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Joint distributions of statistics over permutations avoiding two patterns of
length 3

Tian Han∗ and Sergey Kitaev∗

Abstract.

Finding distributions of permutation statistics over pattern-avoiding classes of permutations
attracted much attention in the literature. In particular, Bukata et al. [3] found distributions of
ascents and descents on permutations avoiding any two patterns of length 3. In this paper, we
generalize these results in two different ways: we find explicit formulas for the joint distribution
of six statistics (asc, des, lrmax, lrmin, rlmax, rlmin), and also explicit formulas for the joint
distribution of four statistics (asc, des, MNA, MND) on these permutations in all cases. The
latter result also extends the recent studies by Kitaev and Zhang [8] of the statistics MNA
and MND (related to non-overlapping occurrences of ascents and descents) on stack-sortable
permutations. All multivariate generating functions in our paper are rational, and we provide
combinatorial proofs of five equidistribution results that can be derived from the generating
functions.
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1 Introduction

A permutation of length n is a rearrangement of the set [n] := {1, 2, . . . , n}. Denote by Sn

the set of permutations of [n]. For π ∈ Sn, let πr = πnπn−1 · · · π1 and πc = (n + 1 − π1)(n +
1 − π2) · · · (n + 1 − πn) denote the reverse and complement of π, respectively. Then πrc =
(n + 1 − πn)(n + 1 − πn−1) · · · (n + 1 − π1). A permutation π1π2 · · · πn ∈ Sn avoids a pattern
p = p1p2 · · · pk ∈ Sk if there is no subsequence πi1πi2 · · · πik such that πij < πim if and only
if pj < pm. For example, the permutation 32154 avoids the pattern 231. Let Sn(τ, ρ) denote
the set of permutations in Sn that avoid patterns τ and ρ. The area of permutation patterns
attracted much attention in the literature (see [6] and reference therein).

Of interest to us are the following classical permutation statistics. For 1 ≤ i ≤ n− 1, i is an
ascent (resp., descent) in π ∈ Sn if πi < πi+1 (resp., πi > πi+1) and asc(π) (resp., des(π)) is the
number of ascents (resp., descents) in π. Also, πi is a right-to-left maximum (resp., right-to-left
minimum) in π if πi is greater (resp., smaller) than any element to its right. Note that πn is
always a right-to-left maximum and a right-to-left minimum. Denote by rlmax(π) and rlmin(π)
the number of right-to-left maxima and right-to-left minima in π, respectively. We define left-
to-right maximum, left-to-right minimum, lrmax(π) and lrmin(π) in a similar way. For example,
if π = 34152 then lrmax(π) = 3 and lrmin(π) = rlmin(π) = rlmax(π) = asc(π) = des(π) = 2.
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We are also interested in the statistics maximum number of non-overlapping ascents (de-
noted MNA) and maximum number of non-overlapping descents (denoted MND). For example,
des(13254) = MND(13254) = 2 while 3 = des(32154) 6= MND(32154) = 2. These statistics are
a particular case of the study of the maximum number of non-overlapping consecutive patterns
in [7] and recently, Kitaev and Zhang [8] studied MNA and MND on permutations avoiding a
single pattern of length 3.

Also, k-tuples of (permutation) statistics (s1, s2, . . . , sk) and (s′1, s
′
2, . . . , s

′
k) are equidistributed

over a set S if
∑

a∈S

t
s1(a)
1 t

s2(a)
2 · · · t

sk(a)
k =

∑

a∈S

t
s′
1
(a)

1 t
s′
2
(a)

2 · · · t
s′
k
(a)

k .

There is a line of research in the literature on finding distributions of permutation statistics
over pattern-avoiding classes of permutations (see, for example, [1–5] and references therein). In
particular, Bukata et al. [3] found distributions of ascents and descents on permutations avoiding
any two patterns of length 3. In this paper, we generalize these results in two different ways.
Namely, we find explicit formulas for the joint distribution of six statistics (asc, des, lrmax,
lrmin, rlmax, rlmin), and also explicit formulas for the joint distribution of four statistics (asc,
des, MNA, MND) on these permutations. The latter result also extends recent studies by Kitaev
and Zhang [8] of the statistics MNA and MND on stack-sortable permutations (which are precisely
231-avoiding permutations). Moreover, we provide combinatorial proofs of five equidistribution
results observed from the multi-variable generating functions derived in this paper.

In what follows, we let g.f. stand for “generating function”. We will derive closed form
expressions for the following g.f.’s:

F(τ,ρ)(x, p, q, u, v, s, t) :=
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π),

G(τ,ρ)(x, p, q, y, z) :=
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)yMNA(π)zMND(π)

for all τ and ρ in S3. All of our g.f.’s are rational functions. Note that

des(π) = asc(πr) = asc(πc) = des(πrc),

lrmax(π) = rlmax(πr) = lrmin(πc) = rlmin(πrc),

MND(π) = MNA(πr) = MNA(πc) = MND(πrc)

and hence

F(τr ,ρr)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τr ,ρr)

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)

=
∑

n≥0

∑

πr∈Sn(τ,ρ)

xnpdes(π
r)qasc(π

r)urlmax(πr)vlrmax(πr)srlmin(πr)tlrmin(πr)

= F(τ,ρ)(x, q, p, v, u, t, s);

F(τc,ρc)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpdes(π)qasc(π)ulrmin(π)vrlmin(π)slrmax(π)trlmax(π)
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= F(τ,ρ)(x, q, p, s, t, u, v);

F(τrc,ρrc)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)urlmin(π)vlrmin(π)srlmax(π)tlrmax(π)

= F(τ,ρ)(x, p, q, t, s, v, u);

G(τr ,ρr)(x, p, q, y, z) = G(τc,ρc)(x, p, q, y, z) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpdes(π)qasc(π)yMND(π)zMNA(π)

= G(τ,ρ)(x, q, p, z, y);

G(τrc,ρrc)(x, p, q, y, z) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)yMNA(π)zMND(π) = G(τ,ρ)(x, p, q, y, z).

The following results appear in [9].

Theorem 1.1. Let An(τ, ρ) be the number of elements in Sn(τ, ρ). Then,

(a) An(123, 132) = An(123, 213) = An(321, 231) = An(321, 312) = 2n−1;

(b) An(231, 312) = An(132, 213) = 2n−1;

(c) An(213, 312) = An(132, 231) = 2n−1;

(d) An(213, 231) = An(132, 312) = 2n−1;

(e) An(132, 321) = An(123, 231) = An(123, 312) = An(213, 321) = 1 +
(

n
2

)

;

(f) An(123, 321) =











0 if n ≥ 5

n if n = 1 or n = 2

4 if n = 3 or n = 4.

In order to determine the distribution of the statistics over Sn(τ, ρ), for every τ, ρ ∈ S3,
based on the properties of the g.f.’s discussed above, out of all possible 15 pairs it is sufficient to
examine the distributions of the statistics over the first pair in each of (a)–(e) in Theorem 1.1
since the case of (123, 321)-avoiding permutations is trivial.

