area take into account the trust of both fog 
nodes, end nodes, and cloud data centres. Rahman et al. [9] 
proposed a fuzzy logic based trust management approach to 
estimate the trustworthiness of fog nodes. An end device with 
limited resources offloads its tasks to fog nodes based on their 
trustworthiness. The end node uses Quality of Service (QoS) 
parameters, including distance, latency, and reliability, as trust 
metrics to identify bad fog nodes that may provide poor quality 
of service or behave maliciously. In fog computing, once end 
nodes get connected to fog nodes for services, they may conceal 
malicious scripts or harmful code in offloaded data, leading to 
damaging effects on the fog nodes. An approach for dealing with 
the trust of fog nodes towards end nodes was proposed in [10]. 
The authors present a multi-layer architecture for trust 

management called FogTrust that assesses devices in the end 
layer before their data is transmitted to the fog layer. The fog 
nodes use both QoS and social trust aspects, namely availability, 
honesty, and cooperativeness, to identify malicious end nodes.   

In contrast, the authors of [11] pointed out that trust should 
be considered as bi-directional, end nodes towards fog nodes 
and vice versa. So, they present trust management that allows 
end nodes and fog nodes to estimate the trustworthiness of each 
other in fog computing systems. Ramamurthy et al. [12] also 
considered bi-directional trust relationships and both QoS and 
social trust information for trust evaluation between a fog client 
and a fog server. The fog client expects a trustworthy service 
and reliable data sharing from the fog server, while the fog 
server needs to provide the service and share data with the fog 
client. Wang et al. [13] considered trust between cloud nodes 
and end nodes to ensure that cloud nodes meet the requirements 
of end nodes and end nodes are well-behaved before they access 
cloud services. A particular issue with all these approaches is 
that they have not considered the differences in the capabilities 
of the devices and their ability to perform trust management. 

This issue is further accentuated when one considers the 
different algorithms for trust aggregation. Although the 
weighted sum is a widely used technique that assigns a weight 
to each trust metric, many studies have proposed trust 
management systems based on complicated trust computation 
models. In [14], fuzzy logic is used in evaluating the 
trustworthiness of devices in fog computing systems. Random 
forest regression, a machine learning method for classification 
and regression, is used in [15] to predict the trust of a fog node 
based on QoS parameters, while in [16], trust evaluation is 
formulated as a multiple linear regression problem. In [12], trust 
is evaluated using logistic regression by the fog server towards 
fog clients, while subjective logic is used by the fog clients to 
estimate the trustworthiness of the fog servers. These trust 
management approaches have been shown to be effective at 
identifying and isolating malicious nodes. However, a 
significant drawback of them is that they are considered 
resource-intensive for devices with limited resources, especially 
end devices in fog computing systems. End devices are unable 
to use them due to their limited storage and computation 
capabilities.  

Blockchain technology has also been suggested for trust 
management in fog computing systems [17]. The blockchain 
provides a decentralised repository for storing trust information 
of end nodes. Although using a blockchain effectively addresses 
their storage limitations, it does not address their limited 
computational capabilities.  

For resource-constrained devices to take full advantage of 
trust management, they need to be able to utilise the resources 
available in fog computing environments, in fog nodes and 
cloud servers. So, a mechanism is needed for such devices to 
delegate trust management to resource rich devices.    

III. PROPOSED TRUST MANAGEMENT DELEGATION 

PROTOCOL 

In this section, we describe in detail a trust management 
delegation protocol allowing resource-constrained devices to 

2

A trust management delegation protocol for fog computing applications



delegate trust management to resource rich devices in fog 
computing systems. 

A. Trust Delegation Components 

There are 4 components involved in trust management 
delegation: 

• A delegate is a device providing trust management 
services to resource-constrained devices. 

• A delegator is a device that needs to delegate trust 
management tasks to a delegate. 

• A Trust Service Server (TSS) is a device that is 
responsible for trust management service registration, 
deregistration and delegate lookup. 

• A delegation protocol is a set of functions that devices in 
a trust system can use to communicate with each other to 
delegate trust management. 

B. Delegation Protocol Design and Implementation 

We have designed the trust management delegation protocol 
over CoAP, a lightweight application protocol for message 
exchange and data transmission between devices defined in RFC 
7252. Although CoAP runs over UDP which does not guarantee 
the reliable message delivery, it has smaller overheads than TCP 
making it suitable for fog computing environments. We use key 
value pairs to represent all message parameters making protocol 
messages self-describing. To reduce network overheads, we 
piggy-back response data in acknowledgement messages. 

