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A B S T R A C T 

The volume of data from current and future observatories has moti v ated the increased development and application of automated 

machine learning methodologies for astronomy. Ho we ver, less attention has been given to the production of standardized data sets 
for assessing the performance of different machine learning algorithms within astronomy and astrophysics. Here we describe in 

detail the MiraBest data set, a publicly available batched data set of 1256 radio-loud AGN from NVSS and FIRST, filtered to 0.03 

< z < 0.1, manually labelled by Miraghaei and Best according to the F anaroff–Rile y morphological classification, created for 
machine learning applications and compatible for use with standard deep learning libraries. We outline the principles underlying 

the construction of the data set, the sample selection and pre-processing methodology, data set structure and composition, as well 
as a comparison of MiraBest to other data sets used in the literature. Existing applications that utilize the MiraBest data set are 
re vie wed, and an extended data set of 2100 sources is created by cross-matching MiraBest with other catalogues of radio-loud 

AGN that have been used more widely in the literature for machine learning applications. 

Key words: Machine Learning – astronomical data bases – radio continuum: galaxies. 
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 I N T RO D U C T I O N  

n radio astronomy, morphological classification using convolutional 
eural networks (CNNs) and deep learning is becoming increasingly 
ommon for object classification, in particular with respect to the 
lassification of radio galaxies (see e.g. Aniyan & Thorat 2017 ; 
lger et al. 2018 ; Lukic et al. 2018 , 2019 ; Wu et al. 2018 ; Tang et al.
019 ; Becker et al. 2021 ; Bowles et al. 2021 ; Ntwaetsile & Geach
021 ; Sadeghi et al. 2021 ; Scaife & Porter 2021 ; Wang et al. 2021 ;
ohan et al. 2022 ; Slijepcevic et al. 2022 , etc.). Many of these works

ave focused on the morphological classification of radio galaxies 
ollo wing the Fanarof f–Riley classification scheme (FR; Fanaroff & 

iley 1974 ), used to group radio-loud active galactic nuclei (AGNs) 
y examining the locations of their regions of greatest luminosity 
elativ e to o v erall source e xtent. The initial scheme posited that there
ere two major populations of such sources – those which were core- 
rightened, with their peak luminosity concentrated at a radius of less
han half than the o v erall angular size of the source from its centre
FR Type I), and those which were edge-brightened, with their peak 
uminosity concentrated at a radius of more than half the angular size
f the source (FR Type II), and that there was a division in luminosity
etween the two populations at approximately 10 25 Watts Hz −1 sr −1 , 
ith edge-brightened sources having a higher intrinsic luminosity 

han core-brightened sources. As described, this taxonomy requires 
hat an AGN is associated with well-resolved extended emission 
xternal to the AGN core in order to be classifed as either FRI or FRII.
 E-mail: fionamayporter@gmail.com 
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While the F anaroff–Rile y scheme was initially viewed as having
 very straightforward luminosity boundary between morphological 
lasses (Fanaroff & Riley 1974 ), further study has shown that this
s not the case, see e.g. Hardcastle & Croston ( 2020 ) for a re vie w.
n recent studies, sources have been detected which have raised 
uestions about the use of this boundary; for example, Mingo et al.
 2019 ) found that around 20 per cent of FRII galaxies in their sample
ad radio luminosity below the traditional cutoff, some by as much
s two orders of magnitude, meaning that there is some range of
uminosities in which both classes can be found. As well as this,
ncreasing surv e y sensitivity has allowed for the disco v ery of sev eral
lasses with features that do not match the classic morphologies, 
ncluding hybrid (e.g. Gopal-Krishna & Wiita 2000 ; Kapi ́nska et al.
017 ) and restarting sources (e.g. Lara et al. 1999 ; Mahatma et al.
019 ). Clearly, the dichotomy between F anaroff–Rile y classes is not
nly more complex than originally believed, but sufficiently complex 
hat it is still not fully understood. While it is generally accepted
hat the same underlying mechanism likely powers all FR galaxies, 
ith the different morphologies arising as a result of jet interactions
ith surrounding environments of different densities (Gopal-Krishna 
 Wiita 2000 ; Kaiser & Best 2007 ; Tchekhovsk o y & Bromberg