This paper is organized as follows. In Section 2, we derive all our distribution results that
are summarized in Tables 1 and 2, where one can find references to the general results and to
the formulas giving individual distributions of the statistics, respectively. From our enumerative
results we note five equidistributions that are proved combinatorially in Section 3 via introduction
of two bijective maps f and g. Finally, in Section 4 we provide concluding remarks.
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(asc,des, lrmax, lrmin, rlmax, rlmin) (asc,des,MNA,MND)

Sn(123, 132) Theorem 2.4 Theorem 2.1

Sn(132, 321) Theorem 2.10 Theorem 2.7

Sn(231, 312) Theorem 2.16 Theorem 2.13

Sn(213, 231) Theorem 2.22 Theorem 2.19

Sn(213, 312) Theorem 2.28 Theorem 2.25

Table 1: G.f.’s for joint distributions of the statistics over Sn(τ, ρ)

asc des lrmax rlmax lrmin rlmin MNA MND

Sn(123, 132) (4) (5) (11) (12) (13) (14) (6) (7)

Sn(132, 321) (18) (19) (25) (26) (27) (28) (20) (21)

Sn(231, 312) (32) (33) (39) (40) (41) (42) (34) (35)

Sn(213, 231) (46) (47) (54) (55) (56) (57) (48) (49)

Sn(213, 312) (59) (60) (64) (65) (66) (67) (61) (62)

Table 2: G.f.’s for individual distributions of the statistics over Sn(τ, ρ)

2 Distributions over Sn(τ, ρ)

In this section, we find joint distribution of the seven classical statistics across the five types
of arrangements in Section 1. Furthermore, we find joint distribution of two more statistics:
the maximum number of non-overlapping descents (MND) and the maximum number of non-
overlapping ascents (MNA) over the same set of permutations.

Given permutations α ∈ Sa and β ∈ Sb, let α ⊕ β ∈ Sa+b denote the direct sum of α and β
and let α⊖ β ∈ Sa+b denote the skew-sum of α and β, defined as follows [3]:

α⊕ β =

{

α(i), 1 ≤ i ≤ a;

a+ β(i− a), a+ 1 ≤ i ≤ a+ b.

α⊖ β =

{

α(i) + b, 1 ≤ i ≤ a;

β(i− a), a+ 1 ≤ i ≤ a+ b.

For example, for α = 123 ∈ S3 and β = 4132 ∈ S4, α⊕ β = 1237465 and α⊖ β = 5674132.

2.1 Permutations in Sn(123, 132)

We first describe the structure of a (123, 132)-avoiding permutation. Let π = π1 · · · πn ∈
Sn(123, 132). If πk = n, 1 < k ≤ n, then π1 > π2 > · · · > πk−1 in order to avoid 123. On
the other hand, in order to avoid 132, πi > n − k if i < k. Hence, πi = n − i for 1 ≤ i ≤ k − 1,
while πk+1πk+2 · · · πn must be a (123, 132)-avoiding permutation in Sn−k. So π = (α ⊕ 1) ⊖ β,
where α ∈ Sk−1 is a decreasing permutation and β ∈ Sn−k is a (123,132)-avoiding permutation,
and we use the structure of π to prove the following theorems.
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Theorem 2.1. For Sn(123, 132), we have

G(123,132)(x, p, q, y, z) =
A

1− 2q2x2z − pqx2yz − 2pq2x3yz + q4x4z2 − pq3x4yz2
, (1)

where

A = 1 + x+ px2y + qx2z − 2q2x2z − q2x3z − pqx2yz + 2pqx3yz − 2pq2x3yz−

q3x4z2 + q4x4z2 + pq2x4yz2 − pq3x4yz2.

Proof. Let π = π1 · · · πn ∈ Sn(123, 132). If n = 0, it contributes 1 to G(123,132)(x, p, q, y, z). For
n ≥ 1, we consider three cases based on where the element n appears in π.

(a) If π1 = n, we let the g.f. for these permutations be

g(123,132)(x, p, q, y, z) :=
∑

n≥1

∑

π∈Sn(123,132)
π1=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(b) Suppose πk = n, where k = 2i, i ≥ 1. In this case, π = (α ⊕ 1) ⊖ β, where α ∈ S2i−1

is a decreasing permutation with i − 1 non-overlapping descents and 2i − 2 descents, the
corresponding g.f. is

∑

i≥1

x2i−1q2i−2zi−1 =
x

1− x2zq2
,

and 1 ⊖ β is a (123,132)-avoiding permutation in Sn−2i+1. Because the first element of
the permutation 1 ⊖ β is the maximum, the corresponding g.f. is g(123,132)(x, p, q, y, z).
Additionally, πk−1 < πk = n, and πk−1πk contributes to MNA giving an extra factor of yp.
In conclusion, the g.f. for permutations in case (b) is

g(123,132)(x, p, q, y, z)
xyp

1 − x2zq2
.

(c) Suppose πk = n, where k = 2i + 1, i ≥ 1. In this case, π = (α ⊕ 1) ⊖ β, where α ∈
S2i is a decreasing permutation with i non-overlapping descents and 2i − 1 descents, the
corresponding g.f. is

∑

i≥1

x2iziq2i−1 =
x2zq

1− x2zq2
,

and 1 ⊖ β is a (123,132)-avoiding permutation in Sn−2i. Using similar considerations as
those in case (b), the g.f. for permutations in case (c) is

g(123,132)(x, p, q, y, z)
x2zypq

1 − x2zq2
.

Combining cases (a)–(c), we have

G(123,132)(x, p, q, y, z) = 1 + g(123,132)(x, p, q, y, z) + g(123,132)(x, p, q, y, z)
xyp

1 − x2zq2
+
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g(123,132)(x, p, q, y, z)
x2zypq

1 − x2zq2
. (2)

Next, we compute g(123,132)(x, p, q, y, z) similarly to the derivation of G(123,132)(x, p, q, y, z). If
1 ≤ n ≤ 2, the corresponding g.f. is x+ x2zq. Next, we distinguish three cases(n ≥ 3):

(d) If π2 = n − 1 then π1π2 = n(n − 1) contributes to MND that is independent from the
count of MND in π3 · · · πn, which can be any non-empty permutation in Sn−2(123, 132).
Note that π2 > π3 contributes to a descent, so the corresponding g.f. in this case is
x2zq2(G(123,132)(x, p, q, y, z) − 1).

(e) Suppose πm = n − 1, where m = 2i, i ≥ 2. In this case, α = ∅, β = γ ⊖ 1 ⊖ ζ, so
π = 1 ⊖ γ ⊖ 1 ⊖ ζ, where 1 ⊖ γ ∈ S2i−1 is a decreasing permutation with i − 1 non-
overlapping descents and 2i− 2 descents, and the corresponding g.f. is

∑

i≥2

x2i−1zi−1q2i−2 =
x3zq2

1− x2zq2
.

Also, the permutation 1 ⊖ ζ is in Sn−2i+1(123, 132) where ζ ∈ Sn−2i. Because the first
element of 1⊖ζ is the maximum, the corresponding g.f. is g(123,132)(x, p, q, y, z). Moreover,
πm−1 < πm = n − 1, so πm−1πm forms an extra non-overlapping ascent and ascent. To
summarize, the corresponding g.f. for permutations in case (e) is

g(123,132)(x, p, q, y, z)
x3yzpq2

1 − x2zq2
.

(f) Suppose πm = n− 1, where m = 2i+ 1, i ≥ 1. In this situation, π = 1⊖ γ ⊖ 1⊖ ζ, where
1⊖ γ ∈ S2i is a decreasing permutation contributing i non-overlapping descents and 2i− 1
descents. The g.f. for 1⊖ γ ∈ S2i is

∑

i≥1

x2iziq2i−1 =
x2zq

1− x2zq2
.

In conclusion, the g.f. for the permutations in case (f) is

g(123,132)(x, p, q, y, z)
x2zqyp

1 − x2zq2
.

