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ABSTRACT

The labelling of large seismic datasets is a challenging prob-
lem. Currently the methods most favoured by geoscien-
tists are based on well known geophysical properties with
STA/LTA ratio pickers remaining highly trusted to generate
results which can be quickly attributed due to their ability to
pick relatively high Signal to Noise Ratio (SNR) events with
high speed and accuracy. We aim to improve on the ability
of deep learning methods by the unsupervised clustering of
events which can help to visually identify results as belonging
to a certain cluster with high confidence without the need for
event by event processing. From our previous work we use
a Siamese model trained with known labels from an open
source dataset we show performance as a classifier and then
expand on the method by showing clustering of events, where
an expert can have high confidence that certain events are
correctly identified, or require further evaluation.

Index Terms— Siamese Network, Microseismic, Unsu-
pervised Clustering, Self-ordering Maps

1. INTRODUCTION

The detection of seismic events has generally focused on
larger scale events such as earthquakes and volcanic erup-
tions. More recently with advances in sensing and availabil-
ity, more sites are being monitored at global and regional
scales than ever before. This increase means that much more
data needs to be investigated and catalogued to help better
understand the underlying geophysical processes. With ad-
vances in hydraulic fracturing and changes in climate more
attention is being paid to sites where the possibility of induced
seismicity, landslides and rockfalls may occur. These type of
events can be sudden and unpredictable as they may not be
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preceded by a large earthquake, as such being able to detect
precursors at the microseismic level is becoming increasingly
important. While larger seismic events such as earthquakes
(M>3) are well understood from a detection point of view
with usually easily identifiable P and S waves, micro seismic
events are much less likely to be identified when it comes
to pickers as they tend to have a low SNR and short dura-
tion. Therefore cataloguing these seismic events is a highly
time consuming process and unless the event is significant
(in term of signal to noise ratio (SNR)) then quickly finding
and classifying it becomes non-trivial. Microseismic events
can be extremely frequent, and labelling can become prone
to error in the presence of background anthropogenic noise
from machinery and wildlife.

Machine learning, and specifically deep learning, have be-
come prevalent within the Earth Sciences community. In-
deed, the scale of this is highlighted in a recent review pa-
per [1], which breaks down the various applications that ma-
chine learning is being used for - microseismic event detec-
tion, source localisation [2, 3], and cluster analysis [4] be-
ing the most prominent. For recent approaches, using hand-
crafted feature generation & selection for classification, Li
et al. [5] provide an up-to-date review, including a break-
down of the most commonly used features and feature impor-
tance, as well as highlighting some of the current issues faced
by the industry standard approaches using STA/LTA pickers
which struggle at detecting events with low spatial and tempo-
ral separation. For recent approaches on deep learning-based
classification approaches, including multi-class classification,
please refer to [6].

The use of deep-learning to detect microseismic signals is
becoming far more common and some of the main methods
used are Convolutional Neural Networks (CNN)-based [6],
[7], though other deep learning architectures have been used
as well including a pseudo-Siamese implementation of EQ-
Transformer performing template matching, which is then fed
into P and S networks [8] and region-based CNNs (R-CNN)
enabling capture of earthquake events in 1-D time series data
across multiscale (time dilation) anchors [9]. In our previous
work [10] we showed detection of earthquakes below mag-
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nitude 1, down to 0.2 at distances of up to 50km from an
uncatalogued site in Scotland with data gathered from a sin-
gle 3 axis geophone located on glacial till and colluvium with
depths up to 20m.

Self-Organizing Maps (SOM), are a type of network
which learns via competitive learning. During competition
with each other a wining neuron is decided. The winning
neuron receives positive feedback when similar connections
are made to close neurons and negative feedback when dis-
similar neurons are nearby. Optimising this way results in
a self organised group structure or map. [11]. They can
be applied in a number of way within earth sciences. In
[12], SOMs are used to track the changes in a mine. Initially
STA/LTA is used to detect events and then from these events a
number of features from both the time and frequency domain
are extracted from seismic waveforms. Secondly they can be
used in seismic facies classification [13] where changes in
waveform between boundaries can be used to map a 2D slice
and result in a clearly delineated map of the target area.

In this paper we show the effectiveness of our Siamese
network at classification via comparison, and demonstrate the
use of self-organising maps (SOMs) as a way of explaining
events which may be mislabelled via the features generated by
the Siamese networks final encoding layer. We propose using
a convolution Siamese network to help to improve the cata-
loguing workflow. Siamese networks work using 2 (or more)
branches, a single network is shown two inputs, an anchor
and a test, which are labelled similar or not; the weights of
network are then updated simultaneously from both branches.
During testing a known signature is used as an anchor and a
second test signature is then shown to the network. Both an-
chor and test pass through the same network (weights) and the
differences between the encoded outputs from the network is
calculated typically using euclidean distance. If the similarity
score is within a threshold the two are assumed to be similar.
We then demonstrate using SOM as a method to explore the
reason behind a misclassifications and by choosing the near-
est neighbourhood, suggest a new label.