016 ; Mingo et al. 2019 ; Hardcastle & Croston 2020 ), the precise
equirements of host galaxy characteristics, jet power, the properties 
f the intercluster medium and disruptions in that medium are still
n question (Mingo et al. 2019 ; Hardcastle & Croston 2020 ). To gain
 stronger understanding of radio galaxies, it is necessary that we
btain more examples of FR sources. 
The new generation of radio surv e ys with telescopes such as

OFAR (Shimwell et al. 2017 ; Shimwell et al. 2019 ), MeerKAT
Jarvis et al. 2016 ; Jonas & Team 2016 ) and ASKAP (Johnston et al.
. This is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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008 ; McConnell et al. 2020 ) are already providing additional data
ith which to expand our catalogues of radio galaxies, as does the

dv ent of surv e ys with the Square Kilometre Array (SKA) telescope
Braun et al. 2015 ; Grainge et al. 2017 ). While the unprecedented
epth of field and resolution will permit the detection of sources that
reviously could not be observed, the volume of data produced by
he SKA and its precursors will be such that robust machine learning
lassification will be absolutely vital to allow sources of interest to
e identified and classified. 
Currently, the archi v al data sets av ailable for training radio galaxy

lassifiers are of comparable size to many of those used in computer
ision (e.g. CIFAR; Krizhevsky et al. 2009 ), with around 10 5 samples
v ailable. Ho we ver, a fundamental dif ference is the degree of domain
nowledge needed for creating labelled data sets, which has a much
igher cost for radio astronomy data. As a result of this, labels are
parse in radio galaxy data sets, with labels only included for a
mall fraction of data. Indeed, the majority of existing catalogues
and hence labelled data sets) of FR galaxies contain only a small
umber of sources – typically several hundred at most (Gendre &
all 2008 ; Capetti et al. 2017 , 2018 ; Kozieł-Wierzbowska et al.

020 ), with Mingo et al. ( 2019 ) as a recent exception. Consequently,
hen constructing a machine learning data set, the use of the largest
ractical number of images of each class is preferable, ensuring that
he full variability of features within each class is captured by the
ata set; without this, there is a risk that any models using that data
et will have a limited ability to generalize to images which show
eatures that are not adequately represented within it. 

In this work we describe the MiraBest batched data set, 1 a publicly
vailable FR-labelled machine learning data set of radio galaxies.
ith 1256 samples, MiraBest is currently the largest publicly

vailable machine learning data set for radio galaxy classification.
he structure of this paper is as follows: in Section 2 we outline

he general principles underlying the construction of astronomical
achine learning data sets; in Section 3 we describe the sample

election and data set structure for MiraBest; in Section 4 we
escribe the pre-processing applied to MiraBest data samples, and in
ection 5 we provide an analysis of the overall data set composition;

n Section 7 we compare the MiraBest data set to other radio galaxy
achine learning data sets in the literature, and in Section 6 we

escribe additional supplementary data sets that are provided with the
ore MiraBest data set; in Section 10 we outline existing applications
f the MiraBest data set in the literature and in Section 11 we draw
ur conclusions. 

 CONSTRUCTING  DATA  SETS  O F  

S T RO N O M I C A L  S O U R C E S  

hile a large number of astronomical catalogues are accessible
or general use, not all are suitable to be used to create machine
earning data sets. Astronomical catalogues are constructed to serve
 variety of specific purposes; depending on the field that seeks to
ollate them, which properties are considered useful and which are
rrele v ant can v ary significantly, and a scientifically useful catalogue
ay lack the features needed to produce a useful machine learning

ata set. In the case of a data set intended for source classification with
upervised learning, the following properties should be considered
hen attempting to build a data set from an existing catalogue. 
ASTAI 2, 293–306 (2023) 

