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Abstract: This paper demonstrates how research at the intersection of physics, engineering, biology
and medicine can be presented in an interactive and educational way to a non-scientific audience.
Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can
be used to engage with the public. Respiratory diseases are significant contributors to avoidable
morbidity and mortality and have a growing social and economic impact. With the aim of improving
lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently
developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway.
The activity comprises an inexpensive educational tool (<$70) adapted from a clinical optical
endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created
by high school science teachers and researchers in a collaborative way that can be implemented into
any engagement development process.

Keywords: endoscopic imaging; fluorescence imaging; fiber optics; medical imaging; medical optics
instrumentation; lung disease diagnostics; public understanding/outreach; high school/introduction
medicine; interdisciplinary/multidisciplinary

1. Introduction

Lung diseases are prevalent throughout the world and include a range of conditions such as
asthma, acute respiratory infections, tuberculosis, lung cancer and chronic obstructive pulmonary

Sensors 2020, 20, 402; doi:10.3390/s20020402 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8387-9641
https://orcid.org/0000-0003-4511-1719
https://orcid.org/0000-0002-5551-7854
http://dx.doi.org/10.3390/s20020402
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/2/402?type=check_update&version=2


Sensors 2020, 20, 402 2 of 14

disease (COPD). COPD affects 64 million people worldwide and results in approximately three million
death per year, which makes it the third leading cause of death worldwide [1]. Lung cancer is the
leading cause of cancer death worldwide (18.4 % of all cancer deaths), killing 1.7 million people per
year, and this number is predicted to rise [2]. Tuberculosis (TB), which most often affects the lungs,
is one of the leading causes of death from an infectious agent. In 2017, an estimated ten million people
contracted TB and 1.3 million people died from the infection globally [3]. With drug-resistance on the
rise, TB and other bacterial infections continue to be a major public health concern.

From X-rays to optical endomicroscopy (OEM) systems, optics have played a crucial role in the
development of systems as well as understanding light–matter interactions that can help to diagnose
such diseases. Optics, and especially biomedical optics, is therefore at the core of a wide range of
research projects that will shape our future. As such, engagement with a wider audience, the research
community, and the general public is of prime importance for influencing policy and cultural change.
One way forward is to embed public engagement into the research culture through explicitly stating it
in funding announcements [4]. While several formal engagement papers have been published [5–8],
literature dedicated to and learning from engagement can remain hard to find. Although some
examples of knowledge exchange around engagement do exist [9–17], activities and materials are
generally not readily available for the wider research community and often not reviewed by peers.
This results in long design/test/optimisation phases to develop new activities that could be minimised
by further promoting knowledge exchange in the field. As one example, optical fibres present the
advantage of being familiar to a non-scientific audience due to their extensive use in daily life (e.g., for
telecommunication) and are consequently perfect vectors for transmitting challenging interdisciplinary
concepts. Over a one-year period, we, a team of physicists and engineers, have developed in a
co-production process with teachers a new tool to demonstrate the use of optical fibres in biomedical
applications. To date, the tool has been deployed in 10% of Scottish secondary schools and has been
presented at various venues for engagement and design optimisation. The tool is relatively low-cost
(<$70), versatile, and has been adapted for use by physics teachers in classrooms and by researchers at
outreach events.

The aims of this paper are to (i) propose a novel and easy-to-implement teaching session and
educational tool designed to engage a wider audience with the topic of applied optical physics,
and (ii) to encourage researchers to adopt or adapt the process through which this teaching session
was developed for their own engagement work. Specifically, we have focused on the use of optical
fibres within biomedical sciences. The educational tool, which we describe in detail, is analogous to
a state-of-the-art OEM system and is linked to a diagnostic challenge around pulmonary diseases
but can be easily adapted to other topics. The background know-how is presented as a short review
describing current lung disease diagnosis methods and recent approaches to innovate the field that
use optical fibres to perform molecular imaging and sensing in the distal lung. To complement the
educational tool, an outline for tutorials and supporting materials to aid with their delivery have
been provided.

2. Review: Optical Fibres and Lung Disease Diagnostics

2.1. Optical Fibres: From Telecommunications to Biomedical Imaging and Sensing

The guiding of light through total internal reflection was first demonstrated in the 1840s by
Jean-Daniel Colladon and Jacques Babinet with a ‘light-pipe’, or light fountain [18] (Figure 1). It was
more than one hundred years later that light guidance through glass was established as potentially
revolutionary to telecommunications in landmark work carried out in 1966 by Kao and Hockham [19],
for which Kao was awarded the Nobel Prize in 2009 [20]. At the time, optical fibres suffered from
rapid transmission loss and signal distortion from modal dispersion. Kao and Hockham predicted
that losses of 20 dB/km at 0.6 µm were practically achievable as a result of improved glass purification
and the use of single-mode fibres. Today, commercial single-mode fibres achieve <0.2 dB/km at
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1.55 µm and multimode fibres achieve <8 dB/km at 0.8 µm. Further rapid advancement in technology,
paired with an increased need for fast data transfer, has seen optical fibres become ubiquitous within
telecommunications. Such prevalence has resulted in widely available and inexpensive fibres, which
has led to their extensive employment in a wide range of scientific fields such as astronomy and the
life sciences.