Our protocol is implemented in Python using the aiocoap 
library to implement CoAP. We use JavaScript Object Notation 
(JSON) to represent data in the payload for both request and 
response messages. SQLite is used to store trust value, trust 
evidence, delegation information, and relevant data. 

C. Delegation Service Registration and Deregistration 

A delegate that provides trust management delegation 
services must register a delegation description with a TSS. The 
TSS constantly listens to registration requests sent by 
delegates. A POST message with URI-Path /REG_Request is 
used for registration. The message payload includes information 
about the delegation service, including the delegate’s IPv6 
address, delegation time, trust model for trust calculation, a set 
of trust evidence for evidence collection and storage, and 
decision-making method. On successful registration, the TSS 
sends an acknowledgement to the delegate with a piggyback 
response code 2.01 Created and an 8-bit registration reference. 
On failure, it replies with response code 5.00 Internal Server 
Error.  

To deal with device volatility, we use leasing for the 
provision of delegation services. Delegates register their 
delegation services for a lease period. They can renew the lease 
before it expires to extend the availability of the services. The 
TSS will withdraw all delegation services provided by a delegate 
if the lease time expires.  

The delegate may decide to stop offering some delegation 
services for a variety of reasons, e.g. running out of resources. 
The delegate submits a DELETE message to the TSS with URI-
Path /DEREG_Request with the registration reference number 

and the delegation services it needs to deregister in the payload. 
Upon receipt of the request, the TSS deletes the delegation 
services from the database and returns an acknowledgement 
message with a response code of 2.05 Deleted to indicate 
successful deregistration. However, the delegate continues 
offering delegation services to delegators that have requested 
them before the withdrawal until their lease duration expires. 

D. Delegate Lookup 

Once the delegate has completed the registration process, the 
delegation services are available to be looked up by delegators. 
A delegator performs a TSS look-up to find a delegate that meets 
its delegation requirements. When a delegate is identified, the 
delegator can establish direct communication with it. The 
delegator sends a GET message to the TSS with URI-Path 
/Delegate_Lookup. The message payload contains the delegate's 
specification, which includes delegation roles, a trust model for 
trust calculation, a set of trust evidence for evidence collection 
and storage, and a decision-making method. The TSS finds 
registered delegates that match the specifications in the 
database. The TSS gathers them and replies to the delegator with 
an acknowledgement message with a response code 2.05 
Content and the IPv6 addresses and trust management roles 
supported by the delegates in the payload. If no delegates that 
meet the required specification are found, the TSS sends a 
response code 4.04 Not Found with a message No delegates 
found.  

E. TSS Discovery 

TSS discovery is used to find a TSS by a delegate and a 
delegator whenever there is no known discovery service, or the 
existing service has expired, or doesn’t respond. There are two 
types of TSS discovery supported: pull and push. In the former, 
delegates and delegators broadcast a message to find the TSS, 
while in the latter the TSS broadcasts information about its 
availability.  

 

1) Pull: The delegator or delegate sends a non-confirmable 

GET request to the all CoAP nodes multicast address 

FF0X::FD. The request has the URI-path /TSS_Discovery. All 

TSS must join a multicast group in order to receive packets sent 

to that group. Delegators and delegates do not need to be part 

of that group to send the request. Any TSS that receives the 

request will reply with a non-confirmable 2.05 Content 

response. The response payload contains the TSS IPv6 address. 

The requester may receive multiple responses from different 

 

Fig. 1. Pull TSS Discovery 

 

 

3

A trust management delegation protocol for fog computing applications

Dclcgator/Dckgatc [ FFOX FD l 
IIINOSM<:M1[0..7d0'1 

GCT'TSS_Duro,wy 1l11'lOt-Mc~(Ox7,lo,I 

._~''~'-"~' ~""'-=-"'~-o 
tl1NOSM-ltb:7d(lj[ 

1-----'-'-'"- '-' -~-"'~----Q 
o,~1•qo,1<Kl6J 

- - - - - - - - _2.~('~ - - - - - - - - -0 
' ' (JJ1"°''(0..7<107] : • 

_____________ _ i~c!'~ ____ ~ ________ -o 
' ' ' ' ' ' 



TSS devices. However, it only accepts the first response 

message and ignores the others. The process is shown in Fig 1. 