 The MiraBest data set can be downloaded from: https:// doi.org/ 10.5281/ ze 
odo.4288837 . 
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.1 Number of sources 

n obvious area in which machine learning data sets and and
stronomical catalogues may differ is size. A catalogue of a few
ozen rare astronomical objects may be enough to glean a number
f astrophysical properties and constraints, and allow astronomers to
dentify methods by which they might be able to find more of these
are objects, see e.g. Lyne et al. ( 2017 ), Hartley et al. ( 2017 ), Titus
t al. ( 2020 ), Pleunis et al. ( 2021 ), Rezaei et al. ( 2022 ); indeed, the
mall number of sources available might allow for each to be studied
n more depth, see e.g. Young et al. ( 2013 ), Fermi LAT Collaboration
 2015 ), CHIME/FRB Collaboration ( 2020 ). A machine learning data
et of a dozen images, ho we v er, is of v ery dubious use; individual
lasses within a data set being this small has been shown to result
n poor classification ability (Cho et al. 2015 ), and while there is
o definitive answer for the minimum quantity of data required for
 machine learning model, a suggested rule of thumb is that the
umber of samples in a data set should be at least a factor of fifty
arger than the number of classes (Al w osheel et al. 2018 ). Machine
earning data sets hence have a much higher minimum population
equirement to produce ‘good’ science – a data set of several hundred
mages is considered very small, and while data augmentation can
rtificially increase the size of a small data set, making it more likely
o be useful, a larger quantity of unique data is significantly more
ikely to produce accurate and generalizable results than a smaller
ugmented data set (Brigato & Iocchi 2021 ). 

.2 Availability of labelled data 

 vital component of a machine learning data set intended for
upervised learning is that all sources included within it must be
abelled accurately, and a lack of appropriately labelled data is
ccordingly a significant issue (Raghu & Schmidt 2020 ). Manual
lassification to create an appropriately sized data set is time-
onsuming and requires suf ficient kno wledge of the classes involved
hat it is ensured they are labelled correctly; depending on the type
f source involv ed, ev en multiple human classifiers with expert
nowledge might not agree on what the correct class is for a particular
bject (Nair & Abraham 2010 ; Walmsley et al. 2022 ), especially
f the source population is small enough that there are relatively
ew examples of any given class available for comparison. For this
eason, a number of astronomical machine learning data sets draw
rom previously created source catalogues rather than their creators
eeking out and labelling entirely new sources (e.g. Aniyan & Thorat
017 ; Tang 2019 ), including MiraBest. 
In addition to this, machine learning data sets require some
 ariness tow ards ‘label noise’ – that is, the uncertainty introduced

nto a machine learning model as a result of some of the images in
 data set being incorrectly labelled (see e.g. Frenay & Verleysen
014 ). On the whole, this is not typically a problem in other
stronomical catalogues, as a small number of atypical sources
re not usually expected to have a significant impact upon results
erived from a large population; however, it can negatively impact the
raining of a machine learning model, as the inclusion of mislabelled
mages can result in the model being ef fecti vely ‘taught wrong’ with
egard to which features are associated with which class (Northcutt
t al. 2021 ). Miraghaei & Best ( 2017 ) has the unusual distinction
f not only providing class labels but information on whether the
uthors were confident in their classification, ef fecti v ely pro viding
 measure of uncertainty on the labels themselves and allowing for
he potential to study how models respond to sources for which
stronomers are unsure of the appropriate morphological class. 

https://doi.org/10.5281/zenodo.4288837


MiraBest data set 295 

2

I
i  

–  

b
a
t  

r
(
n
o
e
t  

w
i
w
a  

n
w
p  

t
i
f
(

 

c
a  

d
‘
t
s  

e  

r
s  

o  

i  

t
s
w

3
S

T  

f  

h  

(  

e  

1
w  

0  

t
u
b  

t
e

 

e
t  

w

Table 1. The three-digit classification scheme used by Miraghaei & Best 
( 2017 ). Double–double sources are e xclusiv ely FRII; wide-angle, diffuse, 
and head-tail sources are e xclusiv ely FRI. 

