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Abstract—We present a method for 3D cattle tracking and
inter-camera pose transformation using depth information from
monocular depth estimation with deep networks. Camera-
based animal monitoring offers a minimally invasive and easily
adaptable solution for tracking and welfare monitoring, relying
solely on commercial RGB camera systems. However, environ-
mental factors and inter-animal occlusion often hinder tracking
efficacy and consistency. To address these challenges, we devel-
oped a pipeline to extract 3D point cloud data of individual
cows in a straw-bedded calving yard environment, generating
quasi-3D bounding boxes (x, y, z, height,width, θ), where θ is
the polar angle. We then estimate the camera system extrinsic
parameters by minimising the rotation, translation, and scale
discrepancies between the apparent motion of animals across
different frames of reference. This approach demonstrates a
strong agreement between the 3D centroids of tracked animals
in motion. Our work advances the development of algorithmic
occlusion handling and object handover techniques in multi-
camera systems, particularly pertinent to the high-occlusion,
low-locomotion scenario of animals within barn environments.

Index Terms—Precision Farming, Monocular Depth Estima-
tion, Tracking, Camera Calibration

I. Introduction
Increasingly automated farms require more effective

animal monitoring [1] as the ratio of farmers to cattle
decreases. Precision livestock farming of dairy cattle
has evolved significantly in recent decades and the use
of automated monitoring tools including, for example,
accelerometer collars for behavioural recognition [2], tail
position monitors to identify the onset of parturition [3],
and bolus sensors for rumination duration and frequency
are commonplace [4]. However, these devices can affect
the safety, welfare, and comfort [5] of livestock and rely on
human intervention for implementation and replacement.

Monitoring stock without the need for physically at-
taching sensors is desirable from a welfare perspective
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and to minimise operational costs. With the increas-
ing availability of neural network-based image analysis
techniques, multiple object tracking has seen a rapid
increase in interest [6]. Vision-based approaches for animal
tracking, such as using single [7], [8] and distributed [9]
camera systems within barn environments have already
been implemented.

However, vision-based tracking faces significant chal-
lenges in becoming a reliable diagnostic tool for animal
welfare. Accurately identifying and tracking individual
animals in crowded and obstructed environments—where
occlusion due to environmental and inter-animal factors is
common—is difficult to achieve [10]. One proposed solu-
tion involves utilising depth information alongside RGB-
based tracking to simplify the process of handling object-
background segmentation and occlusion challenges [11].
Expanding from 2D to 3D tracking improves individual
localisation that can be used to optimise barn design
and access to resources, quantify social interaction and
potentially quantify known positive welfare traits such as
synchrony within herds [12]. It also eases the challenge
of identifying affiliative and agonistic behaviours in cat-
tle [13] such as mounting, displacement, or allogroom-
ing [14], important indicators of oestrus [15], or hierarchy
and social bonds within groups [13], [16].

Recent advances, have employed depth information
alone [17], [18] or in conjunction with RGB image data
to augment cattle identification [19], [20] and postu-
ral or characteristic traits [21]–[24]. Production of the
RGB-Depth (RGB-D) maps in the above examples was
achieved via amplitude-modulated continuous-wave time-
of-flight principles [25] or stereoscopic scene reconstruc-
tion. Consumer-grade RGB-D sensors (e.g. the Microsoft
Kinect sensor) are, however, sensitive to lighting condi-
tions [26] and unsuitable for large barn environments as
their depth measurement range is limited to approximately
5 metres [27]. Stereoscopic approaches [28], are similarly
constrained resulting in sparse and incomplete 3D scene
reconstruction [22].

In this work, we employ Monocular Depth Estima-
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tion (MDE) through deep learning [29] to generate 3D
representations of the scene. This approach aims to en-
hance tracking efficiency and enable object handover by
accurately capturing the spatial and angular distribution
of scene objects. A deep learning-based approach was
selected over traditional MDE methods, such as structure-
from-motion, which are less well suited to bovine tracking
due to the prolonged periods of cattle inactivity during
rumination, and their slow movement within barn envi-
ronments.

Assessing the feasibility of an end-to-end depth-aware
tracking solution, we have investigated currently available
methods where we have prioritised efficacy over compu-
tational time. Namely, we apply Depth Anything [30] for
estimating depth maps from single RGB camera images
and develop a pipeline for extraction of 3D point cloud
motion over time.

The paper is organised as follows. Section II presents
the experimental animal monitoring setup within a straw-
bedded calving yard environment. In Section III we
demonstrate the production of RGB-D information from
video feeds using monocular depth estimation methods
and calculating the plane-of-best-fit for the point cloud
associated with a given bounding box. Section IV demon-
strates the time-dependent point clouds of a tracked
animal under motion from two opposing camera views.
In Section V the location and angular distribution of
the planes-of-best-fit are used to track cattle in 3D with
two cameras exploiting the apparent paths to externally
calibrate the rotated and translated pose of the two-
camera system.