Figure 1. Timeline of medical imaging developments. (Top) Brief overview of developments in medical
imaging such as CT (Computed Tomography), PET (Positron-Emission Tomography), MRI (Magnetic
Resonance Imaging) and OCT (Optical Coherence Tomography). (Bottom) Timeline of the development
of optical fibres and some applications in medical imaging.

Imaging fibres were first crudely developed in the early 20th century to study the lining of the
stomach [21]. These fibres were contained in rigid structures which made them inflexible, limiting the
interest in this emergent technology. Indeed conventional endoscopes, which contain a train of lenses,
were and still are the preferred technology in gastroenterology because they offer a wide viewing angle
and a high light throughput. However, remote imaging and sensing in less accessible narrow cavities
and tubular structures inside the human body can be achieved with flexible optical fibres. They offer
great advantages for use in a clinical environment as they are immune to external electromagnetic
radiation, easy to sterilise, non-toxic and bio-compatible, and therefore can be brought into direct
contact with the tissue surface. Furthermore, the low-cost material makes them ideal for disposable
single-use applications.

Coherent fibre bundles are made up of many thousands of cores that maintain their relative
orientation throughout the length of the bundle. The pioneering work on these bundles in the 1950s by
Hopkins and Kapany [22] triggered renewed interest in optical fibres within the context of biomedical
imaging. Each core within the bundle acts as an individual transmitter of light from the distal end.
Together, the cores form an image at the proximal end that can be viewed in real-time. In general,
coherent fibre bundles are flexible and compact in size, with diameters on the order of hundreds of µms,
which permits minimally invasive remote light delivery to various organs of the body [23–26]. Image
resolution is increased by dense core packaging up to the limit of core crosstalk [27], a power coupling
between the individual cores, which introduces blurring and reduces image contrast. Approaches to
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overcome this limitation include high levels of glass doping, structured packaging of varied core sizes,
and signal processing [28,29]. Recently, a low index contrast imaging fibre bundle was reported using
commercially available preforms typically used in the telecommunication industry which achieved
low core crosstalk by relying on a square array of cores [30].

Beyond imaging, optical fibres have also been used extensively for sensing purposes. Optical fibre
sensors have been explored for a wide range of applications including sensing of temperature [31–33],
pressure [33,34], enzyme activity [35,36], presence of nucleic acids [36,37], pH [38,39], and oxygen
saturation [38]. Detailed reviews can be found elsewhere [33,34,36,40–42]. Optical fibre sensors can be
differentiated into intrinsic and extrinsic sensors. Intrinsic sensors use the fibre itself as the sensing
element, whereas extrinsic sensors need an additional sensing element. Intrinsic sensors range from
Fibre Bragg gratings, interferometers, resonators to distributed sensors. They allow for single or
multiple point sensing or continuous monitoring along the length of the fibre. For extrinsic sensors,
the optical fibre only transmits the light while the sensing element is external to it. There are a wide
range of fibre probe designs available, but it is the application that defines the operational frame and
most suitable parameters. These parameters might include: number of fibres, geometry of probe,
core diameter, numerical aperture and fibre tip design. Optical fibre sensors have been utilised for
functional spectroscopy and imaging down to the single-molecule level allowing insight into the
local micro-environment of molecules, cells and tissue with a wide range of modalities, including
white-light spectroscopy [43], fluorescence [24], Raman [39,44–46] and optical coherence tomography
(OCT) [47], as well as combined modalities [48–50].

2.2. Diagnostic Challenges of Pulmonary Diseases

Globally, more than one billion people suffer from either acute or chronic respiratory conditions.
Major contributory factors to the prevalence and high mortality of many respiratory diseases are
non-specific initial symptoms, such as a cough, fever, shortness of breath, and chest pain, in
combination with a lack of efficacious diagnosis methods. Medical imaging techniques such as X-ray,
CT (computed tomography), PET (positron-emission tomography), and MRI (magnetic resonance
imaging) have long existed as important tools to ‘see’ respiratory diseases, diagnose them and follow
their development in patients, (Figure 1). From 1900 onwards, only five years after their discovery by
Wilhelm Röntgen [51], X-rays became invaluable for imaging cancer [52] and detecting tuberculosis [53]
in the lung, especially in combination with contrast agents [54]. 3D imaging by CT was developed
in the 1970s [55]. However, X-ray, CT and MRI scans provide only structural and not functional
information which can limit diagnostic utility. The PET tomograph was developed in 1975 and is now
frequently combined with a CT or MRI to provide both anatomic and metabolic imaging [56]. PET/CT
has assumed great importance within oncology due to its ability to provide metabolic information
related to tumour cells [57]. However, these common diagnosis tools are costly and do not provide
molecular imaging resolution. Furthermore, they are often not suitable for patients in critical care, or
for recurring use, and expose the patients to ionising radiation [58].