2) Push: As shown in Fig. 2, TSS advertises their 

availability with a PUT non-confirmation broadcast message 

with the URI-path /TSS_distribution. For delegators and 

delegates to receive the broadcast message, they must join the 

multicast group. They can dynamically join and leave the 

multicast group at any time. The TSS broadcasts the message 

with a 3-second interval for 15 seconds and a 15 second 

backoff. The purpose of the backoff is to avoid network 

congestion and packet loss and ensure network stability. 

Delegators and delegates that join the multicast group will 

receive the request and can contact the TSS directly to use its 

services. 

 

F. Delegating Trust Management to a Delegate 

As shown in Fig. 3, delegating trust management to a 
delegate involves the following message exchanges: 

1) The delegator sends a delegation request 
After looking up delegates from a TSS, the delegator sends 

the request for trust management delegation to the selected 
delegate using a POST request with URI-Path 
/Delegate_All_Roles. The payload includes the IPv6 address of 
the delegator and the trustees to be monitored, the delegation 
lease period, and the details of the trust model to be used (i.e. 
trust calculation and update schemes, and a set of trust evidence 
used), and an indicator for sharing recommendations (i.e. trust 
values) with others. Our delegation approach supports 
delegating multiple trustees in a single request provided the 
same trust model is used for all of them.  

The delegate saves the delegation information in its 
database, and sends to the delegator a response code 2.01 
Created piggybacked in an acknowledgement message if the 
delegation is successful, or 5.00 Internal Server Error if not. 
When the delegation is successful, the delegate starts monitoring 
the delegated trustees, collecting evidence about them in its 
database, calculating and updating their trust values.  

2) The delegator sends trust evidence to the delegate 
Some kinds of trust evidence can only be collected by the 

delegator, e.g. response time. For this evidence, the delegator 
must collect it, and pass it on to the delegate. The delegator 
attaches the evidence in a POST message with the URI-Path 
/Evidence_Storage. To simplify the processing of the evidence 
at the delegate, each message provides evidence for a single 
trustee. However, the delegate is implemented as a multi-
threaded server with each thread dedicated to evidence 
collection for a single trustee. Upon receipt of the evidence, the 

delegate stores it in its database and replies with an 
acknowledgement with a response code 2.01 Created if the 
evidence is successfully stored. 

 

3) The delegator queries for a trust result 
To get trusted trustees that it can work with the delegator 

uses a GET request and with /Trust_Result in the URI-Path. The 
payload contains the IPv6 address of the delegator and either one 
trustee and a threshold value for trust decision-making, or a list 
of trustees with a blank threshold. In both cases, the delegate 
replies with an acknowledgement message with a response code 
2.05 Content and the trust result. In the case of a single trustee, 
the trust result is either trusted or untrusted. In the case of 
multiple trustees, the delegate selects the trustee with the highest 
trust value, and returns to the delegator its IPv6 address. 

G. Trust Management Delegation Protocol Security 

Trust management systems can be vulnerable to attacks, 
such as bad-mouthing attack, on-off attacks, etc, that aim to 
manipulate the trustworthiness of entities and influence their 
chances of being selected as collaborators. Trust computational 
models can be designed to address such attacks, e.g. [19] 
protects against bad-mouthing attacks, while [18] against on-off 
attacks. The proposed delegation protocol can support such trust 
computational models and thus protect against such attacks. 

However, the delegation protocol can be vulnerable to 
misbehaving and malicious devices that play its various protocol 
roles, like TSS, delegates, delegators and evidence collectors. 
Such devices can exploit protocol messages to disrupt the 
correct operation of delegation partners and manipulate trust 
management. Such devices can be detected and isolated by 
expanding trust management to cover the trustworthiness of all 
delegation roles, in a way that is like how trust in trustees is 
managed. 

IV. EXPERIMENTAL RESULTS 

In this section, we describe the setup and results of an 
experimental evaluation of our trust delegation protocol. We 
compare the amount of resources (CPU time, RAM, HDD space, 
and energy), spent by an end node handling trust management  
locally using a weighted sum trust model, against those spent by 
an end node that delegates trust management with the same trust 
model to a fog node using our delegation protocol.  

