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Abstract
The ability to detect gas molecule and assign a concentration offers an inventive solution in the
field of plasma integrated with machine learning. The most important finding of this work is
firstly, to develop an algorithm for gas-molecule identification using three different
hydrocarbons (CH4, C2H2, C2H6) and secondly, organize a model for detecting gas
concentration (classification). For this reason, initially eight different gases evaluated. The study
confirms the present of the unique emission lines as a gas indicator, i.e., a wavelength peak
related to hydrocarbons identified via increasing in CxHy concentration. By means of unique
variable important in projection, hydrocarbons can be distinguished. Our proposed
Chemometric analysis strategy examined on >1000 samples and results development of
suitable techniques that are sufficiently rapid, accurate and innovative. This demonstrates the
potential for real-time, portable, and continuous monitoring of trace gases with potential
applications in medical, environmental, and industrial gas sensing.

Keywords: methane identification, optical emission spectroscopy (OES),
variable importance in projection (VIP), unique VIP, partial least square discriminant analysis,
hydrocarbons, classification

1. Introduction

The application of supervised learning models based on par-
tial least squares discriminant analysis (PLS-DA) was invest-
igated for the identification of trace gases using data obtained
from plasma optical emission spectroscopy [1]. As a result,
the parts-per-million (ppm) classification of a single type of
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hydrocarbon gas (methane) was achieved down to concen-
trations in the low ppm range. The next stage is to attempt
the detection of various hydrocarbon gases and investigate the
capability of the machine learning (ML) approach in more
complex scenarios.

In this study, we aimed to distinguish different hydrocar-
bon gases using the PLS-DA method and its features, such as
variable importance on projection (VIP) selection. Detecting
hydrocarbons such as CH4 and C2H6 can be useful in breath
analysis (VOCs) or climate change monitoring applications.
Carbon bonding determines the hydrocarbon type, with single-
bond C forming an alkane, double-bond C forming an alkene,
and triple-bond C forming an alkyne [2]. To determine the cap-
ability for general hydrocarbons (CxHy) detection, two alkanes
(CH4 and C2H6) and one alkyne (C2H2) were selected with the
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aim of using them as a basis for detecting other gases that are
very similar in their composition. Thus, this technique based
on plasma optical emission spectra coupled with ML is funda-
mental for a much wider field of hydrocarbon or breath VOC
detection [3] and identification applications.

The miniature plasma source for generating optical emis-
sion spectral data is aimed at low-cost portable or field
deployment, capable of autonomous and continuous monit-
oring of environmental trace gases. Plasma contains a high
concentration of energetic electrons with a wide distribution
of energies [4]. Various collision processes occur between
electrons and gas atoms or molecules leading to ionization,
electronic excitation, molecular dissociation, attachment, and
vibrational excitation with the probability of each process
dependent on the electron and target species concentrations,
electron energy distribution, and process energy cross-section.
This is a complex non-equilibrium environment, which also
contains other impurity molecules such as O2, N2 and H2O,
and is therefore not amenable to the direct and absolute
measurement of its characteristics. Thus, a machine-learning
approach is essential. However, additional challenges arise in
identifying different hydrocarbons. In hot or energetic plas-
mas, it is expected that all hydrocarbons will be fully dis-
sociated by electron bombardment into atomic and molecu-
lar fragments [5–7], examples of which are given below for
methane.

e+CH4 → e+CH3 +H (1)

e+CH4 → e+CH2 +H2 (2)

e+CH4 → e+CH+H2 +H (3)

e+CH4 → e+C+ 2H2. (4)

There is also the possibility of superideal quenching [8] of
noble gasmetastable states, leading tomolecular dissociation.

He
(
2s1S

)
+CH4 → He+CH+H2 +H. (5)

With significant dissociation, hydrocarbons would lose
their identity, and discrimination is not possible. Therefore, we
maintain the plasma at a low gas temperature [9], and while
a degree of dissociation must occur because the dissociation
energy is lower than that for ionization, the aim is to maintain a
sufficiently low level to enable discrimination. However, there
have been few investigations into low-temperature plasma
interactions with hydrocarbon molecules at atmospheric pres-
sure. In our recent paper [1], plasma modeling provides evid-
ence for limited dissociation, whereas algorithm detection
of methane is based on both indirect mechanisms through
plasma interaction with impurities, and on low-intensity car-
bon species emission- namely CH and C2—the former pro-
ducing an identifiable emission line at 431 nm [10–13]. In
recent years, few techniques proposed to detect hydrocar-
bons and gas impurities in the form of molecular using Glow
discharge and kinetics of fast electrons [14, 15]. In this
study, different gas mixtures of methane, acetylene, and eth-
ane at various concentrations from 1 ppm to 100 ppm in
helium were used to provide emission spectra in the range

of 194–1122 nm as input to ML classification models based
on PLS-DA with the aim of detecting hydrocarbon type and
concentration.