Although the exact clinical pathway to diagnosis is dependent on each case, accurate diagnosis of
lung diseases is typically performed through invasive biopsies and lavages, where tissue and fluid
samples from the lungs are taken and analysed in a histology lab (Figure 2a). Histological examination
can take several days which can cause delays in the stratification of patients with suspected lung
disease. In many cases, this results in poorer patient outcomes [59]. For patients with suspected
infection, doctors frequently prescribe a ‘cocktail’ of antibiotics since they are unable to specify the
disease-causing pathogen quickly and are unwilling to suspend treatment. Overuse of antibiotics,
in the medical field and elsewhere, is a continuing and significant contributor to the global threat of
antimicrobial resistance (AMR) [60–62]. The availability of fast and accurate diagnosis methods is a
key step toward prudent antibiotic use and more efficacious treatment for patients.
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Figure 2. How the current clinical pathway of respiratory diagnosis could be altered with optical
endomicroscopy (OEM) . (a) Typically, respiratory symptoms in the intensive care units (ICUs) will be
investigated via an X-ray. Investigations may progress further to a histological examination of excised
tissue. (b) The fibred OEM system could provide diagnostic help in situ. The fibre device is comprised
of a coherent fibre bundle (square array) to allow for imaging and two capillary channels for delivery
and microlavage of fluid. (c) Fluorescence from tissue visualised within the alveolar space in real-time.
Exogenous fluorophores can be added to label pathology and improve disease understanding. Image
modified with permission from Parker et al. [63].

OEM can be enabled with fibre bundles to provide a low-cost and minimally invasive solution
for rapid and frequent measurements with high resolution at both micro- and macroscopic levels in
vivo. The fibre bundles are small and flexible enough to perform microscopy of various organs of
the body, to provide in situ imaging within a clinical setting (Figure 2b). Changes in the absorption,
transmission and scattering of light when interacting with matter allow for differentiation between
normal and abnormal tissue. In particular, fluorescence-based OEM systems have stimulated interest
because fluorescence can provide information not only on the tissue architecture and composition
but also on the local environment of the fluorophores (Figure 2c). This has been explored through the
autofluorescence of molecules native to tissue such as co-enzymes (NADH and FAD), structural
molecules (collagen and elastin), lipids and porphyrins [64]. A further approach is the use of
synthesized fluorophores to interrogate molecules and their dynamics or to be used as a contrast
agent between tissue and microorganisms [65,66]. The current standard for in vivo clinical fluorescent
OEM is a fluorescence confocal imaging system [67–69] which images the lung through an optical
fibre bundle by taking advantage of the strong autofluorescence mainly from elastin when excited
with a laser at 470 nm [70]. The utility of this system can be enhanced through multiplexing with
fluorescent molecular probes which can identify bacterial burdens [63,65,71]. Recently, a multicolour
widefield fluorescence endomicroscopy system was developed which enables guidance using green
tissue autofluorescence and bacterial detection with a red bacterial probe [72,73]. This system forms
the basis of the education tool.

3. Translation from Biomedical Research to Public Engagement

The main goal of the activity developed here is to determine the colour of a sample without
seeing it by using optical fibres connected to an electronic board as a sensor. This mimics detection
of lung diseases: the colour of each sample is characteristic of a lung condition (e.g., red would
confirm the presence of bacteria in the lungs [73]). Importantly, the activity was developed to be
relevant to the curriculum taught in schools locally (herein Scotland) so that (i) researchers could
easily collaborate with physics teachers and (ii) the biomedical story could be readily used by physics
teachers in classrooms. Towards that goal, the tool was co-designed by researchers and teachers to
address the learning needs of 12–14-year-old students and identify the most relevant teaching areas.

We established that some of the curriculum aims were unsuitable for exploration in a practical
session, and used this opportunity to split our work between a set of teaching materials which provide
the necessary context and a tool that provides a focus for free enquiry and student-led research.
The topics that were more suited to direct interaction were used as a framework to translate more
complex aspects of the OEM system into a simplified educational tool that could be constructed and
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used by students. The elements that were deemed essential to this were the use of fibres to access
difficult-to-reach areas, an understanding of how light interacts with objects, and the use of electronic
boards to control the light going through the sensor. During the development, a practical compromise
had to be made by changing the tool’s operating modality from fluorescence to reflective sensing.