Summarizing (d)–(f) we obtain

g(123,132)(x, p, q, y, z) = x+ x2zq + x2zq2(G(123,132)(x, p, q, y, z) − 1) +

g(123,132)(x, p, q, y, z)
x3yzpq2

1 − x2zq2
+ g(123,132)(x, p, q, y, z)

x2zqyp

1 − x2zq2
. (3)

By simultaneously solving (2) and (3), we obtain (1).
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Corollary 2.2. Setting three out of the four variables y, z, p and q equal to one individually
in (1), we obtain single distributions of asc, des, MNA and MND over Sn(123, 132):

∑

n≥0

∑

π∈Sn(123,132)

xnpasc(π) =
1− x

1− 2x+ x2 − px2
; (4)

∑

n≥0

∑

π∈Sn(123,132)

xnqdes(π) =
1 + x− 2qx+ x2 − 2qx2 + q2x2

1− 2qx− qx2 + q2x2
; (5)

∑

n≥0

∑

π∈Sn(123,132)

xnyMNA(π) =
1− x

1− 2x+ x2 − x2y
; (6)

∑

n≥0

∑

π∈Sn(123,132)

xnzMND(π) =
1 + x+ x2 − 2x2z − x3z

1− 3x2z − 2x3z
. (7)

Remark 2.3. The distributions in (4) and (6) are the same because in 123-avoiding permutations
asc = MNA.

Theorem 2.4. For Sn(123, 132), we have

F(123,132)(x, p, q, u, v, s, t) =

1 + q2s2vx2 + stuvx(1 + ptux)− qsx(1 + puv2x2st(−1 + t)(−1 + u) + v(1 + px+ stux))

1 + q2s2vx2 − qsx(1 + v + pvx)
.

(8)

Proof. For π = π1 · · · πn ∈ Sn(123, 132), if n = 0, it will give 1 to F(123,132)(x, p, q, u, v, s, t). Let
n ≥ 1, we consider the following cases.

• If π1 = n, the element n is the only left-to-right maximum, a left-to-right minimum and a
right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of permutations
with π1 = n is given by xquvs(F(123,132)(x, p, q, 1, v, s, t) − 1) + xuvst, where the element
n gives a factor of xquvs (multiplied by the g.f. of all non-empty permutations with the
value of lrmax not taken into account) and the term xuvst corresponds to the permutation
of length 1.

• If πn = n, then π = (n− 1)(n− 2) · · · 1n = (α⊕ 1)⊖β, where β is the empty permutation.
The g.f. for the decreasing permutation α is

∑

i≥1

xiqi−1usit =
usxt

1− xsq
.

So, the g.f. for permutations in this case is

xpuvt
∑

i≥1

xiqi−1usit =
u2sx2pvt2

1− xsq
,

where the element n gives a factor of xpuvt.
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• If πk = n, 1 < k ≤ n, we have π1 > π2 > · · · > πk−1 and lrmax(π) = 2. Then π =
(α ⊕ 1) ⊖ β, where any non-empty permutation in Sn−k(123, 132) is possible for β. The
g.f. for α⊕ 1 is

xpquv
∑

i≥1

xiqi−1usi =
u2sx2pqv

1− xsq
,

where the maximum element n gives a factor of xpquv. So the g.f. in this case is

(F(123,132)(x, p, q, 1, v, s, t) − 1)
u2sx2pqv

1− xsq
.

Synthesizing the above three conditions yields

F(123,132)(x, p, q, u, v, s, t) =

1 + xquvs(F(123,132)(x, p, q, 1, v, s, t) − 1) + xtuvs+
u2sx2pvt2

1− xsq
+

(F(123,132)(x, p, q, 1, v, s, t) − 1)
u2sx2pqv

1− xsq
.

(9)

Let u = 1 in (9), we obtain

F(123,132)(x, p, q, 1, v, s, t) =

1 + xtvs+ xqvs(F(123,132)(x, p, q, 1, v, s, t) − 1) +
sx2pvt2

1− xsq
+

(F(123,132)(x, p, q, 1, v, s, t) − 1)
x2pqvs

1− xsq
.

(10)

By simultaneously solving (9) and (10), we obtain the desired result.

Corollary 2.5. Let p = q = 1, then setting three out of the four variables u, v, s and t equal
to one individually in (8), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over
Sn(123, 132):

∑

n≥0

∑

π∈Sn(123,132)

xnulrmax(π) =
1− 2x+ ux− ux2 + u2x2

1− 2x
; (11)

∑

n≥0

∑

π∈Sn(123,132)

xnvrlmax(π) =
1− x

1− x− vx
; (12)

∑

n≥0

∑

π∈Sn(123,132)

xnslrmin(π) =
1− sx

1− 2sx− sx2 + s2x2
; (13)

∑

n≥0

∑

π∈Sn(123,132)

xntrlmin(π) =
1− 2x+ tx− tx2 + t2x2

1− 2x
. (14)

Remark 2.6. The distributions in (11) and (14) are the same because the patterns 123 and 132
are invariant with respect to the (usual group-theoretic) inverse operation which exchanges the
sets of left-to-right maxima and right-to-left minima.
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2.2 Permutations in Sn(132, 321)

We first describe the structure of a (132, 321)-avoiding permutation. Let π = π1 · · · πn ∈
Sn(132, 321). If π1 = n, then π = n12 · · · (n − 1). If πk = n, 1 < k < n, then πk+1 <
πk+2 < · · · < πn in order to avoid 321; on the other hand, in order to avoid 132, πi = n− k + i
if 1 ≤ i ≤ k − 1. If πn = n then π1π2 · · · πn−1 ∈ Sn−1(132, 321). So π = (α ⊕ 1) ⊖ β, where
α ⊕ 1 ∈ Sk and β ∈ Sn−k are two increasing (132, 321)-avoiding permutations. We use the
structure of π to prove the following theorems.

Theorem 2.7. For Sn(132, 321), we have

G(132,321)(x, p, q, y, z) =
A

(1− p2x2y)3
, (15)

where

A = 1 + x+ px2y − 3p2x2y − 2p2x3y − 2p3x4y2 + 3p4x4y2 + p4x5y2 +

p5x6y3 − p6x6y3 + qx2z + 3pqx3yz + p2qx4yz + 2p2qx4y2z + p3qx5y2z.

Proof. Let π = π1 · · · πn ∈ Sn(132, 321). The empty permutation, corresponding to the case of
n = 0 gives the term of 1 in G(132,321)(x, p, q, y, z). If π ∈ S1, the corresponding g.f. is x. For
n ≥ 2, the permutations are divided into three classes depending on the position of n.

(a) If π1 = n then π = n12 · · · (n− 1). When n is even, the number of non-overlapping ascents
is (n− 2)/2, and the corresponding g.f. is

∑

i≥1

x2iy
2i−2

2 zqp2i−2 =
x2qz

1− x2yp2
.

When n is odd, the number of non-overlapping ascents is (n− 1)/2, and the corresponding
g.f. is

∑

i≥1

x2i+1yizp2i−1q =
x3ypqz

1− x2yp2
.

(b) Let πk = n, where 1 < k < n. In this case, π = (α⊕1)⊖β, where α⊕1 ∈ Sk and β ∈ Sn−k

are two increasing (132, 321)-avoiding permutations. Aditionately, πk = n > πk+1, and
πkπk+1 contributes to MND giving an extra factor of z. Using similar considerations as
those in case (a), the g.f. for permutations in case (b) is

z(x2ypq + x3yp2q)(x+ x2yp)

(1− x2yp2)2
.

(c) If πn = n, we let the g.f. for these permutations be

g(132,321)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(132,321)
πn=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).
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Combining cases (a)–(c), we have

G(132,321)(x, p, q, y, z) = 1 + x+
x2zq + x3yzpq

1− x2yp2
+ (16)

z(x2ypq + x3yp2q)(x+ x2yp)

(1− x2yp2)2
+ g(132,321)(x, p, q, y, z).

Next, we evaluate g(132,321)(x, p, q, y, z):

(d) If π ∈ S2, then π1π2 = 12 and the corresponding g.f. is x2yp.