2. Experimental methods

In this study, the main device used to generate optical emission
sampleswas atmospheric pressure plasma. To produce plasma,
helium flows through a quartz capillary with inner diameter of
2 mm in the middle of two aligned ring electrodes with 5 mm
distance. Presence of helium is necessary as a carrier gas for
sustain of plasma when measuring different gases. Mass flow
controller (MFC) is employed to adjust flow rate of helium
and other gases. Spectrometer works alongside with ocean
view software (OceanView Spectrometer Operating Software:
Version 1.5.2) to measure wavelength scope. The overall view
of the apparatus and their connection in this study is shown in
figure 1. Plasma device is located at the center of a gas line net-
work and is driven by RF power for gas ionization. The spectra
were measured using an Ocean Optics HR4000CG-UV-NIR
spectrometer (optical resolution < 1.0 nm FWHM, slit width
5 µm), with a total of 3648 wavelength points in a range of
194 nm–1122 nm (interval 0.25 nm). The spectrometer from
one side is connected to optic fiber, and from other side con-
nected to a computer where an Oceanview spectroscopy soft-
ware process the data.

The target species (N2, H2, CH4, C2H6 & C2H2, H2O &
helium) are diluted in helium to reach the desired concentra-
tion. Each gas was measured individually. Each species con-
centration varied from 0–100 ppm (0, 1, 2, 4, 6, 12, 23, 30,
47, 60, 77, 85, 100 ppm) where at least 100 samples recor-
ded for each ppm. Other non-hydrocarbons species, such as
N2, He, H2O, and H2 were recorded at different concentra-
tions for comparison and further investigation. In this study,
the term ‘category’, ‘spectra’, ‘concentration’ and ‘ppm’ are
interchangeable, and all may refer to the recorded sample.
Meanwhile, in many places, the wavelength is referred to as
‘variable’.

Datasets from three gases (CH4–He, C2H6–He and C2H2–
He) were collected in a matrix of 3648 variables (wavelengths)
for each, using two RF plasmas formed in a quartz capil-
lary between two exterior ring electrodes. In this study,
two plasmas were utilized to measure samples: plasma
no. 1 with a special structure and covering chamber that
had the least air diffusion, and plasma no. 2, which was
portable, but may record samples with more impurities
(figure 2).

There are four classes of species: helium, carbon-based (C
I, C II, CH, etc), hydrogen-based (H I, H II, etc), and impurity
(e.g., N, O, OH/H2O). As an example, figure 3(a) compares
the three spectra for methane at different concentrations. No
peak, except possibly near 516 nm, could be assigned unam-
biguously to any species. In this study, the appearance and dis-
appearance of a peak at 431 nm was triggered by the addition
or removal of hydrocarbons to the helium mixture at the time
of experimentation.
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Figure 1. Apparatus and its set up for measuring CH4 from He—CH4 mixture. Emission spectra of He—CH4 is obtained from a plasma
operated at atmospheric pressure. The mixture can be replaced by other mixtures (e.g., C2H6, C2H2, N2) for recording their value. In this
work, RF power generator (Cesar- RS232) connected to the plasma system when forwarded power (Wf) for all samples remained in a
constant value of 90 w and the Reflected power (Wr) also could not exceed to more than 2% of Wf and usually retained at zero. Ocean
Optics (HR4000CG-UV-NIR) spectrometer is connected from one side to the plasma via an Optic Fiber and from other side to the
computer. Mass Flow Controller (MFC) via two MKS-MFC is set to manage and quantify gas and flow rate.

Comparing other recorded gases (N, H2O, He, and H2

with available hydrocarbon [CxHy]) with the same setup
at a wavelength of 431 nm shows that the highest intens-
ity is obtained in the presence of hydrocarbons, and there-
fore could signify a CxHy species, most likely CH [11–13]
(figure 4(a)). Two concentrations have been considered for
H2O, as the behavior of H2O samples is quite different as com-
pared to other gases, which is outside the scope of this study.
Figure 4(b) shows the peaks at a wavelength of 431.382 nm,
where an almost direct relationship was observed between
C2H2 concentration and intensity up to 12 ppm.