Based on the feedback received from partner teachers, materials available in schools sometimes
limit student learning of physics to abstract ideas. However, it has been shown that placing physics
within a meaningful context is crucial to the understanding of underlying scientific concepts. This is
particularly important for understanding across genders equally [74]. Thus, we aimed to produce an
educational tool that improved physics learning by showing links at each stage to biomedical science
and public health. Although the tool was developed with the Scottish curriculum in mind, we strongly
believe that this notion of meaningful contextualisation will be useful to a wider community.

Key concepts from the research were identified and curated into teaching material [75] that
demonstrates these appropriately in conjunction with the tool. The teaching material introduces the
concept of diagnostic uncertainty, tells the story of a generalised but realistic clinical pathway and
shows how current research aims to disrupt this pathway to improve clinical outcomes. Thus, the
students can engage with the tool through the use of a case study that reflects a common hospital
situation. The goal is that having taken part in the activities students would: (i) understand the
implications of diagnostic uncertainty; (ii) learn about the basic principles behind the experimental
techniques used in an OEM system; (iii) understand how the educational tool is analogous to an
OEM system; (iv) carry out work as a team, construct the tool and use it in a structured way;
(v) develop skills in taking measurements, making graphs, and evaluating the final medical results
including understanding the importance of calibration in experiments; and (vi) appreciate the errors
that can occur in any experiment, due to misalignments in construction, component variability and
measurement inaccuracies.

The production of the teaching material was guided by a number of interactions, partly drawing
on the researchers’ collective experience of public engagement and the observed points of tension in
other contexts. Principally, however, the level and relevance of the content was iteratively developed
through close collaboration with teachers. This collaboration took the form of initial knowledge
exchange events allowing researchers and teachers to create a dialogue about the key concepts and
their relevance and usefulness to a school context followed by extensive opportunities for feedback on
all aspects of the materials. By placing the novel research in the context of the teachers’ experiences, a
common ground was established that allowed for the production of tailored and pedagogically relevant
materials. The material is intended to be delivered over three separate science lessons, although it is
easily adaptable to suit the needs of the teacher. As an example, the tool was also tested in our partner
schools with groups of four students during one teaching lesson (50 min).

The following sections describe the tool for use in classrooms to fulfil the learning intentions
described in Table 1 and for use as a shorter activity, e.g., during outreach events where time is limited.

4. Materials and Methods

The OEM system and the translational pathway were simulated in a classroom activity
through: (i) assembly of the tool, (ii) production of calibration curves, (iii) taking measurements,
and (iv) making a diagnosis.

The OEM system, described in detail elsewhere [73], has been translated from the lab bench to the
bedside in clinic and has been deployed in first in human studies [65]. As mentioned in the previous
section, the educational tool was developed to resemble the OEM system as closely as possible while
being reproducible, inexpensive, and robust (Figure 3).
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Table 1. Learning intentions and core tasks. Identification of curriculum areas from the experiences
and outcome document for sciences which were most clearly linked to the research and the core tasks
that address these. Key: OEM—optical endomicroscopy

Learning Intentions Link from Curriculum to Research Core Task

Understanding of
organ systems

The impetus for the OEM system modelled is to tackle the
lung and its diseases

Engagement with appropriately
targeted teaching materials, aimed
at student-age readers and
providing guidance for teacher-led
or peer investigation of these
curriculum topics

Researching new
developments

The OEM system modelled by the educational tool is an
ongoing piece of work with regular production of
peer-reviewed publications [30,72,73]

Light The construction and understanding of the
educational tool requires knowledge of
optical fibres to get light to and from
inaccessible spaces, colour theory to
interpret what occurs at the distal end, and
the use of a number of circuit components
to produce a working measurement system

Use of the educational tool itself in
classroom environment. The focus
on calibration and the reduction of
errors facilitates the passive
teaching of basic scientific literacy

Optical fibres

Colour mixing

Building a circuit

Figure 3. Schematics of optical instrumentation: (a) Schematic of the OEM system. A blue LED excites
the endogenous fluorophores, especially the structural molecules of connective tissue, collagen and
elastin, which emit fluorescence in the green spectral range. This autofluorescence allows clinicians to
navigate through the bronchial tree and identify normal and abnormal tissue. Red and near-infrared
(NIR) LEDs are used for exciting exogenous fluorophore markers of disease. (b) Schematic of
the educational tool that can be built around an optoelectronics circuit board. Two optical fibres
combine to form illumination and collection channels of a ‘sensing head’. The collection channel
is directed to a photodiode/amplifier combination and voltmeter. Three LEDs are used to take
measurements of reflected light from coloured patches on a calibration chart before the tool can be
used on unknown samples.