Digit 1 Digit 2 Digit 3 

1 - FRI 0 - Confident 0 - Standard 
2 - FRII 1 - Uncertain 1 - Double-double 
3 - Hybrid – 2 - Wide-angle Tail 
4 - Unclassifiable – 3 - Diffuse 
– – 4 - Head-tail 
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.3 Inclusion of ‘messy’ data 

n general, when collating a data set for astronomical study, there 
s an expectation that the data contained within will be ‘good data’

that is, as free as possible from artefacts, with any effects from
ackground sources remo v ed, etc. – and that the properties observed 
re e xclusiv ely from the intended source. In machine learning, 
hough, there is merit in ‘bad’ or ‘messy’ data being included: it
eflects the astrophysical reality of the environments of many sources 
Norris et al. 2021 ). While artefacts might render an observation 
ot terribly useful for determining precise properties of a source, 
r background sources might make it difficult to determine which 
mission can be attributed to which object, it is plainly apparent 
hat these will occur in surv e y data none the less; it is hence better,
hen using machine learning, to have developed a model that can 

dentify the features necessary to classify a source despite artefacts, or 
hich has learned that background emission may be present without 

ffecting the class of the primary source, than to use one which has
ever encountered these circumstances and cannot adapt to them 

ithout retraining. Focusing on ‘good’ data not only reduces the 
ossible size of a machine learning data set: it limits its ability
o recognize anything but other ‘good’ data, which is a particular 
ssue when ‘messy’ data can be more often representative of unusual 
eatures that would warrant additional attention from astronomers 
Norris et al. 2021 ; Gupta et al. 2022 ). 

This also applies to the inclusion of atypical sources for a given
lass, such as rare subclasses; while these may be considered to 
dd a form of ‘noise’ to a data set when their properties noticeably
iffer from the ‘standard’ population, e xclusiv ely using sources with 
standard’ morphology in machine learning data sets again may limit 
he ability of the resulting models to recognize unusual sources within 
urv e y data. While there may not al w ays be a sufficient number of
xamples of a given rare subclass to allow a model to specifically
ecognize that subclass’s properties, there is some merit in including 
uch sources in a data set in a manner that lets them easily be screened
ut or merged into a larger class; it is far easier to remo v e unwanted
mages from a machine learning data set than it is to add new images
hat perfectly match the original’s data processing methods, and these 
ources may be used to examine model responses to unusual objects 
hich are none the less part of the same o v erall source population. 

 SELECTION  M E T H O D  A N D  DATA  SET  

T RUCTURE  

he sources classified by Miraghaei & Best ( 2017 ) were identified
rom a catalogue of radio-loud AGN (Best & Heckman 2012 ), which
ad cross-matched galaxies from the seventh data release of the SDSS
Abazajian et al. 2009 ) with radio components from NVSS (Condon
t al. 1998 ) and FIRST (Becker et al. 1995 ) surv e ys conducted at
.4 GHz with the Very Large Array (VLA) telescope. This catalogue 
as filtered to obtain sources that had a lower redshift limit of z >
.03, as the large angular size of nearer galaxies was deemed likely
o result in catalogued SDSS parameters containing errors, and an 
pper limit of z < 0.1 to ensure spectroscopic classification would 
e available. A flux density cut of 40 mJy was applied to ensure that
here was a signal-to-noise ratio large enough to detect diffuse radio 
mission. 

To obtain a F anaroff–Rile y class, images of each source from
ither NVSS or FIRST were inspected visually and labelled using 
he original definition of the two classes (Fanaroff & Riley 1974 ):
hether the distance from the AGN’s centre to the regions of brightest 
mission on either side was less (FRI) or more (FRII) than half of
he angular extent of the radio emission. 

Due to the limitations of FIRST and NVSS’s angular resolution 
nd ability to detect faint emission, some objects could not be
abelled with confidence; as a result, these sources were flagged 
s ‘uncertain’ in label. If a galaxy was noted to show a non-standard
R morphology, this w as lik ewise flagged. In addition to the standard
RI and FRII sources, a small number of sources were classified as
ybrids – showing morphology characteristic of FRIs on one side 
nd of FRIIs on the other – or ‘unclassifiable’, showing no obvious
R morphology. 
Each source within Miraghaei & Best ( 2017 )’s catalogue was

haracterized by a three-digit class label. These denote, in order, 
 v erall F anaroff–Rile y class, de gree of confidence in classification,
nd morphological subclass. Not all possible combinations of digits 
re present within the catalogue; for example, double–double mor- 
hology (Schoenmakers et al. 2000 ) is characteristic of FRII sources,
o no FRI sources exist with this label. As hybrid sources have no
eal ‘standard’ or ‘non-standard’ morphologies, all hybrid sources 
re deemed to be morphologically ‘standard’. The meaning of each 
igit’s possible values are listed in Table 1 . 
While the catalogue lists 1329 sources, not all were used within

he MiraBest data set. A total of 73 sources were excluded for the
ollowing reasons: 