Therefore, in the current study, we propose to use the
CH peak at 431.382 nm as an indicator and the presence
of hydrocarbon species (CxHy). This is especially obvious
for the C2H2-He mixture when the C-H bonding is more
robust.

3. Algorithmic techniques

PLS is a regression algorithm that reduces the num-
ber of observations to a smaller number of components,
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Figure 2. (a) Plasma no.1 device used in this study with covering
chamber. (b). plasma no. 2 device (no- chamber), with connected
plastic tube outlet to prevent air diffusion.
Note. RF capillary plasma system operated with helium carrier at
atmospheric pressure. The electrode gap was 5 mm.

called Latent Variables (LV), and conducts Least Square
regression on these component sets [16]. Classification with
PLS is termed PLS-DA, where DA represents discriminant
analysis.

This classification technique can deal with multivariate and
high-dimensional data by reducing the number of independ-
ent variables X or samples to LV with a maximum covari-

Figure 3. (a). Illustrative spectra from samples with 0 ppm, 2 ppm
and 100 ppm CH4, truncated to the wavelength range 194–1150 nm.
Category increment will cause a boost in peaks number and lead
these data to a categorical nature. The spectra are collected via
plasma no.2. (b). Comparing spectra from two different plasma
(plasma no.1 &2)- note: H2 and CH4 recorded via plasma no. 1 and
remaining spectra are collected via plasma no.2 in this figure.

ance with the corresponding dependent variable Y or classes
[17]. This algorithm has favorable properties compared to
other algorithms when applied to spectral data. It can provide
weight and model VIP, which can be utilized to identify vari-
ables that participate the most in the model [18]. In addi-
tion, comparison of loadings and score plots can help dis-
cover important variables in each class [19–21]. As described
in a previous work [1], PLSDA represents the best model per-
formance on our CH4–He spectral data. The algorithm was
applied to separate and group the samples (ppm) in classific-
ation section. Figure 5 shows the application of leave-one-
out cross-validation (LOOCV) on the raw CH4 data when
LV = 15. In this approach, the cross-validation algorithm val-
idates each sample against the others in each LV. Increasing
the number of LV improved the model performance by up
to 98% for LV = 15. The PLS-DA accuracy is the frac-
tion of predictions that the model obtained accurately when
classifying PPMs. The process is discussed in the following
sections.
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Figure 4. (a) Spectral intensity at wavelength 431.382 nm for
different gases in helium. (b) Increasing intensity with C2H2

concentration’s growth at wavelength 431.382 nm. Hundred
samples are recorded for each ppm.

3.1. Gas identification via unique VIPs

PLSDA has been shown ability to detect a single trace
gas in helium, but its accuracy is significantly reduced
when multiple gases are included in the model [1]. In this
section, the objective is to search for specific peaks that are
unique to individual gas, and then with an unknown spec-
trum, such features are used to select gas-specific models.
Figure 6 illustrates the decision-making process for the gas
identification and concentration determination.

Therefore, to determine the gas-specific peaks, they must
be unique to the gas or have a significantly larger intens-
ity than the same peak as other gases. Such peaks are also
likely to be considered important variables by the gas model
i.e. they have a VIP score >1 [22]. Therefore, the VIP scores
were analyzed to find the required features. In this study,
the number of VIP score outputs for each complete data-
set matched the total number of variables (i.e. 3648 scores).

Figure 5. Applying Leave One Out Cross Validation on CH4 -He
dataset. PLSDA LOOCV’s iteration is usually equal to the number
of latent variables. Here, 15 latent variables are considered.

Figure 7 compares variables with a VIP score >1 for the CH4

dataset.
The most important variables were located on the peaks,

and there was a direct correlation between the VIP height
and intensity. If a variable has a VIP score of < 1, it can
be considered less important and possibly removed from the
model. Variables with a VIP score > 1 are important in the
model.

The VIP score plot is complicated. Variables can have dif-
ferent VIP scores in each category (concentration). Each gas
may also have different VIPs scores. Finally, each peak region
covers multiple wavelength variables, and may therefore con-
tain multiple VIPs. To address the indicated challenges, a
three-phase process was developed to filter the number of VIPs
and select one VIP per peak, as shown in figure 8. Phase one:
Select all VIP scores > 1(black line); phase two: within each
peak region, select the highest value VIP score (green line);
phase three: select the 10–20 highest value VIP scores from
phase two (blue line) using the VIP threshold.