As depicted in Figure 3b, the tool is based on: (i) a light source, (ii) two optical fibres which
combines to constitute a probe (one is used for excitation of a sample and one for collection of reflected
light from the sample), (iii) a sample (calibration chart or lung), and (iv) a measuring unit with a
photodiode, amplifier and voltmeter. The optoelectronics kit was comprised of an LED investigations
board (26-001, JJM Electronics, Urquhart, Moray, UK) and a light sensor board (26-001, JJM Electronics,
Urquhart, Moray, UK) which are commercially available (total cost: $55). The tool made use of the
kit’s three (red, green, and blue) LEDs and the photodiode/amplifier combination to allow the user to
interrogate the sample and make measurements. The kit was powered by a 9 V battery pack.
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Figure 4. How the assembled tool is used. (a) The assembled optoelectronics kit. (b) Calibrating
the tool by taking measurements of coloured patches using the optical fibres fitted into a ‘sensing
head’. (c) Measuring the ‘lung’ samples that are coloured patches placed at the bottom of opaque
tubes difficult to view directly by eye. (d) Example calibration curves (lines) and ‘lung’ diagnosis
measurements (circles). Note that this calibration chart displays the diagnosis states of the ‘lung’
sample, which is not present on the calibration chart provided to users. Schematic diagrams of the 3D
printed parts, the circuit boards, and complete setup are given in SI Figures 1, 2, and 3 of the Design,
Troubleshooting, and Variations document, in addition to a full instructional video of the tool’s build
and operation which can be found in [75].

We note that the functions of the optoelectronics kit are straightforward and could be readily
replicated with simple circuitry. A voltmeter (PG107 digital 600 V AC/DC multimeter, Precision Gold,
China) was used to indicate the output of the photodiode/amplifier combination.

The probe consisted of two optical fibres and bespoke 3D printed parts that could be clipped onto
the optoelectronics kit to transform the kit into a portable OEM system. The 3D printed parts were:
(i) a probe tip, which holds the illumination and collection fibres at the requisite 45◦ angle; (ii) covers,
which block out errant light and optimally position the illumination and collection fibres with respect
to the LEDs and photodiode/amplifier combination; and (iii) clips, which hold the two boards of the
optoelectronics kits together for ease of use. Printing was done using a Bolt Pro printer (Leapfrog,
Alphen aan den Rijn, The Netherlands) with a PLA/PHA (polylactic acid/polyhydroxyalkanoate
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filament (1.75 mm diameter, colorFabb, Belfeld, The Netherlands). Optical fibres have to fit the probe
and cover pieces, but must not be so loose that they slip out of the pieces. Accordingly, the three
main detector parts—probe piece and the LED and photodiode covers—were designed with fibre
channel diameters slightly smaller than the 3 mm (± 0.05 mm) fibre width. After printing, each piece
was hand-drilled using a 3.1 mm diameter drill bit, to achieve the appropriate fit. We have provided
CAD design files [75] required to produce the 3D printed parts which facilitate alignment of the fibres
with both the LEDs and the sample. In addition to this, a complete technical discussion of the tool,
including an instructional video and troubleshooting guide, are provided in the SI.

For the two optical fibres, 3 mm bare polymer fibres OMPF3000, OMC, Redruth, UK) were
purchased in 5 m reels, and cut to 50 cm lengths. Each fibre end was cut perpendicular to the fibre
direction, and the ends polished to a fine finish using a two grade perspex polishing kit. The fibres
were then sheathed in 4 mm black plastic sleeves (PVC-4-0-CL, Pro-Power, China), see Figure 4b.

The samples consisted of either a calibration chart or a phantom lung. The calibration chart was
printed on an A4 sheet of paper (see the following section and SI for more details) while the lung was
represented by a long tube inside of which was a colour patch which could not be seen directly by
eye, see Figure 4c. The tubes were constructed from standard 32 mm diameter black ABS (acrylonitrile
butadiene styrene) tubing (available from hardware stores), each 3 m length cut into 15 cm lengths.
32 mm discs were punched from 3 mm ABS sheeting, and plastic-welded to the base of each tube, after
the appropriate ‘lung’ sample colour disc, printed on 160 gsm printer paper, was fixed to the inside
surface. The tubes are too deep for the coloured patches to be seen directly by the eye. To prevent
spurious reflections inside the ABS tube from disrupting measurements, rectangles of matte black art
paper were cut, curved and glued to the inside of each tube.

5. Demonstrating the Use of the OEM Educational Tool

5.1. Using the Education Tool in a Classroom Setting

With this educational tool, two main concepts are introduced: (i) optical fibres can be used as
passive sensors for collection and transportation of light/information; (ii) changes in environment,
here colour, can be interrogated with light and detected as a varying voltage reading. Additionally,
the students learn the preparation of calibration curves with the option of extending this into a teaching
module about uncertainties and misdiagnosis.