(i) 40 sources were labelled as ‘unclassifiable’ within Miraghaei 
 Best ( 2017 ); while it is not stated why they were deemed unclassi-
able, they are assumed to show no recognizable FR morphology and
ence provide no information for the classification of FR galaxies. 
hile they do represent a population of non-FR sources that might

e encountered while surv e ying, this population is too small to be
seful within the data set as an inbuilt ‘non-FR’ class; as such, they
ere remo v ed. 
(ii) 28 sources were found to have an angular extent greater than

70 arcsec. As images within the data set were processed to have
imensions of 150 × 150 pixels, corresponding to 270 arcsec in the
IRST surv e y, an y sources larger than this were remo v ed to prev ent

he use of partial sources being present in the data set. 
(iii) Four sources were located partially or fully outwith the area 

f sky covered by the FIRST survey. As significant portions of each
ource lacked image data, they were removed to prevent the use of
artial sources. 
(iv) One source, with image label 103 (confidently labelled FRI 

ith diffuse morphology), formed a single-source subclass. As a 
inimum of two images per subclass were required for inclusion in

he data set – one for the training set and one for the test set – this
mage was remo v ed. 

With these sources remo v ed, the remaining 1256 sources were
sed to create the MiraBest data set. 
RASTAI 2, 293–306 (2023) 
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 PROCESSING  M E T H O D S  

or the purposes of allowing direct comparison to and possible
ombination with an already extant data set of Fanaroff–Riley
alaxies – FR-DEEP, presented by Tang et al. ( 2019 ) – the data
rocessing used was matched closely to this data set’s methods.
urther information on this data set and its processing techniques
ay be found in Section 7.3 . 
Data from the FIRST surv e y were obtained as.fits files using the

kyV iew V irtual Observatory (McGlynn et al. 1998 ) for a 300 ×
00 pixel area of sky centred upon each set of coordinates provided by
iraghaei & Best ( 2017 ), equi v alent to an angular extent of 540 arc-

ec. A standardized naming system for each source was implemented
t this stage, with a multiple source properties stored within the name
tring using the following format: ‘[3-digit class label] [source right
scension] [source declination] [redshift] [angular size]’, with right
scension and declination given in decimal degrees and angular size
n arcseconds. These properties were stored within the file names to
nsure that source coordinates and labels could be rapidly and easily
atched to their respective images. 

.1 Noise reduction 

mage data from FIRST (Becker et al. 1995 ) as provided by SkyView
McGlynn et al. 1998 ) at this stage contained sufficient radio noise
hat the central FR source was not al w ays readily apparent from
isual inspection. To reduce this radio noise, sigma-clipping was
erformed using the ASTROPY package’s sigma clipped stats
unction (Astropy Collaboration 2022 ). Any pixel that was found
o have a radio flux density less than 3 σ from the image’s mean
as set to zero; this process was repeated a maximum of five times,

topping early if no pixels below the clipping threshold were found.
erforming sigma-clipping at this stage – with an image size greater

han that which would be used for the final data set – allowed for
he most complete possible removal of noise without loss of source
nformation, as providing a larger quantity of noisy pixels allowed
or better characterization of the radio background. At this stage,
mages were considered to have been ‘cleaned’, and were cropped to
50 × 150 pixels centred upon the radio galaxy. 