2. METHODOLOGY

2.1. Dataset

2.1.1. Résif Dataset

For the validation of our model we use the Résif labelled
dataset (available at [14]), which is taken from monitoring
in a quarry in France and is accompanied by a catalogue com-
piled by Provost et al.[15]. The seismic records are acquired
by two permanent arrays of the French Landslide Observa-
tory OMIV (Observatoire Multi-disciplinaire des Instabilités
de Versants) installed at the east and west sides of the Super-
Sauze landslide (Southeast France) developed in weathered
black marls [15]. Data is gathered by two sensor arrays (SZB
& SZC), each with one 3D sensor and three 1D (Z-axis) sen-

Table 1. Résif catalogue events
Class Total No. Uncertain Avg Dur. Avg Max Freq.
Rockfall 402 0 16.16s 6.83Hz
Earthquake 382 0 13.06s 4.33Hz
Micro 234 17 2.25s 7.15Hz
Noise 340 0 10.37s 4.07Hz

sors. The sampling rate is 250Hz and events are between 0.2
seconds to 105 seconds. The dataset spans three monitoring
periods, 11 October to 19 November 2013, 10 November to
30 November 2014, and 9 June to 15 August 2015. For our
experiments, we make use of the MT.SZC station as it has
more complete data. Our model uses all three channels from
the 3D sensor (sensor 0) from the SZC array.

As shown in Table 1, there are four types of labelled
events: rockfall events showing distinctive impacts over sev-
eral seconds, micro-earthquakes which are very short events
less than 5 seconds, earthquake events which have triangu-
lar spectrogram components with reducing high frequency
content ranging from 2-50 Hz, and finally, noise, natural or
man-made, that can last tens of seconds and generally has
higher frequency range between 0 and 100Hz and very dis-
tinct spectrogram. Note that the events in the Résif catalogue
can be as low as 2Hz. See [15], [6], [16] for details about the
four classes including waveform and STFT examples.

The second column in Table 1 shows the total number
of events per class in the labelled Résif dataset. The labels
were generated using an STA/LTA detector in the frequency
domain and a supervised random forest algorithm and then
expertly validated via visual inspection[15]. Even then, seis-
mic data labelling can be challenging. Hence, in the cata-
logue there are a number of events which have been labelled
as one class but contain a note suggesting there may be doubt,
as shown in the third column labelled ’Uncertain’. This oc-
curs most frequently within the micro-seismic class where 15
events are noted as being possible rockfalls and 2 possible
earthquakes. There is a large imbalance of events in each
monitoring period; for example, there are only 5 micro-quake
events in 2015 and 339 rockfall events in 2014.

Within the earthquake class, there are also 9 teleseismic
events between the 12th and 25th of October 2013, possibly
aftershocks of the 2013 Bohl earthquake. The teleseismic
events are longer duration than the other earthquake events
(around 40 to 60 seconds), and hence are likely to lead to
classification errors. We take all of the catalogue labels as
ground truth during training and testing, and show examples
of a label that differs from its class in Section 4.2, concluding
that they are most likely mislabelled.

2.2. Model

The designed Siamese network architecture comprises of
a two-branch feature extractor each processing one input,
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Fig. 1. Siamese network architecture

implementing feature learning transform τ via fully con-
volutional network. The comparison head implements a
distance function. Among numerous distance functions used
for Siamese networks, the Cosine Distance worked best.

CosineDistance(P,Q) = 1− P ·Q
∥P∥∥Q∥

(1)

where P and Q are n-length vectors with entries pi and qi,
respectively. The decision making head is a single dense neu-
ron providing a soft-label in the range of 0 to 1, where two
identical sequences would result in an output of 0 and highly
dissimilar inputs would produce an output close to 1.

The convolutional layers and all but the last dense layer
use ‘relu’ as their activation function; the final dense layer
uses ‘sigmoid’. The convolution layers are 2D due to the 3D
based input (in our case 65×66 Short-time Fourier Transform
(STFT) image output for each of the three channels). Dropout
is used after the first two convolution layers and max pooling
is used to reduce the size of the feature maps.

2.3. Clustering

Clustering is done using SOM, specifically from the mini-
SOM [17] python package. With the trained Siamese network
the last Dense layer is set to the output, which allows the fi-
nal encoding to be output rather than the result of the distance
function. With this, SOM is used on the resulting encoding
vectors to create a SOM map.

3. EXPERIMENTAL SETUP

The dataset is split into training & validation and testing. The
training & validation events are sorted in chronological order
and stratified. The test size was set to be the last 30% per
class, and the test set was identical for all runs.