For calibration of the tool, light from each of the LEDs is coupled into one of two optical fibres
and guided to the 3D printed ‘sensing head’ which is brought in direct contact with coloured patches
on a calibration chart (Figure 4b). The reflected light is coupled into the second optical fibre which is
mounted at a 45◦ angle to maximise collection efficiency whilst minimising coupling with errant LED
light. The collected light is guided to a photodiode/amplifier combination connected to a voltmeter
allowing a voltage to be recorded. The calibration process uses a set of six known coloured patches,
from each of which a set of three readings are produced and graphically plotted. An example of the
readings from six coloured patches (noted as 1 to 6 in the x-axis) is provided in Figure 4d for the
red, green and blue light. To account for the possible range of voltage readings expected as a result
of variations in components, for example battery power or optical fibre transmission characteristics,
the calibration graph features two y-axes spanning different ranges (0 mV to 600 mV and 0 mV to
1200 mV). Measured calibration values are sufficiently different for each sample to accommodate
broad errors in operation of the tool and in variations in supplied power, while still producing an
acceptable calibration graph. Calibration graphs can be found in the Supplementary Materials [75].

The actual measurements are made from three ‘lung’ samples; long tubes containing coloured
patches that cannot been seen directly by eye. Each ‘lung’ sample colour is chosen to lie between
two of the calibration colours, and can be plotted against the calibration graph, allowing students to
realise their own ‘diagnosis’ of the ‘lung’ (Figure 4). ‘Lung’ A produces a reading between calibration
samples three and four and leads to a diagnosis of cancer; ‘lung’ B produces a reading between
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calibration samples five and six and leads to a diagnosis of pneumonia; and ‘lung’ C produces a
reading between calibration samples one and two and represents a healthy lung. A video explaining
the whole process, from assembly to measurement in the ‘lung’ samples as well as complete setup and
operation instructions are provided in [75].

5.2. Using the Educational Tool in Shorter Engagement Activities

The same hardware that was developed for use in classrooms was also used as the basis of a
2-min challenge for use at science festivals with a wider audience. In that context, several steps are
removed—notably the calibration of the tool and all of the classroom-focused teaching materials.
Instead, a calibration chart was pre-filled prior to the event (similar to the one in Figure 4d). Each line
of the chart gives access to a unique colour combination—corresponding to a voltage reading using
red, green and blue light characteristic of an infection caused by a specific pathogen. The exercise
consisted of diagnosing a single ‘lung’ by recording voltage values using each of the three LEDs,
and then comparing the observed values to the calibration table pre-recorded data. Identification of the
causative pathogen would then help participants identify the most appropriate treatment to cure the
patient. During the activity, pills of different colours were made available and only pills corresponding
to the colour of the ‘lung’ sample would be beneficial to the patient. At the end of the 2-min challenge,
participants were shown the colour patch hidden inside the ‘lung’ sample for comparison with their
recommended diagnosis. By simply taking the three measurements and looking up what they related
to, participants could get a feel for the research without the deeper understanding that takes multiple
lessons to achieve.

6. Conclusions

A relatable context is frequently key to producing truly engaging activities for schools, festivals
and museums. We have shown an affordable and robust tool that can be used in a school setting as
well as being easily simplified to a configuration suitable for demonstration at a science festival or
other public engagement events. Our tool can be used to demonstrate interdisciplinary research along
with providing an engaging context for the study of light and fibre optic systems. We propose that
teachers represent an often-overlooked resource for researchers to improve the quality and relatability
of their public engagement activities, and that, by engaging directly with such professionals, we have
seen improved engagement of students with state-of-the-art research in the classroom. The key to such
collaborative work is that teachers and researchers should work together from the outset, rather than
only allowing post-hoc teacher approval of activities produced by researchers. This novel teaching
activity, which supplements secondary science education, introduces clinical challenges and pathways
through the use of a case study and has been successfully deployed in 10% of Scottish secondary
schools. The process, from development to testing of the sensors in schools, was evaluated by an
independent evaluator. Data gathered were from a rich range of sources at various points throughout
the project, including pre- and post-project survey, informal discussion, observation field-notes, etc.
In total, sensors were produced for 30 teachers from Scottish secondary schools and 60 students
participated in a pilot study. In addition, 100% of teachers and students reported the project as
enjoyable, interesting and informative. Furthermore, 100% of teachers who received training to use
the tools plan to use them again and 93% of students said the tools were interactive and absorbing.
In addition, 70% of students who took part in the study thought that engineering/research was
not enjoyable or interesting before the session. After the session with the tool, 100% thought that
engineering could be enjoyable or interesting. We intend to carry out a follow-up study to further
quantify the longer-term impact of this tool in schools.

Supplementary Materials: The following are available at http://www.mdpi.com/1424-8220/20/2/402/s1.