 

Fig. 2. Push TSS Discovery 

 

 

Fig. 3. The Process of Trust Management Delegation 

4

A trust management delegation protocol for fog computing applications

Delegator 

TSS 
[ FFO~ FD l Delegalor/Oelegate 

PUT /TSS_Dis1ribu1100 (2) NON Meas• [Ox7d0KJ 0 ( I ) NON Mcast (Ox7d08] 

, ~ ----- f---PUT~ rm _,_i;s,.;oo,;oo~ 

(1) CON (0x7d09] 
POST !DclC!,!alc _ All_ Roks 

(2)ACK [0x7d09) 
2.01 Crea1ed 

(3) CON [0x7d10] 
l'OST hidt!n<.:;e SIOl':tg~ 

(4)ACK 10x7d101 
2.01c:rcall:d 

lS)CON[Ox7dll] 
CiET /Trust_ R~ull 

(6)ACK [Ox7d ll ] 
2.04Con1cnt 

Delegate 



A. Experimental setup 

We use a Raspberry Pi Zero to act as an end node, and a 
Raspberry Pi desktop running on Oracle VirtualBox to simulate 
fog nodes. The Raspberry Pi desktop runs a TSS and a delegate 
on separate virtual machines. CPU time, RAM and HDD space 
are measured by a Python script that operates independently 
from the trust management mechanism. To measure energy 
usage, we employ an INA 219 module to read DC voltage and 
current and calculate energy consumption. 

TABLE I.  EXPERIMENT PARAMETERS 

Parameters Value 

Number of fog nodes 1-10 nodes 

Trust calculation model Weighted sum 

Trust evidence  
Distance, Availability 

Response time 
Trust update Event-based 

Decision-making type Threshold 

 

The parameters of the experiment are shown in Table 1. In 
our experiment, we consider that devices will be relatively 
localised and only interact with a relatively small number of fog 
nodes within a particularly physical area. So, we range the 
number of fog nodes (trustees) between 1 and 10. When trust 
management is done locally, the end node (trustor) collects and 
locally stores trust evidence for the trustee(s); calculates and 
updates the trust value(s); and makes decision(s). When 
delegating trust management, the delegator (end node and 
trustor) does the following: discovers a TSS using the pull 
approach; looks-up for a delegate in the discovered TSS, 
requests from the found delegate to perform trust management 
on its behalf for the fog node(s) (trustees),  collecting and storing 
evidence, calculating and updating the trust value(s), and 
decision making (trust result queries). In both cases (local and 
delegated), the process are run 10 times.  

The trust model in this experiment uses three trust metrics: 
distance, availability and response time. Distance is defined as 
the number of network hops between the end node and a fog 
node. Availability indicates that the fog node is accessible and 
operational. It is the ratio of the number of ICMP echo reply 
messages to the total number of ICMP echo request messages. 
Response time is the time interval between when a message is 
sent and a response is received from the fog node. These trust 
metrics are aggregated using a weighted sum as follows: 

Trust value = ∑ 𝑊𝑖𝑋𝑖
𝑛
𝑖=1    (1) 

Where Wi = {w1,w2,w3,…} are static weighting factors for 
trust metrics Xi and ∑ 𝑊𝑖

𝑛
𝑖=1  = 1.  

We repeat the experiment 10 times and calculate a 95% 
confident interval for the measurements to show the uncertainty 
associated with them. 

B. Results and Discussion 

Fig. 4 shows a comparison of CPU time spent by the end 
node to perform trust management locally and using our trust 
management delegation protocol. The horizontal axis represents 

the number of fog nodes, while the vertical axis shows CPU time 
in seconds. Overall, as one would expect our trust management 
delegation protocol helps the end node to reduce CPU time for 
trust management. At the same time, there is a rise in CPU time 
when the number of fog nodes (trustees) increases in both 
approaches. However, CPU time for performing trust 
management locally grows more sharply than when delegation 
is used. With 1 fog node, the CPU time to delegate trust 
management is lower than performing trust management locally 
by 10.75%, with 1.12 and 1.26 seconds, respectively. While with  
10 fog nodes, the corresponding numbers are 2.21 seconds and 
6.89 seconds, which is  67.92% decrease.  

 

The amount of RAM in MB used by the end node is shown 
in Fig. 5. The end node needs more RAM to perform trust 
management delegation. This is because the aiocoap library uses 
around 5 MB on the end node. However, RAM usage when 
delegating trust remains almost constant at around 18.5 MB as 
the number of fog nodes increases. In contrast, RAM usage 
when performing trust management locally increases as the 
number of fog nodes rises from 14.92 MB for 1 fog node to 
15.94 MB for 10 fog nodes, a 6.84% increase. As a result, we 
expect that it will eventually overcome the amount of RAM used 
when delegating trust management. 