.2 Remo v al of extraneous data and background sources 

he maximum angular size of sources used in this data set was 270
rcsec, corresponding to 150 pixels in FIRST. Ho we ver, as the images
reated were square, not circular, ‘unwanted’ data were present at
he corner of each image that was not expected to have any rele v ance
o the FR source. To ensure that these regions would not provide
ny possibly confounding data, a circular mask was applied to each
mage. Initially, it was considered whether it might be useful to
ustomize the size of this mask to each image, masking out any
ata beyond the angular size of the source stated in Miraghaei &
est ( 2017 ), to completely remo v e an y possible bright background

ources. Ho we ver, this option was rejected for the following reasons:

(i) Using masks set to the angular sizes provided by Miraghaei
 Best ( 2017 ) frequently resulted in pixels that clearly contained

ource data to be masked out. This discrepancy between the stated
nd observed extents of the sources might be a result of the authors
sing NVSS data to determine angular size, as NVSS’s 15 arcsec per
ixel resolution could readily result in single-pixel underestimations
f size that correspond to multiple pixels at FIRST’s 1.8 arcsec
esolution. Correctly setting the mask limits would hence require
isual inspection of every image to be used in MiraBest to determine
ASTAI 2, 293–306 (2023) 
he appropriate size for its mask, a task which would be time-
onsuming to complete because the asymmetric structure and diffuse
mission of many sources were found to require testing multiple sets
f limits per image to ensure that no emission w as mistak enly mask ed
ut. Gi ven that relati vely fe w images clearly benefited from this more
urated approach to masking, it was deemed to be an inefficient use
f time to do so. 
(ii) While bright background sources might somewhat impact the

erformance of machine learning classifiers on this data set, the
resence of such sources is astrophysically normal; it is not only
ossible but inevitable that some images produced by future radio
elescopes will contain background sources within the field of view
f a target source, and it is unrealistic to expect that they will all
e cleaned from these images before classification is attempted. For
his reason, radio background sources within the central 270 arcsec
f an image represent behaviour that will likely be seen in new
strophysical images, and their inclusion was deemed to be unlikely
o harm the usefulness of this data set as a whole. 

Because of this, rather than a variable mask, a fixed circular mask
f diameter 150 pixels was applied to every image to remo v e data
hat was unambiguously not associated with the FR source. 

.3 Normalization 

he images included in MiraBest at this stage naturally showed
ariation in source flux density; FR galaxies are not standard candles,
o even sources at the same redshift can show markedly different
aximum flux densities, and the population used in MiraBest co v ers

edshift range 0.03 < z < 0.1, resulting in more distant galaxies
ending to be fainter. While, as with the presence of background
ources, variation in source flux density is inevitable in future
urv e ys, a potential issue caused by inherent properties of FR galaxies
as noted if the images were not normalized. 
FRII galaxies are known to be on average intrinsically brighter

han FRIs (Mingo et al. 2019 ). A machine learning model trained
n images which preserve the innate flux densities might result
n the model, rather than identifying morphology, basing much of
ts classification on maximum flux density alone. Such a model
ould be expected to be easily confounded when applied to unseen
mages from surv e ys with greater sensitivity than FIRST; it might be
xpected to simply label all images below a certain flux density as
eing FRIs, rendering it useless for surv e ys besides FIRST. 
To prevent this from occurring, all images were normalized. This

as done by identifying the minimum and maximum flux density
alues in each image, and scaling each pixel’s value as follows: 

ormalised pixel value = 255 × Pixel value − minimum flux 

Maximum flux − minimum flux 
. 

The factor of 255 is used to facilitate image conversion into PNG
les; gre yscale PNGs hav e pix el values ranging from 0 (darkest)

o 255 (brightest), so multiplying by this factor ensures maximum
ynamic range by setting the minimum pixel value to 0 and the
aximum to 255. At this stage, all image processing is complete; all

mages are converted to PNG format and are ready to be collected
nto a data set. 

PNG files are here fa v oured o v er retaining the original FITS format
o make this data set accessible to non-astronomers who wish use
stronomical data for machine learning. Although PNGs have a more
imited dynamic range than those of FITS files, the FR classification
cheme is primarily concerned with the location of the brightest
egions of a source, making the potential loss of very faint emission
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Table 2. The population of all FR classes within the MiraBest data set, 
including the internal class labels used. 