(e) If π1 = n − 1 then π = (n − 1)12 · · · n. Using similar considerations as those in case (a),
the g.f. for permutations in case (e) is

x3yzpq + x4yzp2q

1− x2yp2
.

(f) If πm = n−1, where 1 < m < n−1, then π = ((γ⊕1)⊖ζ)⊕1, where α = (γ⊕1)⊖ζ ∈ Sn−1

and β is the empty permutation. γ ⊕ 1 ∈ Sm and ζ ⊕ 1 ∈ Sn−m are two increasing (132,
321)-avoiding permutations. Using similar considerations as those in case (a), the g.f. for
permutations in case (f) is

(x2ypq + x3ypq)2zq

(1− x2yp2)2
.

(g) If πn−1 = n − 1 then πn−1πn = (n − 1)n contributes to MNA giving an extra factor of
x2yp. Note that πn−2 < πn−1 = (n−1) and any non-empty permutation in Sn−2(132, 321)
is possible for π1 · · · πn−2. The g.f. in case (g) is x2yp2(G(132,321)(x, p, q, y, z) − 1).

Taking into account cases (d)–(g), we have

g(132,321)(x, p, q, y, z) = x2yp+
x3yzpq + x4yzp2q

1− x2yp2
+ (17)

(x2ypq + x3ypq)2zq

(1− x2yp2)2
+ x2yp2(G(132,321)(x, p, q, y, z) − 1).

Solving equations (16) and (17) simultaneously, we obtain the desired result (15).

Corollary 2.8. Setting three out of the four variables y, z, p and q equal to one respectively
in (15), we obtain single distributions of asc, des, MNA and MND over Sn(132, 321):

∑

n≥0

∑

π∈Sn(132,321)

xnpasc(π) =
1 + x− 3px+ x2 − 2px2 + 3p2x2 + p2x3 − p3x3

(1− px)3
; (18)

∑

n≥0

∑

π∈Sn(132,321)

xnqdes(π) =
1− 2x+ x2 + qx2

(1− x)3
; (19)

∑

n≥0

∑

π∈Sn(132,321)

xnyMNA(π) =
1 + x+ x2 − 2x2y + x3y + x4y + 3x4y2 + 2x5y2

(1− x2y)3
; (20)

∑

n≥0

∑

π∈Sn(132,321)

xnzMND(π) =
1− 2x+ x2 + x2z

(1− x)3
. (21)
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Remark 2.9. The distributions in (19) and (21) are the same because in 321-avoiding permu-
tations des = MND.

Theorem 2.10. For Sn(132, 321), we have

F(132,321)(x, p, q, u, v, s, t) =
A

(1− ptx)(1− pux)(1− ptux)
(22)

where

A = 1 + stuvx+ qs2tuv2x2 − p3t2u2x3 + p2tux2(1 + t+ u+ stuvx)−

px(u+ st2uvx(1 + qsu(−1 + v)x) + t(1 + u+ su2vx).

Proof. Let π = π1 · · · πn ∈ Sn(132, 321). If n = 0, we get the term of 1 in A(132,321)(x, y, z). If
π ∈ S1, the corresponding g.f. is xuvst. For n ≥ 2, we consider the following cases.

• If π1 = n then π = n12 · · · (n − 1). The element n is the only left-to-right maximum, a
left-to-right minimum and a right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1
and the g.f. of permutations with π1 = n is given by

xquvs
∑

i≥2

xi−1pi−2vsti−1 =
x2quv2s2t

1− xpt
,

where the element n gives a factor of xquvs.

• If πn = n then rlmax(π) = 1. Any non-empty permutation in Sn−1(132, 321) is possible
for π1π2 · · · πn−1 and we do not need to consider right-to-left maxima. So the g.f. in this
case is

xpuvt(F(132,321)(x, p, q, u, 1, s, t) − 1).

• If πk = n, 1 < k < n, then π = (α ⊕ 1) ⊖ β, where α ∈ Sk−1 and β ∈ Sn−k are two
increasing (132, 321)-avoiding permutations. The g.f. for the permutation α ∈ Sk−1 is

∑

i≥1

xipiuis =
xpus

1− xpu

(note that πk−1πk is an ascent). The g.f. for 1⊖ β ∈ Sn−k+1 is

xquv
∑

i≥2

xi−1pi−2vsti−1 =
x2quv2st

1− xpt
,

where the element n gives the factor of xquv. So the g.f. in this case is

x3pqu2v2s2t

(1− xpt)(1− xpu)
.

Taking into account all the cases, we conclude that

F(132,321)(x, p, q, u, v, s, t) = 1 + xtuvs+
x2quv2s2t

1− xpt
+ (23)
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x3pqu2v2s2t

(1− xpt)(1− xpu)
+ xpuvt(F(132,321)(x, p, q, u, 1, s, t) − 1).

Let v = 1 in (23), we get

F(132,321)(x, p, q, u, 1, s, t) = 1 + xtus+
x2qus2t

1− xpt
+ (24)

xpusx2qust

(1− xpt)(1− xpu)
+ xput(F(132,321)(x, p, q, u, 1, s, t) − 1).

By simultaneously solving (23) and (24), we obtain the desired result.

Corollary 2.11. Let p = q = 1, then setting three out of the four variables u, v, s and t equal
to one individually in (22), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over
Sn(132, 321):

∑

n≥0

∑

π∈Sn(132,321)

xnulrmax(π) =
1− x− ux+ 2ux2

(1− x)(1− ux)2
; (25)

∑

n≥0

∑

π∈Sn(132,321)

xnvrlmax(π) =
1− 3x+ vx+ 3x2 − 2vx2 + v2x2 − x3 + 2vx3 − v2x3

(1− x)3
;(26)

∑

n≥0

∑

π∈Sn(132,321)

xnslrmin(π) =
1− 3x+ sx+ 3x2 − 2sx2 + s2x2 − x3 + sx3

(1− x)3
; (27)

∑

n≥0

∑

π∈Sn(132,321)

xntrlmin(π) =
1− x− tx+ 2tx2

(1− x)(1 − tx)2
. (28)

Remark 2.12. The distributions in (25) and (28) are the same because the patterns 132 and
321 are invariant with respect to the inverse operation which exchanges the sets of left-to-right
maxima and right-to-left minima.

2.3 Permutations in Sn(231, 312)

We first describe the structure of a (231, 312)-avoiding permutation. Let π = π1 · · · πn ∈
Sn(231, 312). If π1 = n then π = n(n−1) · · · 21. If πk = n, 1 < k < n, then πk+1 > πk+2 > · · · >
πn in order to avoid 312. On the other hand, in order to avoid 231, πi = n+k− i if k+1 ≤ i ≤ n,
π1π2 · · · πk−1 must be a permutation in Sk−1(231, 312). If πn = n, π1π2 · · · πn−1 must be a per-
mutation in Sn−1(231, 312). Namely, for π ∈ Sn(231, 312), its structure is π = α⊕ (1⊖β), where
α ∈ Sk−1(231, 312) and 1⊖β ∈ Sn−k+1 is a decreasing (231, 312)-avoiding permutation. We use
the structure of π to prove the following theorems.

Theorem 2.13. For Sn(231, 312), we have

G(231,312)(x, p, q, y, z) = (29)

1 + x+ px2y − p2x2y + qx2z − q2x2z − pqx2yz + pqx3yz − p2qx3yz − pq2x3yz

1− p2x2y − q2x2z − pqx2yz − p2qx3yz − pq2x3yz
.
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Proof. Let π = π1 · · · πn ∈ Sn(231, 312). If n ≤ 1, we have the term of 1+x in G(231,312)(x, p, q, y, z).
For n ≥ 2, the permutations are divided into three classes depending on the position of n.