Author Contributions: Conceptualization, H.S.-M. and M.J.; methodology and validation, K.E., H.E.P., D.K.M.,
V.B., G.C., A.D., A.G., A.K., D.R.N., G.S. (Giulia Spennati), G.S. (Gregor Steele), P.R., M.R., H.S.-M. and M.J.;

http://www.mdpi.com/1424-8220/20/2/402/s1


Sensors 2020, 20, 402 11 of 14

writing—original draft preparation, K.E. and H.E.P.; writing—review and editing, D.K.M., V.B., G.C., A.D., A.G.,
A.K., D.R.N., G.S. (Giulia Spennati), G.S. (Gregor Steele), P.R., M.R., H.S.-M. and M.J.; supervision, H.S.-M. and
M.J.; project administration, H.S.-M. and M.J.; funding acquisition, H.S.-M. and M.J. All authors have read and
agreed to the published version of the manuscript.

Funding: The Royal Academy of Engineering Ingenious Grant (ING1617/11/114).

Acknowledgments: We would like to thank the Royal Academy of Engineering Ingenious Grant
(ING1617/11/114) for funding this work. We would like to thank our partner teachers and Scottish Schools
Education Research Centre (SSERC) for their invaluable support throughout the project and access to facilities,
and the teachers who kindly came to our events and tested the tools within their schools. We also thank the
Proteus team for providing materials and advice throughout the project. We would like to thank Manlio Tassieri
for his helpful advice on the paper. Furthermore, we thank Ahsan Akram for providing the X-Ray and histology
image (Figure 2a) and James Stone for providing the fibre image (Figure 2b). KE, HEP, DKM, AK, DRN, and
HSM would like to thank the Engineering and Physical Sciences Research Council (EPSRC) Interdisciplinary
Research Collaboration (EP/K03197X/1). MJ would like to thank the Engineering and Physical Sciences Research
Council (EPSRC) and the Royal Academy of Engineering for her personal Research Fellowships (EP/R006482/1
and RF/201718/1741).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burney, P.G.; Patel, J.; Newson, R.; Minelli, C.; Naghavi, M. Global and regional trends in COPD mortality,
1990–2010. Eur. Respir. J. 2015, 45, 1239–1247. [CrossRef] [PubMed]

2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J.
Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

3. World Health Organization. Global Tuberculosis Report 2018; WHO: Geneva, Switzerland, 2018.
4. Owen, R.; Stilgoe, J.; Macnaghten, P.; Gorman, M.; Fisher, E.; Guston, D. A Framework for Responsible

Innovation. In Responsible Innovation: Managing the Responsible Emergence of Science and Innovation in Society;
John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [CrossRef]

5. Grand, A.; Davies, G.; Holliman, R.; Adams, A. Mapping Public Engagement with Research in a UK
University. PLOS ONE 2015, 10, 1–19. [CrossRef] [PubMed]

6. Marris, C.; Rose, N. Open Engagement: Exploring Public Participation in the Biosciences. PLOS Biol. 2010,
8, 1–2. [CrossRef] [PubMed]

7. Mohr, A.; Raman, S. Representing the Public in Public Engagement: The Case of the 2008 UK Stem Cell
Dialogue. PLOS Biol. 2012, 10, 1–4. [CrossRef] [PubMed]

8. Tytler, R.; Osborne, J.; Williams, G.; Tytler, K.; Cripps Clark, J. Opening Up Pathways: Engagement in STEM
Across the Primary-Secondary School Transition 2008; DEEWR: Canberra, Australia, 2008.

9. Jimenez, M.; Bridle, H.L. Angry pathogens, how to get rid of them: introducing microfluidics for waterborne
pathogen separation to children. Lab Chip 2015, 15, 947–957. [CrossRef]

10. Wicks, L.C.; Cairns, G.S.; Melnyk, J.; Bryce, S.; Duncan, R.R.; Dalgarno, P.A. EnLightenment: High resolution
smartphone microscopy as an educational and public engagement platform. Wellcome Open Res. 2018, 2, 107.
[CrossRef]

11. Esfahani, M.M.N.; Tarn, M.D.; Choudhury, T.A.; Hewitt, L.C.; Mayo, A.J.; Rubin, T.A.; Waller, M.R.;
Christensen, M.G.; Dawson, A.; Pamme, N. Lab-on-a-chip workshop activities for secondary school students.
Biomicrofluidics 2016, 10, 011301. [CrossRef]

12. Rackus, D.G.; Riedel-Kruse, I.H.; Pamme, N. “Learning on a chip:” Microfluidics for formal and informal
science education. Biomicrofluidics 2019, 13, 041501. [CrossRef]

13. Kim, H.; Gerber, L.C.; Chiu, D.; Lee, S.A.; Cira, N.J.; Xia, S.Y.; Riedel-Kruse, I.H. LudusScope: Accessible
Interactive Smartphone Microscopy for Life-Science Education. PLoS ONE 2016, 11, 1–16. [CrossRef]