Class 
No. of 
images Confidence Morphology 

No. of 
images 

Class 
label 

FRI 591 Confident Standard 339 0 
Wide-angle tail 49 1 
Head-tail 9 2 

Uncertain Standard 191 3 
Wide-angle tail 3 4 

FRII 631 Confident Standard 432 5 
Double-double 4 6 

Uncertain Standard 195 7 
Hybrid 34 Confident Standard 19 8 

Uncertain Standard 14 9 

c  

s

n  

t
s  

c
i  

d
 

s  

5

T  

T  

(  

m
s  

c
f  

r
fi  

m  

a  

s

5

W
a  

i  

l
t
F
b  

s
t  

n

i
s  

a
w  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/293/7202349 by guest on 01 August 2024
rom these sources unlikely to affect the ability to classify images 
n this case. As the source data were originally in monochrome 
.4 GHz flux, conversion into single-channel greyscale PNG is able 
o represent relative flux within an image, and has the additional 
enefit of reducing typical file size by two orders of magnitude, 
aking the data set more practical to download and store if desired. 

.4 Constructing the batched data set 

iraBest’s images are 150 × 150 pixels, making them relatively 
arge when compared with commonly used benchmarking data sets 
uch as MNIST (28 × 28 pixels; LeCun & Cortes 2010 ) or CIFAR10
32 × 32 pix els; Krizhevsk y et al. 2009 ), although we note that
magenet (Russako vsk y et al. 2014 ) contains a variety of image sizes,
ncluding those that exceed MiraBest. Ho we ver, e ven when using
hree channels to provide RGB information rather than MiraBest’s 
ingle greyscale channel, a MiraBest image still contains around an 
rder of magnitude more data than CIFAR10. For this reason, it was
esigned for use as a batched data set (Masters & Luschi 2018 );
oading each batch into memory sequentially is less computationally 
emanding than loading the entire data set at once, making MiraBest
ractical for use with devices with relatively small memory, such as
ersonal laptops. It was decided to separate the data set into eight
atches of 157 images: seven were to be labelled as training set
atches, with the last reserved to be a test set batch. 
The classes within MiraBest are not balanced; that is, there is not

n equal number of sources in every class (see Section 5 for a full
iscussion of the class breakdown). While in a balanced data set,
t is possible to randomly separate all images into different batches 
nd expect a reasonably equal quantity of each class to be present
n each batch, this is not the case for a data set that, like MiraBest,
as a number of subclasses that represent a very small proportion 
f the whole. Randomly selecting images in this case might result
n some batches completely lacking in particular sources, which is 
 particularly pressing concern for a data set’s test batch; if the test
et contains no examples of a particular class, there is no way to
 v aluate a machine learning’s model’s performance on that class
uring training, and the model risks significant o v erfitting as a result.
To prevent this from occurring, a fixed batch structure was used 

o ensure that a roughly equal quantity of sources of each class were
resent in every batch. The source quantities present in Miraghaei 
 Best ( 2017 ) were such that it was impossible to ensure exactly

dentical composition between all batches, but the following method 
as used to ensure that sources were distributed as evenly as possible:

(i) The total number of images in each class was divided by eight
nd rounded down to determine the base number of images per class
o include in each batch. 

(ii) Images were shuffled, and the base number of images of each 
lass were assigned to each batch. If fewer than eight images of a
lass were available, one was randomly chosen to be reserved for the
est batch to ensure that there were no instances of a class missing a
est set image. 

(iii) The number of images in each batch and quantity of remaining 
nassigned images in each class were determined. 
(iv) Beginning with the test batch, each batch was iteratively filled 

ith unassigned images. Each iteration, the class with the largest 
umber of remaining images was determined, and an image of that 
lass was assigned to the batch until it reached a total of 157 images;
f all classes had an equal number of unassigned images, a class
as selected at random. This method ensured that the most populous 
lasses were preferentially added to the test batch, with the rarer
ubclasses more likely to be present in one of the training batches. 

Once the composition of the batches was determined, the file 
ames of the images used in each batch were saved. This was done
o allow for direct comparison between any data sets created using the 
ame catalogue but using data from a different surv e y; ensuring the
omposition is entirely consistent prevents any potential differences 
n behaviour caused by having different proportions of sources in the
ifferent batches. 
With batch structuring complete, the image data and labels for the

ources within in each batch were collected to form the final data set.