(a) If π1 = n then π = n(n − 1) · · · 21. When n is even, π has n/2 non-overlapping descents
and n− 1 descents. The corresponding g.f. is

∑

i≥1

x2iziq2i−1 =
x2zq

1− x2q2z
.

When n is odd, π has (n − 1)/2 non-overlapping descents and n − 1 descents. The corre-
sponding g.f. is

∑

i≥1

x2i+1ziq2i =
x3zq2

1− x2zq2
.

(b) If πn = n, we let the g.f. for these permutations be

g(231,312)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(132,321)
πn=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(c) If πk = n, 1 < k < n, then π = α⊕(1⊖β), where α ∈ Sk−1(231, 312) and 1⊖β ∈ Sn−k+1 is a
decreasing (231, 312)-avoiding permutation. For α⊕1, the g.f. is g(231,312)(x, p, q, y, z). For
β ∈ Sn−k+1, similarly to case (a), we see that the corresponding g.f. is (xzq+ x2zq2)/(1−
x2zq2) (note that πkπk+1 contributes to MND).

Combining cases (a)–(c), we have

G(231,312)(x, p, q, y, z) = 1 + x+
x2zq + x3zq2

1− x2zq2
+ (30)

g(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
+ g(231,312)(x, p, q, y, z).

Next we evaluate g(231,312)(x, p, q, y, z):

(d) If n = 2, the g.f. is x2yp.

(e) If π1 = n− 1 then π = (n− 1)(n − 2) · · · 1n, and the corresponding g.f. is

xyp
x2zq + x3zq2

1− x2zq2
,

where the element n gives a factor of xyp.

(f) If πm = n − 1, 1 < m < n, then π = γ ⊕ (1 ⊖ ζ) ⊕ 1, where γ ∈ Sm−1(231, 312) and ζ ∈
Sn−m−1(231, 312). For γ⊕1, the g.f. is g(231,312)(x, p, q, y, z). For ζ⊕1 ∈ Sn−m+1, because
the structure is the same as in case (b), we obtain the g.f. is (xzq + x2zq2)/(1 − x2zq2)
(recall that if ζ is of odd length, πmπm+1 will contribute to MND). To summarize, the g.f.
in case (f) is

xypg(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
,

where the element n gives the factor of xyp.
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(g) If πn−1 = n − 1 then πn−1πn = (n − 1)n contributes to MNA, and it is independent from
the count of MNA in π1 · · · πn−2, which can be any permutation in Sn−2(231, 312). So the
corresponding g.f. in this case is x2yp2(G(231,312)(x, p, q, y, z) − 1).

Combining cases (d)–(g), we have

g(231,312)(x, p, q, y, z) = x2yp+ xyp
x2zq + x3zq2

1− x2zq2
+ (31)

xypg(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
+ x2yp2(G(231,312)(x, p, q, y, z) − 1).

Solving the equations (30) and (31) simultaneously, we obtain (29).

Corollary 2.14. Setting three out of the four variables y, z, p and q equal to one respectively
in (29), we obtain single distributions of asc, des, MNA and MND over Sn(231, 312):

∑

n≥0

∑

π∈Sn(231,312)

xnpasc(π) =
1− px

1− x− px
; (32)

∑

n≥0

∑

π∈Sn(231,312)

xnqdes(π) =
1− qx

1− x− qx
; (33)

∑

n≥0

∑

π∈Sn(231,312)

xnyMNA(π) =
1− x2y

1− x− 2x2y
; (34)

∑

n≥0

∑

π∈Sn(231,312)

xnzMND(π) =
1− x2z

1− x− 2x2z
. (35)

Remark 2.15. The same distributions in (32) and (33), as well as in (34) and (35), follow from
a more general Theorem 3.1.

Theorem 2.16. For Sn(231, 312), we have

F(231,312)(x, p, q, u, v, s, t) =
A

(1− qsx)(1− qx− ptux)(1− qvx)(1− qsvx)
(36)

where

A = 1− ptux+ stuvx+ q4s2v2x4 + q3svx3(−1− v + s(−1 + v(−1 + (−1 + p)tux)))−

qx(1 + v − ptuvx+ s2tuvx(1 + ptu(−1 + v)x) + s(1 + v − ptux− (−1 + p)tuvx+

pt2u2vx2 + tuv2x(1− ptux))) + q2x2(v + s2v(1 + tu(1− p+ v)x)+

s(1 + v2(1− (−1 + p)tux) + v(2− ptux))).

Proof. Let π = π1 · · · πn ∈ Sn(231, 312). The case of n = 0 contributes the term 1 to A(231,312)(x, y, z).
If π ∈ S1, the g.f. is xuvst. For n ≥ 2, we consider the following cases.
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• If π1 = n then π = n(n− 1) · · · 1. The element n is the only left-to-right maximum, a left-
to-right minimum and a right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1
and the g.f. of permutations with π1 = n is given by

xquvs
∑

i≥2

xi−1qi−2vi−1si−1t =
x2quv2s2t

1− xqvs
,

where the element n gives the factor of xquvs.

• If πn = n, then rlmax(π) = 1. Any non-empty permutation in Sn−1(231, 312) is possible
for π1π2 · · · πn−1 and we do not need to consider right-to-left maxima. So the g.f. is
xpuvt(F(231,312)(x, p, q, u, 1, s, t) − 1), where the element n gives the factor of xpuvt.

• If πk = n, 1 < k < n, then π = α⊕ (1⊖ β), where α ∈ Sk−1(231, 312) and 1⊖ β ∈ Sn−k+1

is a decreasing (231, 312)-avoiding permutation. For α⊕1 ∈ Sk−1, because we do not need
to consider right-to-left maxima, the g.f. is xpquv(F(231,312)(x, p, q, u, 1, s, t)−1), where the
element n gives the factor of xpquv. For β, we have

∑

i≥1

xiqi−1vit =
xvt

1− xqv
.

So the g.f. in this case is (F(231,312)(x, p, q, u, 1, s, t) − 1)x
2pquv2t
1−xqv .

Taking into account all cases, we obtain

F(231,312)(x, p, q, u, v, s, t) = 1 + xtuvs+
x2quv2s2t

1− xqvs
+ (37)

(F(231,312)(x, p, q, u, 1, s, t) − 1)
x2pquv2t

1− xqv
+ xpuvt(F(231,312)(x, p, q, u, 1, s, t) − 1).

Let v = 1 in (37), we obtain

F(231,312)(x, p, q, u, 1, s, t) = 1 + xtus+
x2qus2t

1− xqs
+ (38)

(F(231,312)(x, p, q, u, 1, s, t) − 1)
x2pqut

1− xq
+ xput(F(231,312)(x, p, q, u, 1, s, t) − 1).

By simultaneously solving (37) and (38), we obtain the desired result.

Corollary 2.17. Let p = q = 1, then setting three out of the four variables u, v, s and t equal
to one individually in (36), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over
Sn(231, 312):

∑

n≥0

∑

π∈Sn(231,312)

xnulrmax(π) =
1− x

1− x− ux
; (39)

∑

n≥0

∑

π∈Sn(231,312)

xnvrlmax(π) =
1− 2x+ vx2

(1− 2x)(1− vx)
; (40)
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∑

n≥0

∑

π∈Sn(231,312)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1− sx)
; (41)

∑

n≥0

∑

π∈Sn(231,312)

xntrlmin(π) =
1− x

1− x− tx
. (42)

Remark 2.18. The distributions in (39) and (42) (resp., (40) and (41)) are the same because
the set Sn(231, 312) is invariant under the composition of the reverse and complement operations,
and applying the composition exchanges the sets of left-to-right maxima and right-to-left minima
(resp., right-to-left maxima and left-to-right minima).