 

As one would expect, delegating trust management reduces 
the amount of HDD space used for storage of trust evidence and 
trust values, as shown in Fig. 6. Delegating trust management 
allocates a fixed amount of HDD space, 20 KB. In contrast, 
when performing trust management locally, the HDD space 
rises as the number of fog nodes increases, from 32 KB for 1 fog 
node to 68 KB for 10 fog nodes. 

 

Fig. 4. CPU Time of Delegating Trust Management and 

Performing Trust Management Locally 

  

Fig. 5. RAM of Delegating Trust Management and Performing 

Trust Management Locally 

5

A trust management delegation protocol for fog computing applications

7 - lkkgate trus1 management 

- Perfonn ]~al trust management 

Numbcroffognodes 
JO 

:,)~--------------------~ 
- lklegate trust management 

- Perform local trust managemt'III 

" 
18 

Numberoffogood~ 



 

 The total energy consumption in milliwatt-hour (mWh) 
consumed by the end node is shown in Fig. 7. Note that in 
contrast to the earlier figures confidence intervals in Fig. 7 are 
much wider, reflecting the higher variance in the measurements. 
Both approaches have an upward trend in energy consumption 
as the number of fog nodes increases, but the energy 
consumption of delegating trust management goes up slower. 
Moreover, energy consumption when delegating trust 
management is lower by 9.20% for 1 fog node, 5.43 mWh versus 
5.98 mWh, and 21.42% lower for 10 fog nodes, 5.76 mWh 
versus 7.33 mWh of energy. It is interesting to note that Fig. 7 
shows similar trends to the CPU time in Fig. 4. This is because 
the more CPU time used, the more energy is consumed. 

 

In conclusion, we can see that trust management delegation 
offers clear benefits for resource-constrained end nodes, 
allowing them to take advantage of fog node resource to keep 
their trust management resource consumption low.  

V. CONCLUSION 

In this paper, we have proposed a trust management 
delegation protocol to accommodate the differences in 
capabilities between devices in fog computing environments. 
The protocol enables resource-constrained devices, like end 
nodes, to delegate management of trust to resource-rich devices, 
like fog node, in order to reduce resource consumption and 
preserve available resources for their main tasks. The evaluation 
of our protocol shows that trust management delegation clearly 
reduces resource consumption in terms of CPU time, HDD 
space, and energy, compared to performing trust management 
locally, while it keeps RAM usage stable as trustee increase. 

 In future work, we will focus on extending our delegation 
protocol to support delegating trust management to multiple 

delegates and transfer of delegations. Using multiple delegates 
will help to better balance delegation workload among 
delegates, while transfer of delegations will support mobile end 
nodes as they move through the fog computing infrastructure.  

REFERENCES 

[1] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing 
for IoT: Review, enabling technologies, and research opportunities,” 
Future Generation Computer Systems, vol. 87, pp. 278–289, 2018. 

[2] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing,” Proceedings of the 
2015 Workshop on Mobile Big Data - Mobidata ’15, pp. 37–42, 2015. 

[3] M. Debe, K. Salah, M. H. U. Rehman, and D. Svetinovic, “IoT Public Fog 
Nodes Reputation System: A Decentralized Solution Using Ethereum 
Blockchain,” IEEE Access, vol. 7, pp. 178082–178093, 2019. 

[4] Y. Hussain et al., “Context-Aware Trust and Reputation Model for Fog-
Based IoT,” IEEE Access, vol. 8, no. September 2019, pp. 31622–31632, 
2020. 

[5] M. Al-khafajiy et al., “COMITMENT: A Fog Computing Trust 
Management Approach,” J Parallel Distrib Comput, vol. 137, pp. 1–16, 
2020. 

[6] D. Shehada, A. Gawanmeh, C. Y. Yeun, and M. Jamal Zemerly, “Fog-
based distributed trust and reputation management system for internet of 
things,” Journal of King Saud University - Computer and Information 
Sciences, vol. 34, no. 10, pp. 8637–8646, Nov. 2022. 