II. Experimental Design

Fig. 1. Positioning and field of view for two cameras within the
straw-bedded calving yard. Shaded regions in blue and red show the
coverage of Cam. 1 and Cam. 2, respectively. The dashed region
formed by the overlapping view is used for animal tracking within
this study. The black horizontal line represents an internal railing.
Cam. 2 is mounted on a pillar of this railing.

Video monitoring samples were collected at the Dairy
Research and Innovation Centre at Crichton Royal Farm
using consumer-grade Reolink Duo cameras situated
within the straw-bedded calving yard. The yard is a
12m by 35m rectangular building with a fence running

along the mid-line of the yard with access to both sides
allowing free roaming. Movable fences within the yard
facilitate sectioning a subset of cows for handling or
to allow an individual to be isolated from the herd
during calving. The yard is instrumented with 12 dual-
lens cameras, giving 24 video feeds. Of the 24 video
feeds available within the yard, the two camera systems
used in this work are implemented as shown in Figure 1.
The manufacturer-specified focal lengths were confirmed
offline using ChArUco board calibrations and were within
< 2% error in vertical and horizontal directions and so
are assumed equal in the following analysis.

III. RGB-D Data Production Pipeline
Video streams are converted into RGB-D videos using

the method illustrated in Figure 2. Classification and
production of 2D bounding boxes are extracted using the
standard YOLOv8 model [31] applied frame-wise to the
video sample with BoT-SORT [32] enabled to perform the
tracking; an example output is shown in Figure 2 B). In
parallel, each frame is supplied to the Depth Anything [30]
model using their ViT-L encoder and metric indoor model
weights which produced the depth map at each pixel
coordinate, shown in C). To increase the resolution of
the depth map, we used the method presented in Boost
Your Own Depth [33] with fixed 4×4 and 8×8 pixel filter
sizes which produced the depth map in E). Following the
production of the bounding boxes, the animal silhouettes
were segmented, as shown in D), using the bounding boxes
as anchor positions with the Segment Anything model [34].
Depth values were extracted from within these masks
which created a 3D point cloud corresponding to the 3D
position of the animal within the barn. A plane-of-best-
fit was then computed for each point cloud to extract
the centroid (via the 3D position of the point cloud) and
angle (via the plane normal) of each segmented animal.
The resulting point clouds and their associated planes are
displayed in F). This process was repeated for each frame
and camera view leading to the production of the 3D
position of the animal in time as illustrated in Figure 3.
An example still image of the 3D rendering of the RGB-D
is shown in Figure 2 G) illustrating a false view of the
scene with the cow of interest standing in the foreground.

Scale ambiguity in MDE is a recognised challenge, where
depth can be determined up to an unknown scale factor.
While this analysis operates on arbitrary depth scales,
metric measurements can be achieved using ChArUco
marker systems, rescaling known distances in the barn
environment, or employing spatially calibrated cameras
with estimated object sizes like cows, gates, or pillar
distances. Refining metric depth calibration using these
methods is the focus of ongoing research.

IV. 3D Point Cloud Mapping
The RGB-D data supports the extraction of additional

information on the motion and location of the cattle at
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Fig. 2. Illustration of processing RGB to RGB-D data for each video
frame. A) RGB frame extracted from a video feed. B) YOLOv8
classification, bounding boxes, and confidence score for the RGB
frame A. C) Depth Anything MDE predicted depth map from A.
D) Segment Anything bounding box-anchored segmentation using A
and B. E) Resolution-boosted depth map from C using tiling and
low-resolution depth averaging method from Boost Your Own Depth.
F) RGB-D 3D point clouds and associated plane-of-best-fit (red)
using the masks from D applied to A for RGB and E for depth.
G) 3D rendering of the dense RGB-D scene.

rest or when active within the barn. Figure 3 demonstrates
the extraction of the point clouds over time for a moving
cow viewed by two approximately anti-parallel cameras.
Figure 3 A) illustrates the animal motion from the front
corner of the barn to the central region. Note that the
blurred regions in the frames of Cam. 1 and Cam. 2 (on the
right and left sides, respectively) are caused by structural
occlusions to the camera system, where depth information
is unknown. This blurring is rendered due to the false
viewing angle used to visualise the RGB-D frames.

Figure 3 B I) and II) demonstrate the motion of the
cow every 10th frame of the video sample for Cam. 1 and
Cam. 2, respectively, with the time progression indicated
by the transition from light to dark colours. Given the
anti-parallel camera views, the cow appears to move away
from and towards Cam. 1 and Cam. 2, respectively, with
time. Fitting a plane-of-best-fit to each masked point
cloud using the method described in Figure 2 F), and
illustrated only for the moving animal within the scene,
allows us to calculate a more accurate centroid of the
animal by extracting the centre and angle of the animal
under motion. With this approach, we can expand the
2D bounding box to quasi-3D by including the polar (θ)
angular component extracted from fitting a plane to the
point cloud in addition to the centroid (x, y, z), plus the

width and height of the 2D bounding box. The point
cloud time sequence (from lighter to darker) illustrates
that the proposed MDE method is sufficiently sensitive to
extract the position of the animal as it walks away from
(Figure 3 B I)) and towards (B II)) the cameras and the
angular motion of the cow agree with the motion seen in
panel A).