2.4 Permutations in Sn(213, 231)

We first describe the structure of a (213, 231)-avoiding permutation. Let π = π1 · · · πn ∈
Sn(213, 231). If π1 = n then π = n(n−1) · · · 21. If πk = n, 1 < k < n, then π1 < π2 < · · · < πk−1

in order to avoid 213. On the other hand, in order to avoid 231, πi > πk−1 if k + 1 ≤ i ≤ n.
If πn = n then π = 12 · · · n. So, for π ∈ Sn(213, 231), its structure is π = α ⊕ (1 ⊖ β), where
α ∈ Sk−1 is an increasing (213, 231)-avoiding permutation and 1 ⊖ β ∈ Sn−k+1(213, 231), and
we use the structure of π to prove the following theorems.

Theorem 2.19. For Sn(213, 231), we have

G(213,231)(x, p, q, y, z) = (43)

1 + x+ px2y − p2x2y + qx2z − q2x2z − pqx2yz + pqx3yz − p2qx3yz − pq2x3yz

1− p2x2y − q2x2z − pqx2yz − p2qx3yz − pq2x3yz
.

Proof. Let π = π1 · · · πn ∈ Sn(213, 231) . If n ≤ 1 then G(213,231)(x, p, q, y, z) = 1+x. For n ≥ 2,
the permutations are divided into three classes depending on the position of n.

(a) If π1 = n, we let the g.f. for these permutations be

g(213,231)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(213,231)
π1=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(b) If πn = n then π = 12 · · · n. When n is even, π has n/2 non-overlapping ascents and n− 1
ascents, and the corresponding g.f. is

∑

i≥1

x2iyip2i−1 =
x2yp

1− x2yp2
.

When n is odd, π has (n − 1)/2 non-overlapping ascents and n − 1 ascents, and the
corresponding g.f. is

∑

i≥1

x2i+1yip2i =
x3yp2

1− x2yp2
.
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(c) If πk = n, 1 < k < n, then π = α ⊕ (1 ⊖ β), where α ∈ Sk−1 is an increasing (213,
231)-avoiding permutation and 1 ⊖ β ∈ Sn−k+1(213, 231), whose corresponding g.f. is
g(213,231)(x, p, q, y, z). For α ∈ Sk−1, take into account that if the increasing sequence is of
odd length, πk−1πk contributes to MNA giving an extra factor of y. To summarize, in this
case the g.f. is

g(213,231)(x, p, q, y, z)
xpy + x2yp2

1− x2p2y
.

Combining cases (a)–(c), we obtain

G(213,231)(x, p, q, y, z) = 1 + x+ g(213,231)(x, p, q, y, z) +

g(213,231)(x, p, q, y, z)
xpy + x2yp2

1− x2p2y
+

x2yp+ x3yp2

1− x2p2y
. (44)

Next, we evaluate g(213,231)(x, p, q, y, z):

(d) If n = 2, the g.f. is x2zq.

(e) If π2 = n−1 then any non-empty permutation in Sn(213, 231) is possible for π3 · · · πn. The
corresponding g.f. is x2zq2(G(213,231)(x, p, q, y, z) − 1), where π1π2 contributes to MND
giving an extra factor of x2zq2(π2 > π3).

(f) If πn = n− 1 then π = 1⊖ (γ⊕ 1), where γ⊕ 1 ∈ Sn−1 is an increasing (213, 231)-avoiding
permutation. In this case, the corresponding g.f. is

x3yzpq + x4yzp2q

1− x2p2y
.

(g) If πm = n − 1, 2 < m < n, then π = 1 ⊖ (γ ⊕ (1 ⊖ ζ)), where γ ∈ Sm−2 is an increasing
(213, 231)-avoiding permutation and 1⊖ζ ∈ Sn−m+1(213, 231), whose corresponding g.f. is
g(213,231)(x, p, q, y, z). For 1⊖γ ∈ Sm−1, note that if γ contains an odd number of elements,
πm−1πm contributes to MNA. To summarize, in this case the g.f. is

g(213,231)(x, p, q, y, z)
x2yzpq + x3yzp2q

1− x2p2y
,

where the element n gives a factor of xzq.

Combining cases (d)–(g), we obtain

g(213,231)(x, p, q, y, z) = x2zq + x2zq2(G(213,231)(x, p, q, y, z) − 1)+

x3yzpq + x4yzp2q

1− x2p2y
+ g(213,231)(x, p, q, y, z)

x2yzpq + x3yzp2q

1− x2p2y
. (45)

Solving equations (44) and (45) simultaneously, we obtain (43).

From Theorem 2.19 we have the following results.
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Corollary 2.20. Setting three out of the four variables y, z, p and q equal to one respectively
in (43), we obtain single distributions of asc, des, MNA and MND over Sn(213, 231):

∑

n≥0

∑

π∈Sn(213,231)

xnpasc(π) =
1− px

1− x− px
; (46)

∑

n≥0

∑

π∈Sn(213,231)

xnqdes(π) =
1− qx

1− x− qx
; (47)

∑

n≥0

∑

π∈Sn(213,231)

xnyMNA(π) =
1− x2y

1− x− 2x2y
; (48)

∑

n≥0

∑

π∈Sn(213,231)

xnzMND(π) =
1− x2z

1− x− 2x2z
. (49)

Remark 2.21. The distributions in (46) and (47) (resp., (48) and (49)) are the same because
the set Sn(213, 231) is invariant under the complement operation, and applying complement ex-
changes ascents and descents (resp., non-overlapping ascents and non-overlapping descents).

Theorem 2.22. For Sn(213, 231), we have

F(213,231)(x, p, q, u, v, s, t) =
A

(1− ptux)(1− ptx− qvx)(1− qsvx)
(50)

where A is given by

1− ptx− ptux− qvx− qsvx+ stuvx+ p2t2ux2 + pqstvx2 + pqtuvx2 + pqstuvx2 − pst2uvx2+

q2sv2x2 − qstuv2x2 − p2qst2uvx3 − pq2stuv2x3 + pqs2t2uv2x3 + pqst2u2v2x3 − pqs2t2u2v2x3.

Proof. Let π = π1 · · · πn ∈ Sn(213, 231). If n = 0, π contributes the term of 1 to A(213,231)(x, y, z).
If π ∈ S1, the g.f. is xuvst. For n ≥ 2, we consider the following cases.

• If π1 = n then the element n is the only left-to-right maximum, a left-to-right minimum
and a right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of
permutations with π1 = n is given by xquvs(F(213,231)(x, p, q, 1, v, s, t)− 1), where we used
the g.f. of all non-empty permutations with the value of lrmax not taken into account and
the element n gives the factor of xquvs.

• If πn = n then π = 12 · · · n. So we have

xpuvt
∑

i≥1

xipi−1uisti =
x2pu2vst2

1− xput
,

where the element n gives the factor of xpuvt.

• If πk = n, 1 < k < n, then π = α ⊕ (1 ⊖ β), where α is an increasing permutation in
Sk−1(213, 231) and 1 ⊖ β ∈ Sn−k+1(213, 231). The g.f. for α ∈ Sk−1 is xust

1−xput and the
element n gives a factor of xpquv. For the permutation β ∈ Sn−k, we do not need to consider
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left-to-right maxima and left-to-right minima, so the g.f. is (F(213,231)(x, p, q, 1, v, 1, t)−1).
The g.f. of permutations with πk = n, 1 < k < n, is

(F(213,231)(x, p, q, 1, v, 1, t) − 1)
x2pqu2vst

1− xput
.