All three phases is applied on all gases and their concen-
trations separately. Figure 9 shows selected VIPs (phase-1)
for 6ppm C2H6 at wavelength interval 406–442 nm. As the
figure indicates, six VIPs are observed near the 431 nm line
(range 429.28–431.90 nm, containing 8wavelength variables).
Adjacent to this peak, there is the helium line at 427 nm
(with a peak width from 425.35 nm until 428.76 nm) that sup-
plies another six VIPs. As shown in figure 4(a), the 431 nm
line is only observed as a significant peak when hydrocar-
bons are present, and any single observed VIP in this interval
(429.28–431.90 nm) indicates the presence of hydrocarbons in
the mixture.

Although each mixture displays a high degree of similarity
in the highest-value VIP wavelengths selected in phase three,
it was found that each gas has a unique VIP score located at
a specific wavelength interval that is not available at the same
point for other gases (figure 10). Therefore, some wavelength
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Figure 6. To identify hydrocarbons (CH4–He, C2H6–He, and C2H2–He), eight different gases with concentrations (0–100 ppm) were
recorded separately. Step 1 (Identification): searching for VIP > 1 at 431 nm, and if it exists, identifying gas via a unique VIP. Step 2
(classification): Merge ± 5 variables around each peak to cope with model overfitting and acknowledge each gas concentration.

Figure 7. Selected VIPs for CH4–He recorded with plasma 1. The
red dot shows VIPs > 1.

peaks could be utilized to distinguish one gas from the
others.

A comparison of the three gases (figure 10(b)) shows that
there are unique peaks for C2H2 in the wavelength inter-
val 510 nm–610 nm, which provide unique VIP scores > 1.
However, the peak intensity was not high enough for CH4 and

Figure 8. Finding highest value VIP in three stages, zooming
window demonstrates wavelength interval ∼ 300–534 nm. Red
squares show selected VIPs in each step. Stage1: black line
indicates selected all VIPs > 1 for 2-ppm C2H2. Stage2: green line
selected highest VIP for each wavelength range for the same
sample. As the zooming window shows the number of VIPs have
decreased from black line to green line (select highest VIP for each
peak). Stage3: blue line shows selected 10–20 highest VIPs that
located on highest peak.
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Figure 9. Selected VIPs (phase 1) for 6ppm C2H6 at wavelength
431 nm. (Hydrocarbon identifier spot).

Figure 10. (a) Peak differences between CH4 & C2H2 at
wavelength interval 410 nm–500 nm.(b). Comparing peaks for CH4,
C2H6 & C2H2 at wavelength interval (∼510–610 nm). Two unique
peaks (VIPs) belong to C2H2 are identified at 513 & 557 nm. The
baseline for CH4 & C2H6 is shifted to avoid line overlap.

Figure 11. Black line: selected VIP scores >1 for CH4, C2H6 &
C2H2. Red circles on this line shows unique VIP for each. Unique
VIP for CH4 at wavelength 283 & 375 nm. Unique VIP for C2H6
at wavelength 668.07nm. Unique VIPs for C2H2 at wavelength
513.36 nm & 557.72 nm.

C2H6 to be captured by means of the VIP algorithm in this
interval. The unique VIPs for each hydrocarbon gas are shown
in figure 11.
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Figure 12. Selected highest value VIPs (phase 3) belong to eight
recorded gases (N2, H2, CH4, C2H6 & C2H2, H2O & helium). Two
concentrations have been considered for H2O.

A comparison of the highest value VIPs (phase 3) belong-
ing to the eight recorded gases is shown in figure 12. H2O
was recorded twice for two concentrations, i.e., 30 ppm and
100 ppm, as the nature of its data is slightly dissimilar to
other gases and VIP numbers usually decrease with increasing
ppm.

It is important to point out that although the same threshold
value for the VIP algorithm was used for each gas, three mix-
tures (N2, H2, and H2O-100) provided >15 VIPs. VIPs cor-
responding to hydrocarbon species (approximately 431 nm)
were only found in the CxHy mixtures, namely 431.382 nm
for CH4, 430.858 nm for C2H6, and 429.285 nm for C2H2.
The line related to helium (i.e. 427) can be identified in most
mixtures, except (N2, C2H2 and H2O). Apart from nitrogen,
all samples indicated a VIP > 1 score at 777 nm due to the
presence of oxygen (OI).

3.2. Concentration classification via merging VIPs

To evaluate and improve the ppm prediction accuracy of the
algorithm, the model performance was evaluated using five
different protocols, as listed in table 1.