Fig. 3. Frame-by-frame extraction of point cloud for 3D cow position
for multiple camera views. A) Example rendered RGB-D frames
produced using the proposed cow moving within the barn for two
opposing camera views. B I) and II) 3D point cloud sequence (every
10 frames) for the same cow for Cam. 1 and Cam. 2, respectively,
where time progression is indicated by colour changes from lighter
to darker.

V. Point Cloud Centroid Tracking and Inter-Camera
Calibration

Improving tracked object handover in 3D necessitates
measuring the volumetric intersection-over-union for the
quasi-3D bounding boxes. A transformation between the
camera viewpoints is consequently required to create the
bounding box overlap in a shared coordinate system.
Calculating the position and rotation of the camera
viewpoint within a global coordinate system, known as the
extrinsic parameters, typically requires spatial calibration
markers or additional object viewing angles. Implementing
these methods is challenging for opposing camera views,
such as in this example.

To approximate the rotation, translation, and scaling
between the two cameras, we use the frame-wise 3D cen-
troid of the segmented point clouds as a minimisation tar-
get to align the apparent paths from different viewpoints.
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Fig. 4. Extraction of the 3D tracking centroid paths and its application to camera extrinsic extraction and object overlay. A) Frame-wise
3D point cloud centroid motion from the view of Cam. 1 (blue stars), Cam. 2 (red triangles), and the Kabsch-transformed position vector of
Cam. 1 (grey squares). Lighter colours indicate earlier frames. B) Kabsch transform applied to point cloud where the arrow ‘T’ indicates the
transform direction (from blue to grey.) C) Depth-flattened view of the transformed Cam. 1 (grey) and reference Cam. 2 (red) point clouds
for every 20th frame, chronologically ordered by tCI < tCII < tCIII < tCIV. Crosses correspond to the horizontal and vertical components
of the 3D centroid of each point cloud for their corresponding colour.

This is computed using the Kabsch algorithm [35] with
paired 3D points, which calculates the required translation
from the average centroid of all points in each point set,
and the rotation from the singular value decomposition of
the covariance matrix after translation. Taking inspiration
from Procrustes analysis [36], we have used a modified
form of the Kabsch algorithm that incorporates uniform
scaling to model the different object distances from the
cameras, but without unit scale normalisation.

The Kabsch transformation is then applied to shift the
path produced from the view of Cam. 1 into the frame of
reference for Cam. 2. Figure 4 A) shows 3D point cloud
centroid motion from the views of Cam. 1 and 2 in addition
to the Kabsch-transformed position vector of Cam. 1
to Cam. 2. Note the axes denote the same coordinate
system as Figure 3 B. In these trajectories, lighter colours
represent earlier frames in the sequence. After applying
the Kabsch transformation, the transformed and reference
trajectories for Cam. 1 and Cam. 2, respectively, are
well aligned in terms of path position, length, angle, and
direction as seen in Figure 4 A). The accuracy of this
transform could be improved by averaging the estimated
rotation and translation matrices calculated for multiple
animal paths, and by including skew, both of which are
the focus of future work.

This transformation is applied to the full point cloud
of the tracked cow from Cam. 1 (blue cow) leading to the
spatial overlap of the transformed point cloud from Cam. 1
(grey) and the reference view of Cam. 2 (red cow) in
Figure 4 B). Note that the transform produces an axially
inverted image to account for the apparent flipped motion
of the animal between the approximately anti-parallel
camera views. Owing to the limitations of illustrating
overlapping 3D views in print, depth-flattened views of the

transformed (grey) and reference point cloud of Cam. 2
(red) for every 20th frame are shown in Figure 4 C). The
good agreement between the centroids of the transformed
and reference 3D point clouds projected back into 2D
indicates that this method can provide cross-identification
of the bounding boxes produced by the tracker for multiple
camera views. The successful overlap of the point clouds
across all frames indicates that the 3D centroids used to
calculate the Kabsch transform adequately describe the
animal motion. Additionally, this could be directly applied
to volumetric intersection-over-union matching between
multiple camera systems and improved handover during
occlusions by matching the expected motion of the animal
between one view and the other.

VI. Conclusions

This study presents a proposed pipeline using monocu-
lar depth estimation via deep networks to generate RGB-
D data from consumer-grade RGB camera systems in a
straw-bedded calving yard environment. RGB-D data was
used to calculate frame-wise 3D centroid and quasi-3D
bounding box information for tracked animals. An image
transform procedure was proposed to extract approxi-
mate camera extrinsic parameters for future volumetric
intersection-over-union cross-referencing detection. Depth
information can provide monitoring of inter-animal be-
haviours expanding on the repertoire of welfare indicators
that can be tracked. In addition, the improved reliability of
individual animal tracking will lead to higher precision in
animal welfare monitoring by reducing animal mismatch
and intermittent tracking. Work is underway to implement
this method within a depth-aware tracking system for
multi-camera systems to improve the stability, and object
handover, of tracking processes.
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