Taking into account all cases, we obtain

F(213,231)(x, p, q, u, v, s, t) = 1 + xtuvs+ xquvs(F(213,231)(x, p, q, 1, v, s, t) − 1)+

(F(213,231)(x, p, q, 1, v, 1, t) − 1)
x2pqu2vst

1− xput
+

x2pu2vst2

1− xput
; (51)

If u = 1 in (51), we have

F(213,231)(x, p, q, 1, v, s, t) = 1 + xtvs+ xqvs(F(213,231)(x, p, q, 1, v, s, t) − 1)+

(F(213,231)(x, p, q, 1, v, 1, t) − 1)
x2pqvst

1 − xpt
+

x2pvst2

1− xpt
; (52)

If s = 1 in (52), we have

F(213,231)(x, p, q, 1, v, 1, t) = 1 + xtv + xqv(F(213,231)(x, p, q, 1, v, 1, t) − 1)+

(F(213,231)(x, p, q, 1, v, 1, t) − 1)
x2pqvt

1 − xpt
+

x2pvt2

1− xpt
. (53)

By simultaneously solving (51),(52) and (53), we obtain the desired result.

Corollary 2.23. Let p = q = 1, then setting three out of the four variables u, v, s and t equal
to one individually in (50), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over
Sn(213, 231):

∑

n≥0

∑

π∈Sn(213,231)

xnulrmax(π) =
1− 2x+ ux2

(1− 2x)(1 − ux)
; (54)

∑

n≥0

∑

π∈Sn(213,231)

xnvrlmax(π) =
1− x

1− x− vx
; (55)

∑

n≥0

∑

π∈Sn(213,231)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1 − sx)
; (56)

∑

n≥0

∑

π∈Sn(213,231)

xntrlmin(π) =
1− x

1− x− tx
. (57)

Remark 2.24. The distributions in (54) and (56) (resp., (55) and (57)) are the same because
the set Sn(213, 231) is invariant under the complement operation, and applying complement ex-
changes the sets of left-to-right maxima and left-to-right minima (resp., right-to-left maxima and
right-to-left minima).
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2.5 Permutations in Sn(213, 312)

We first describe the structure of a (213, 312)-avoiding permutation. Let π = π1 · · · πn ∈
Sn(213, 312). If πi = n then π1 < π2 < · · · < πi−1 in order to avoid 213. On the other
hand, in order to avoid 312, πi+1 > πi+2 > · · · > πn. We use the structure of π to prove the
following theorems.

Theorem 2.25. For Sn(213, 312), we have

G(213,312)(x, p, q, y, z) =
A

p4x4y2 + (−1 + q2x2z)2 − 2p2x2y(1 + q2x2z)
, (58)

where A = (1− p3x3y2 + qxz − q2x2z − q3x3z2 + p2x2y(−1 + qxz) + pxy(1 + 2qxz + q2x2z)).

Proof. Let π = π1 · · · πn ∈ Sn(213, 312). If πi = n then π1 < π2 < · · · < πi−1 in order to avoid
213. On the other hand, in order to avoid 312, πi+1 > πi+2 > · · · > πn.

Next, we consider the following cases based on the parity of i. If i = 2k, k ≥ 1, we obtain
( n−1
2k−1

)

permutations with k non-overlapping ascents and ⌊n−2k+1
2 ⌋ non-overlapping descents. If

i = 2k + 1, k ≥ 0, we obtain
(n−1

2k

)

permutations with k non-overlapping ascents and ⌊n−2k
2 ⌋

non-overlapping descents. So we have

G(213,312)(x, p, q, y, z) = 1 +

∞
∑

n=1

⌊n/2⌋
∑

k=1

(

n− 1

2k − 1

)

xnykz⌊
n−2k+1

2
⌋p2k−1qn−2k+

∞
∑

n=1

⌊(n+1)/2⌋
∑

k=0

(

n− 1

2k

)

xnykz⌊
n−2k

2
⌋p2kqn−2k−1.

By using MATHEMATICA, we simplify G(213,312)(x, p, q, y, z) and obtain (58).

Corollary 2.26. Setting three out of the four variables y, z, p and q equal to one respectively
in (58), we obtain single distributions of asc, des, MNA and MND over Sn(213, 312):

∑

n≥0

∑

π∈Sn(213,312)

xnpasc(π) =
1− px

1− x− px
; (59)

∑

n≥0

∑

π∈Sn(213,312)

xnqdes(π) =
1− qx

1− x− qx
; (60)

∑

n≥0

∑

π∈Sn(213,312)

xnyMNA(π) =
x− x2 + x2y

1− 2x+ x2 − x2y
; (61)

∑

n≥0

∑

π∈Sn(213,312)

xnzMND(π) =
x− x2 + x2z

1− 2x+ x2 − x2z
. (62)

Remark 2.27. The distributions in (59) and (60) (resp., (61) and (62)) are the same because
the set Sn(213, 312) is invariant under the reverse operation, and applying reverse exchanges
ascents and descents (resp., non-overlapping ascents and non-overlapping descents).
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Theorem 2.28. For Sn(213, 312), we have

F(213,312)(x, p, q, u, v, s, t) = 1 + xuvst+
pqst2u2v2x3

(−1 + ptux)(−1 + pux+ qvx)
+

qs2tuv2x2

1− qsvx
+

pst2u2vx2

1− ptux
+

pqs2tu2v2x3

(−1 + pux+ qvx)(−1 + qsvx)
. (63)

Proof. Let π = π1 · · · πn ∈ Sn(213, 312). If n = 0, we have the term of 1 in F(213,312)(x, p, q, u, v, s, t).
If π ∈ S1, the g.f. is xuvst. For n ≥ 2, suppose that π1 = i, πk = n and πn = j. We consider
the following cases.

If i = n, namely k = 1, then we have

F(213,312)(x, p, q, u, v, s, t) =
∞
∑

n=2

xnqn−1uvnsnt.

If j = n, namely k = n, then we have

F(213,312)(x, p, q, u, v, s, t) =
∞
∑

n=2

xnpn−1unvstn.

Next, let 2 ≤ i, j, k ≤ n− 1. If π1 = 1, in order to avoid 312, there are
(n−j−1
n−k−1

)

permutations

whose g.f. is xnpk−1qn−kukvn−k+1stj, so the g.f. in this case is

∞
∑

n=2

n−1
∑

j=2

n−1
∑

k=j

(

n− j − 1

n− k − 1

)

xnpk−1qn−kukvn−k+1stj.

If π1 6= 1, in order to avoid 213, there are
(n−i−1

k−2

)

permutations whose g.f. is xnpk−1qn−kukvn−k+1sit,
so the g.f. in this case is

∞
∑

n=2

n−1
∑

i=2

n+1−i
∑

k=2

(

n− i− 1

k − 2

)

xnpk−1qn−kukvn−k+1sit.

In conclusion,

F(213,312)(x, p, q, u, v, s, t) = 1 + xtuvs+

∞
∑

n=2

xnqn−1uvnsnt+

∞
∑

n=2

xnpn−1unvstn+

∞
∑

n=2

n−1
∑

j=2

n−1
∑

k=j

(

n− j − 1

n− k − 1

)

xnpk−1qn−kukvn−k+1stj+

∞
∑

n=2

n−1
∑

i=2

n+1−i
∑

k=2

(

n− i− 1

k − 2

)

xnpk−1qn−kukvn−k+1sit

By using MATHEMATICA, we simplify F(213,312)(x, p, q, u, v, s, t) and obtain (63).
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Corollary 2.29. Let p = q = 1, then setting three out of the four variables u, v, s and t equal
to one individually in (63), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over
Sn(213, 312):

∑

n≥0

∑

π∈Sn(213,312)

xnulrmax(π) =
1− x

1− x− ux
; (64)

∑

n≥0

∑

π∈Sn(213,312)

xnvrlmax(π) =
1− x

1− x− vx
; (65)

∑

n≥0

∑

π∈Sn(213,312)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1 − sx)
; (66)

∑

n≥0

∑

π∈Sn(213,312)

xntrlmin(π) =
1− 2x+ tx2

(1− 2x)(1 − tx)
. (67)

Remark 2.30. The distributions in (64) and (65) (resp., (66) and (67)) are the same because
the set Sn(213, 312) is invariant under the reverse operation, and applying reverse exchanges the
sets of left-to-right maxima and right-to-left maxima (resp., right-to-left minima and left-to-right
minima).