For the ablation study, multiple runs were performed for
every configuration using sklearns’ StratifiedKFold set to 5
folds. At the start of each fold the datasets (training, valida-
tion) were created using tensorflow.data.Dataset which then,
were repeated, shuffled (with a set seed) and zipped. Initial
training involved all of the training & validation data (70% of
all data) being split into a 5-folds with 80% being used for
training and 20% for validation.

Performance of the model was calculated using the test
set, generating the distance matrix of the encoded test set

and comparing against each other to obtain the performance
across all ‘anchors’ of each class.

Training is completed using Python 3.10.10 using Tensor-
Flow 2.10.1 on a system with a i7 10700K and RTX NVIDIA
2080 Ti. Throughput is around 46.5 STFT images per ms.
With a dataset repetition of 10, a training epoch with valida-
tion takes around 15s.

4. RESULTS

4.1. Siamese Network Classification Performance

The classification results are shown in Table 2. The testing
dataset consists of the last (chronologically) 30% of labels
from each class. Table 2 shows how many events were cor-
rectly matched to the anchor for each class. For example, of
the 117 rockfalls in the test set (as per Table 1), 107 rock-
fall events (True Positives) were correctly matched with sim-
ilarity over the threshold and 116, 73 and 106, earthquake
micro-quake and noise events, respectively, were correctly
identified as dissimilar to the rockfall anchor (True Nega-
tives). However, 10 labelled rockfall events were not matched
with the anchor (False Negatives) and 1 micro-quake, 2 earth-
quake and 8 noise were incorrectly deemed similar to the
rockfall anchor (False Positives for rockfall). Relative to class
size micro-quake events perform the worst with 11 micro-to-
micro comparisons not resulting in a high similarity score,
and hence producing False Negatives. There are only a total
of 55 misclassifications between one class and another, the
majority involving noise. Besides noise, there are very few
misclassifications compared to test size, only 11. Adequate
anchor choice is therefore critical in being able to correctly
detect all of events for each class.

4.2. Siamese Network Unsupervised Grouping

Manual picking and subsequent verification by experts is one
of the slowest parts of labelling of seismic events, especially
microseismic events with low signal-to-noise ratio. Using the
encoded vectors from a trained network SOM can create an
unsupervised map showing seismic events which are similar.
It is possible to do the same with using on a Siamese network
and comparing every event against each other but this may be
unscaleable for extremely large datasets.

Table 2. Siamese network performance all test events confu-
sion

Test
Anchor rockfall earthquake micro-quake noise
rockfall 107(10) 3 1 11

earthquake 1 114(5) 4 4
micro-quake 2 0 63(11) 12

noise 8 3 6 92(25)
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Fig. 2. noise interclass distance

Given an unseen and unlabelled dataset, by grouping sim-
ilar events, the Siamese network enables clusters or “classes”
to be formed with zero knowledge. That is, the network com-
pares a randomly selected sample to all others and clusters
all samples similar to the selected one together. Initially, this
would be slow as large clusters are created, but quickly would
reduce to more focused and smaller clusters.
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Shown in Figure 2 is the inter-class distances between the
different event types labelled in the Resif dataset. Low dis-
tance represents similar while high distance represents dis-
similar events, it can be seen that from within the rockfall and
earthquake class most events are of very low cumulative dis-
tance when compared against every other example in their re-
spective classes, with a few exceptions which have distances
close to the maximum (the maximum being the total number
of events in the class, minus the event in question). For mi-
croquakes and noise there is more uncertainty in the events
while many are still similar in some way to others within the
class; in general the average distance is greater.

Self-organising maps offer another way of visually identi-
fying outliers and helping to understand what class they might
belong in as the distances are mapped into a 2D space. Fig-
ure 3 shows the distances between the different event types
within the RESIF catalogue. The SOM map highlights helps
to show the clusters of each class, as could be expected from
the cumulative distances shown in Figure 2 the rockfall class
has the least interference from other classes, but does have
outliers that appear mainly in the noise and microquake sec-
tion of the map. This makes sense as rockfall and microquake
can appear highly similar if the SNR is very low or even if
the initial rockfall impact is very large. Earthquakes have a
few outliers which are mainly in the microquake class, again
explainable by low magnitude earthquakes or distant where

on the P-wave is visible above noise. As mentioned previ-
ously there is also the possibility that some microquakes were
mislabelled and may in fact be rockfalls, the SOM would be
able to help by highlighting those events which are closer in
distance to the rockfall neighbourhood.

Rockfall Earthquake Quake Noise
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Fig. 3. Distance between events in the RESIF catalogue.

SOM is a helpful tool for experts to help visualise the out-
put of the network and to understand where and why misclas-
sifications have occurred.

5. CONCLUSION

We show the performance of our Siamese network in classifi-
cation tasks, the ability to generate features and the usefulness
of SOM to highlight more challenging labels which would re-
quire expert validation to improve labelled datasets generated
by deep learning models.
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