[7] M. Aaqib, A. Ali, L. Chen, and O. Nibouche, “IoT trust and reputation: a 
survey and taxonomy,” Journal of Cloud Computing, vol. 12, no. 1. 
Springer Science and Business Media Deutschland GmbH, Dec. 01, 2023. 

[8] A. Almas, W. Iqbal, A. Altaf, K. Saleem, S. Mussiraliyeva, and M. W. 
Iqbal, “Context-Based Adaptive Fog Computing Trust Solution for Time-
Critical Smart Healthcare Systems,” IEEE Internet Things J, vol. 10, no. 
12, pp. 10575–10586, Jun. 2023. 

[9] F. H. Rahman, T. W. Au, S. H. Shah Newaz, and W. S. Suhaili, 
“Trustworthiness in fog: A fuzzy approach,” ACM International 
Conference Proceeding Series, pp. 207–211, 2017. 

[10] E. Wong et al., “FogTrust: Fog-Integrated Multi-Leveled Trust 
Management Mechanism for Internet of Things,” 2023. 

[11] E. Alemneh, S. M. Senouci, P. Brunet, and T. Tegegne, “A two-way trust 
management system for fog computing,” Future Generation Computer 
Systems, vol. 106, pp. 206–220, 2020. 

[12] P. Ramamurthy and M. Nandagopal, “Bi-directional trust management 
system in fog computing using logistic regression,” Indonesian Journal of 
Electrical Engineering and Computer Science, vol. 29, no. 2, pp. 808–
815, Feb. 2023. 

[13] T. Wang, G. Zhang, M. Z. A. Bhuiyan, A. Liu, W. Jia, and M. Xie, “A 
novel trust mechanism based on Fog Computing in Sensor–Cloud 
System,” Future Generation Computer Systems, 2018. 

[14] F. H. Rahman, T. W. Au, S. H. Shah Newaz, and W. S. Suhaili, 
“Trustworthiness in fog: A fuzzy approach,” ACM International 
Conference Proceeding Series, pp. 207–211, 2017. 

[15] A. K. Junejo, N. Komninos, M. Sathiyanarayanan, and B. S. Chowdhry, 
“Trustee: A Trust Management System for Fog-enabled Cyber Physical 
Systems,” IEEE Trans Emerg Top Comput, pp. 1–12, 2019. 

[16] T. Wang et al., “Fog-based evaluation approach for trustworthy 
communication in sensor-cloud system,” IEEE Communications Letters, 
vol. 21, no. 11, pp. 2532–2535, 2017. 

[17] S. Hameed et al., “A Scalable Key and Trust Management Solution for 
IoT Sensors Using SDN and Blockchain Technology,” IEEE Sens J, vol. 
21, no. 6, pp. 8716–8733, 2021. 

[18] S. Kannan, R. Venkataraman, and G. S. Ramachandran, “On-off attack 
detection in trust model using intra-daily variability for the IoT,” Bulletin 
of Electrical Engineering and Informatics, vol. 12, no. 6, pp. 3880–3888, 
Dec. 2023. 

[19] V. B. Reddy, A. Negi, S. Venkataraman, and V. R. Venkataraman, “A 
Similarity based Trust Model to Mitigate Badmouthing Attacks in 
Internet of Things (IoT),” in 2019 IEEE 5th World Forum on Internet of 
Things (WF-IoT), 2019, pp. 278–282.  

 

 

Fig. 6. HDD Space of Delegating Trust Management and 

Performing Trust Management Locally 

   

Fig. 7. Energy Consumption of Delegating Trust Management 

and Performing Trust Management Locally 

6

A trust management delegation protocol for fog computing applications

u~-------------------7 
- Dcks---....-

1j - P«ilnlr..ll'Wl ....... 

u L _ L _ L _...w ... LJ ... LJ,..__..,__...__..,.__.IL--' 
M 


	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED TRUST MANAGEMENT DELEGATIONPROTOCOL
	A. Trust Delegation Components
	B. Delegation Protocol Design and Implementation
	C. Delegation Service Registration and Deregistration
	D. Delegate Lookup
	E. TSS Discovery
	1) Pull
	2) Push

	F. Delegating Trust Management to a Delegate
	1) The delegator sends a delegation request
	2) The delegator sends trust evidence to the delegate
	3) The delegator queries for a trust result

	G. Trust Management Delegation Protocol Security

	IV. EXPERIMENTAL RESULTS
	A. Experimental setup
	B. Results and Discussion

	V. CONCLUSION
	REFERENCES