3 Equidistribution results

From Theorems 2.13, 2.19 and 2.25, swapping the variables p and q, and y and z in the respective
formulas, we obtain algebraic proofs of the following equidistribution results.

Theorem 3.1. The quadruples of statistics (asc,des,MNA,MND) and (des, asc,MND,MNA)
are equidistributed on Sn(231, 312) for all n ≥ 0.

Theorem 3.2. The quadruples of statistics (asc,des,MNA,MND) and (des, asc,MND,MNA)
are equidistributed on Sn(213, 231) for all n ≥ 0.

Theorem 3.3. The quadruples of statistics (asc,des,MNA,MND) and (des, asc,MND,MNA)
are equidistributed on Sn(213, 312) for all n ≥ 0.

Theorem 3.4. The quadruple of statistics (asc,des,MNA,MND) on Sn(231, 312) has the same
distribution as (des, asc,MND,MNA) on Sn(213, 231).

Theorem 3.5. The quadruple of statistics (asc,des,MNA,MND) is equidistributed on Sn(231, 312)
and Sn(213, 231).

In this section we provide combinatorial proofs of the five theorems. The combinatorial proofs
of Theorems 3.2 and 3.3 are trivial: in Theorem 3.2 we can apply the complement operation
to permutations in Sn(213, 231), and in Theorem 3.3 we can apply the reverse operation to
permutations in Sn(213, 312).

Combinatorial proofs of Theorems 3.1, 3.4 and 3.5 are much more involved and they require
introduction of two bijective maps f and g in Sections 3.1 and 3.2, respectively. The map f , to
be introduced next, is shown by us in Lemma 3.6 to be an involution.
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3.1 Map f and its applications

For π ∈ Sn(231, 312) line the elements in {1, 2, . . . n} in a row and insert a vertical line between
element x and x+ 1 if π can be written as π = π′ ⊕ π′′ so that x ∈ π′ and x+ 1 corresponds to
1 in π′′. For example, for π = 124358769(14)(13)(12)(11)(10), we have

1|2|34|5|678|9|(10)(11)(12)(13)(14).

Clearly, this way to represent permutations in Sn(231, 312) by the increasing permutation 12 · · · n
with vertical lines inserted between some of the elements is a bijection. Now the function f :
Sn(231, 312) → Sn(231, 312) is defined by representing the given permutation π as above, then
replacing x(x+1) with x|(x+1) and x|(x+1) by x(x+1) for all x ∈ {1, 2, . . . , n−1}, that is, by
removing the existing vertical lines and inserting new vertical lines in all other places, and then
outputting the corresponding permutation. For the representation of the permutation π above,
the replacement of lines gives

123|456|7|89(10)|(11)|(12)|(13)|(14)

and hence f(124358769(14)(13)(12)(11)(10)) = 3216547(10)98(11)(12)(13)(14).

Lemma 3.6. The map f is an involution, i.e. f2(π) = π for any π ∈ Sn(231, 312) and n ≥ 1.

Proof. Obvious from the definition of f .

Remark 3.7. Any involution is a bijection (a well-known and easily provable fact), hence f is
a bijection.

Remark 3.8. Using the alternative description of f introduced in Lemma 3.6 we see that f has
no fixed points (the vertical lines cannot be in the same places after application of f).

For π = 124358769(14)(13)(12)(11)(10), asc(π) = des(f(π)) = 6, des(π) = asc(f(π)) = 7,
MNA(π) = MND(f(π)) = 3, and MND(π) = MNA(f(π)) = 4. The notable relations between
asc, des, MNA and MND in π and f(π) are not a coincidence as is shown in the following
theorem. Note that the set of statistics in Theorem 3.1 cannot be extended by adding more
statistics considered in this paper because lrmax(π) = 7, lrmax(f(π)) = 8, lrmin(π) = 1,
lrmin(f(π)) = 3, rlmax(π) = 5, rlmax(f(π)) = 1, rlmin(π) = 7 and rlmin(f(π)) = 8.

Next, we prove Theorem 3.1.

Proof. It is easy to see that the bijection f changes ascents to descents and vice-versa, this
means that it interchanges asc and des, and it also interchanges MNA and MND (a run of
descents becomes a run of ascents when we apply f).

3.2 Map g and its applications

Recall that the structure of a permutation σ ∈ Sn(213, 231) is σ = σ′⊕ (1⊖σ′′) where σ′ and σ′′

are (213, 231)-avoiding, possibly empty, permutations and σ′ (if non-empty) is increasing. Hence,
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σ can be decomposed uniquely into a sequence of ascending runs ending at right-to-left maxima.
Also, the structure of a permutation π ∈ Sn(231, 312) is π = π′ ⊕ (1⊖ π′′) where π′ and π′′ are,
possibly empty, (231, 312)-avoiding permutations and π′′ (if non-empty) is decreasing. Hence, π
can be decomposed uniquely into a sequence of decreasing runs beginning at left-to-right maxima.
The map g : Sn(231, 312) → Sn(213, 231) is defined as follows: g(π) has a right-to-left maximum
in position n+ 1− i if and only if π has a left-to-right maximum in position i. For example,

g(124358769(14)(13)(12)(11)(10)) = 1234(14)(13)56(12)(11)7(10)98. (68)

Because of the uniqueness of decomposition of π (resp., g(π)) into decreasing (resp., in-
creasing) runs, clearly, the map g is a bijection. Moreover, it is straightforward to see that
asc(π) = des(g(π)), des(π) = asc(g(π)), MNA(π) = MND(g(π)) and MND(π) = MNA(g(π))
giving us a proof of Theorem 3.4.

For our example (68), asc(π) = des(g(π)) = 6, des(π) = asc(g(π)) = 7, MNA(π) =
MND(g(π)) = 3, and MND(π) = MNA(g(π)) = 4. Note that the set of statistics in Theo-
rem 3.4 cannot be extended by adding more statistics considered in this paper because in (68),
lrmax(π) = lrmax(f(π)) = 7, lrmin(π) = lrmin(f(π)) = 1, rlmax(π) = rlmax(f(π)) = 5 and
rlmin(π) = 7 6= rlmin(f(π)) = 8, and the fact that g(12) = 21 shows that none of the statistics
in {lrmax, lrmin, rlmax, rlmin} can be preserved.

Remark 3.9. We note that g has a single fixed point for each odd n and no fixed points for
any even n. Indeed, a fixed point must avoid the patterns 213, 231 and 312, and hence π =
12 · · · in(n−1) · · · (i+1) for i ≥ 0 and g(π) = 12 · · · (n− i−1)n(n−1) · · · (n− i). Since π = g(π)
we have that i = n−1

2 and the observation follows.

Finally, we prove Theorem 3.5.

Proof. The map g(f(π)) proves the statement by Theorems 3.1 and 3.4.

4 Concluding remarks

In this paper, we found the joint distributions of (asc, des, lrmax, lrmin, rlmax, rlmin) and
the joint distributions of (asc, des, MNA, MND) on permutations avoiding any two patterns of
length 3. All g.f.’s derived in our paper are rational and we provided combinatorial proofs for
five equidistribution results observed from the formulas. It is remarkable that we were able to
control so many statistics at the same time while deriving explicit distribution results.

Studying (joint) distributions of statistics in other permutation classes, for example, those
studied in the literature [6] is an interesting direction of further research.
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