This approach was assessed on two different CH4 data-
sets and has been discussed in a previous study [1]. As
table 1 shows, protocols 1–3 represent individual or com-
bined session evaluations, while protocols 4 and 5 use data-
sets from plasma one for training and testing on similar spe-
cies from plasma two. As a LOO-CV approach was applied
to acquire an estimate of the model sensitivity to the num-
ber of LV used to build the model, from which a plot of
accuracy versus LV was obtained (figure 13). LOOCV is a
special case of k-fold cross validation that test each sample
against all other individuals [23]. Therefore, if a dataset
contains n number of samples, LOOCV can be iterated n
times for all dataset (i.e. k = n), when n–1 samples will

Table 1. Protocols for implementation of algorithm training &
evaluation. No C2H6 available in our data repository from plasma
no.1. As discusses in experimental set up, 100 samples were
recorded for each concentration.

Protocol Description Plasma 1 Plasma 2

1 Model training and evaluated
using C2H2 dataset

3

2 Model training and evaluated
using CH4 dataset

3

3 Model training and evaluated
using C2H6 dataset

3

4 Model trained and evaluated
using two C2H2 datasets.

3 3

5 Model trained and evaluated
using two CH4 dataset.

3 3

be used for training and one sample for testing in each
permutation.

In each protocol, the training and validation samples were
swapped, and the results changed by approximately > 4%. For
each individual gas model tested via protocols 1–3, the accur-
acy increases with LVs growth and saturates at >90% for LV
values > 8. However, for protocols 4 and 5, the models were
unsatisfactory, and the accuracy was poor. The previously
mentioned protocols represent an extreme test using entirely
different plasma sources, and the low accuracy is likely due
to overfitting of the unique response characteristics of each
system.

The software can be locked to a gas as soon as iden-
tification is complete, and from there, the VIP summation
can proceed to cope with model overfitting, as can be seen
in protocols 4 and 5. The analyzing process will occur in
real-time, and the identification-classification result is simul-
taneous. The identification accuracy for C2H2, C2H4 and C2H6

varied between 95%–97% for each gas.
From [1, 24], it was found that peak merging is a valid solu-

tion to improve the accuracy and ppm classification. In this
approach, the highest value peaks over a wavelength range ∆λ,
selected by a VIP threshold, and shrinks into a single intensity
value. The VIP algorithm merges ± 5 intensities over λ; as a
result, a single compressed intensity value within ∆λ remains,
and the remaining variables are eliminated from the model.
This technique reduces the correlated variables around a peak
and minimizes the problem of model overfitting [25].

As mentioned in the previous section, the most significant
variables (VIPs) are located at their peaks. The VIP algorithm
will be repeated to identify peaks and perform ±5 merging
around each selected VIP (figure 14). This method can abolish
the ambiguity and changeability of each category; however,
as explained earlier, each mixture displays much similarity in
the highest-value VIP wavelengths. Therefore, the summation
procedure (peakmerging) can be performed only after mixture
identification.
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Figure 13. (a) Comparison of LOOCV PLS-DA accuracy versus
the number of model Latent Variables for five protocols given in
table 1. (b) Corresponding PLSDA validation result- Each bar
shows multiclassification result for defined protocols.

The peak-merging algorithm was not necessary for proto-
cols 1, 2, and 3, as the accuracy was >95% with only the
PLSDA algorithm. However, for protocols 4 and 5, it was
also necessary to include the merging algorithm, which it
ensure an accuracy of ⩾95% for the nine LVs, as shown in
figure 15.

4. Discussion

PLSDA algorithm in addition to being a dimensionality reduc-
tion technique, it is also equipped with properties such as VIP
selection, whichmakes it an appropriate approach for gas iden-
tification. An analysis of the full variable count models using
VIP indicated, as expected, that the primary contributors to
the models were at the spectral peaks. Specific peaks unique
to individual gases can be identified using the VIP threshold.
Therefore, for each gas, a VIP threshold outputs the highest
value peaks that are rarely shared with other gases. Each selec-
ted peak covers features that they call the VIP scores. Initially,

Figure 14. 2 ppm C2H2 & C2H6 after & before merging as the
comparison between merged and unmerged samples show there is
slightly shift in wavelength when merging algorithm reducing the
number of wavelengths by 100 variables. The result of this
concentration classification via merging is shown in figure 15.