14. Cira, N.J.; Chung, A.M.; Denisin, A.K.; Rensi, S.; Sanchez, G.N.; Quake, S.R.; Riedel-Kruse, I.H. A Biotic
Game Design Project for Integrated Life Science and Engineering Education. PLoS Biol. 2015, 13, 1–8.
[CrossRef] [PubMed]

15. Bridle, H.; Morton, J.; Cameron, P.; Desmulliez, M.P.Y.; Kersaudy-Kerhoas, M. Design of problem-based
learning activities in the field of microfluidics for 12- to 13-year-old participants—Small Plumbing!:
Empowering the next generation of microfluidic engineers. Microfluid. Nanofluid. 2016, 20, 103. [CrossRef]

http://dx.doi.org/10.1183/09031936.00142414
http://www.ncbi.nlm.nih.gov/pubmed/25837037
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1002/9781118551424.ch2
http://dx.doi.org/10.1371/journal.pone.0121874
http://www.ncbi.nlm.nih.gov/pubmed/25837803
http://dx.doi.org/10.1371/journal.pbio.1000549
http://www.ncbi.nlm.nih.gov/pubmed/21151343
http://dx.doi.org/10.1371/journal.pbio.1001418
http://www.ncbi.nlm.nih.gov/pubmed/23152719
http://dx.doi.org/10.1039/C4LC00944D
http://dx.doi.org/10.12688/wellcomeopenres.12841.2
http://dx.doi.org/10.1063/1.4940884
http://dx.doi.org/10.1063/1.5096030
http://dx.doi.org/10.1371/journal.pone.0168053
http://dx.doi.org/10.1371/journal.pbio.1002110
http://www.ncbi.nlm.nih.gov/pubmed/25807212
http://dx.doi.org/10.1007/s10404-016-1770-x


Sensors 2020, 20, 402 12 of 14

16. Hemling, M.; Crooks, J.A.; Oliver, P.M.; Brenner, K.; Gilbertson, J.; Lisensky, G.C.; Weibel, D.B. Microfluidics
for High School Chemistry Students. J. Chem. Educ. 2014, 91, 112–115. [CrossRef] [PubMed]

17. Wong, N.H.L.; Tong, A.S.K.; Posner, M.T. Modular and extensible lesson on optical fibre communication for
youths. Phys. Educ. 2019, 54, 055004. [CrossRef]

18. Colladon, J.D. The Colladon Fountain. Sci. Am. 1884, 51, 359–360.
19. Kao, K.; Hockham, G. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng.

1966, 113, 1151–1158. [CrossRef]
20. NobelPrize.org. The Nobel Prize in Physics 2009. Available online: https://www.nobelprize.org/prizes/

physics/2009/summary/ (accessed on 6 January 2020).
21. Lamm, H. Biegsame optische Geräte. Zeitschrift für Instrumentenkunde 1930, 50, 579–581.
22. Hopkins, H.H.; Kapany, N.S. A Flexible Fibrescope, using Static Scanning. Nature 1954, 173, 39–41. [CrossRef]
23. Wallace, M.B.; Fockens, P. Probe-Based Confocal Laser Endomicroscopy. Gastroenterology 2009,

136, 1509–1513. [CrossRef]
24. Flusberg, B.A.; Cocker, E.D.; Piyawattanametha, W.; Jung, J.C.; Cheung, E.L.M.; Schnitzer, M.J. Fiber-optic

fluorescence imaging. Nat. Methods 2005, 2, 941–950. [CrossRef]
25. Pan, Y.; Volkmer, J.P.; Mach, K.E.; Liu, J.J.; Rouse, R.V.; Sahoo, D.; Chang, T.C.; Van De Rijn, M.; Skinner, E.;

Gambhir, S.S.; et al. Endoscopic molecular imaging of human bladder cancer using CD47 antibody. Mol.
Imaging Biol. 2013, 15, 2–1590. [CrossRef] [PubMed]

26. Lopez, A.; Zlatev, D.V.; Mach, K.E.; Bui, D.; Liu, J.J.; Rouse, R.V.; Harris, T.; Leppert, J.T.;
Liao, J.C. Intraoperative Optical Biopsy during Robotic Assisted Radical Prostatectomy Using Confocal
Endomicroscopy. J. Urol. 2016, 195, 1110–1117. [CrossRef] [PubMed]

27. Perperidis, A.; Parker, H.E.; Karam-Eldaly, A.; Altmann, Y.; Dhaliwal, K.; Thomson, R.R.; Tanner, M.G.;
McLaughlin, S. Characterization and modelling of inter-core coupling in coherent fiber bundles. Opt. Express
2017, 25, 11932. [CrossRef] [PubMed]

28. Eldaly, A.K.; Altmann, Y.; Perperidis, A.; Krstajić, N.; Choudhary, T.R.; Dhaliwal, K.; McLaughlin, S.
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