Figure 15. PLS-DA accuracy versus LV using peak merging for
Protocol 4 (C2H2) and 5 (CH4), in comparison with accuracy
obtained from unmerged peaks.

the total number of VIP scores is equal to the total number of
variables (i.e. 3648 scores), which will be filtered in three dif-
ferent phases, and only around 10–15 scores will enter the final
stage for identification and classification purposes. Under real-
istic test scenarios, trace-gas mixtures are likely to contain air.
In this study, all gases were mixed with helium, and the effect
of air was minimized by adding a longer capillary followed by
a 50 cm tube. The preliminary investigation of the effects of air
inclusions on gas detection and plasma operation was beyond
the scope of this study. Pure helium (zero CxHy) VIPs were
precisely evaluated to investigate the effect of helium on each
gas.

Figure 12 and highest value VIPs shows that the line at a
wavelength of 337 nm, captured via the VIP algorithm, can
be observed in pure helium. This wavelength was also used
to identify OH (as shown by [26]) and N2 (as shown by [27]).
CH lines in the range 410–440 nm- transition: A2∆—X2Π are
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not found in pure helium, other than the specific line 427 nm,
which correlates with helium. It seems that line 427, which
belongs to helium, can be seen in all recorded sets, apart from
N2, C2H2 and heavy molecules of H2O (i.e. 100 ppm). It is
possible that the stronger energy bond between C=H in C2H2

and N=N diminishes the present of helium at 427 nm. A
stronger C–H bond results in decreasing hydrocarbon VIPs
prior to 431 nm, i.e. 9 wavelength lines are detected for CH4

ahead of 431, six lines are discovered for C2H6 and four for
C2H2. It appears that the VIP lines belonging to N2 are virtu-
ally congested at interval of 300 nm–400 nm.

The VIP identified at 380 nm may belong to N2 [28, 29]
and is found in nitrogen sets, but not in helium mixture. The
line at 375 was used by [29] to identify CO2 and by [28]
for N2, it cannot be seen in pure helium mixture. Conversely,
VIP captured at 656 nm was observed in the helium set. C
II lines those found at 588.8 and 589.3 nm by [30], can be
seen in H2O, C2H6, C2H2 and helium. The 777 nm line that
may belong to OI [31], can be seen in all sets apart from the
N2 samples. The hydrocarbon detector line (431 nm) was cap-
tured via the VIPs algorithm for all CxHy mixtures, although at
a completely different height for each mixture. Finally, some
other line differences between sets have been identified, such
as 257 nm, 283 nm, and 640 nm, but their appearance is
inconsistent.

Regarding PPMs classification, the potential for overfitting
of spectral data and a decrease in accuracy for a given LV
is obvious from protocols 4 and 5, where the training and
validation were from two different plasmas. In contrast, the
peak uniting algorithm allowed 97% success with protocols
4 and 5, a similar outcome to that obtained from protocols
1–3. By shrinking the number of correlated wavelength vari-
ables around each highest-value VIP to a single value, the con-
sequences of overfitting were minimized.

5. Conclusion

The ability to detect hydrocarbons and assign a concentration
classification offers a fundamental solution for model overfit-
ting and vapor identification, particularly when dealing with
gas spectral data. In this study, we initially considered eight
different gases. The first step in identifying a hydrocarbon is
to confirm the presence of a wavelength line at 431 nm. This
is the only wavelength where an increase in the peak height
indicates an increase in the CxHy concentration. The unique
VIP of each gas was used to distinguish the hydrocarbons.
Although there was much similarity between the VIP scores of
each gas, each hydrocarbon shows a few different VIPs lines
that may not be present for other gases. While certain spe-
cific wavelength points were identified, which are indicating
the presence of CxHy species, the general hypothesis is that
a unique VIP at a wavelength interval of 200–400 nm indic-
ates methane, 500–600 nm shows acetylene and 600–700 nm
indicates ethane.

Diminishing algorithm execution is visible when moving
from one plasma set to another; consequently, model over-
fit the training data and has reduced generality. The PLSDA

algorithm adjoining variable merging could deal with model
overfitting and improve the performance by up to 98%.
Future research will involve assessing the potential role of the
algorithm in identifying unique VIPs for other hydrocarbons
and vapors. This wouldmake the current workmore robust and
generalizable to other fields. Once this has been achieved, the
improvement and further development of current algorithmic
methods will be the next step. More work needs to be per-
formed to assess how the algorithm responds to complex mix-
tures of hydrocarbons, such as a combination of CH4 and C2H6

mixed with air. Finally, this identification applies to the plas-
mas (1 and 2) that we investigated and to those hydrocarbons.
It remains to be seen how this applies to other plasmas and
hydrocarbons.
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