 DATA  SET  COMPOSI TI ON  A N D  ANALYS IS  

he o v erall composition of the MiraBest data set is detailed in
able 2 . The three-digit class labels used by Miraghaei & Best
 2017 ) were reduced to single-digit class labels within the data set to
atch conventions with other machine learning data sets. As these 

ingle-digit labels are less informative at a glance of an image’s
lass, the three-digit method will be preferentially used going 
orward to ensure clarity. In addition to FR class, each source’s
ight ascension and declination can be retrieved from the image’s 
lename, making them fully traceable. While this is not typical for
achine learning data sets in general, it is a useful measure for

n astronomical data set as this allows for easy cross-matching of
ources between different catalogues. 

.1 Data set analysis 

ith 1256 sources, MiraBest currently represents the largest publicly 
vailable machine learning data set of F anaroff–Rile y galaxies. It
s also the only known data set that provides examples of clearly
abelled non-standard morphology FRs, and hence contains not only 
he largest quantity but also the greatest morphological variety of 
R galaxies. While at present some morphologies are represented 
y only a few samples, it can be expected that their numbers will
ignificantly increase with wide-field, sensitive radio surveys, and 
heir presence within the o v erall population of FR galaxies should
ot be neglected. 
When considering broad FR morphology, there is a mild class 

mbalance between FRI and FRII sources, with forty more FRII 
ources than FRIs. Ho we ver, this is considered unlikely to result in
ny noticeable effects upon performance of machine learning models; 
hile significant class imbalances can lead to a model learning it can
btain a high o v erall accurac y by labelling all or most images as the
RASTAI 2, 293–306 (2023) 



298 F. A. M. Porter and A. M. M. Scaife 

R

m  

F  

e
 

m  

s  

l  

(  

d  

i  

c
R  

t  

c  

e  

t  

t  

a  

w  

d  

t
 

a  

i  

t  

F  

t  

c  

t  

s  

l  

s  

s
 

a  

i  

b  

a  

S  

i  

l  

a  

n  

n  

s  

r
 

a  

i  

a  

s  

s  

m  

c  

s  

t  

n  

a  

t  

t  

b  

m  

t  

c  

f  

o
 

l  

r  

w  

t  

e  

c  

F  

g

5

A  

r  

a  

w  

f  

a  

t  

p
 

t  

p  

t  

F  

s  

t  

c  

m
 

o  

t  

o  

u  

b  

l  

i  

i  

p  

d

6

H  

t  

h  

a  

b  

s  

o  

i  

t  

(  

f  

w  

2  

b  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/293/7202349 by guest on 01 August 2024
ajority class (Johnson & Khoshgoftaar 2019 ), the ratio of binary
RI/FRII sources here is approximately 48/52, which is not a large
nough discrepancy to expect this behaviour. 

When considering individual morphological subclasses, a much
ore significant imbalance can be observed. The most populous

ubclass, confidently labelled wide-angle tail FRIs (class 102), is
ess than 15 per cent the size of its standard-morphology counterpart
class 100), and less than one in one hundred FRIIs included shows
ouble–double morphology (class 201). As a result, while their
nclusion as a whole benefits MiraBest by showing examples of less
ommon morphologies that are none the less part of the Fanaroff–
iley classification system as a whole, this data set is not well-suited

o be used to train machine learning models intended to specifi-
ally identify unusual morphologies; there are simply not enough
xamples of each class for a model to be able to learn to classify
hem without sev ere o v erfitting, ev en with data augmentation. For
his reason, MiraBest will generally better serve the needs of the
stronomical community if the morphological subclasses are grouped
ith the o v erall population of their FR class; see Section 5.2 for
iscussion of the merits of this approach and the deri v ati ve data sets
hat have been created for this purpose. 

The hybrid FR galaxies included in MiraBest likewise represent
 very small portion of the data set. Again, such a drastic class
mbalance renders these images unlikely to be useful if attempting
o develop a machine learning model that can differentiate FRI,
RII, and hybrid FR sources, even with data augmentation; instead,

hey may best be used in identifying ways in which hybrid sources
onfound binary FRI/FRII classifiers (Mohan et al. 2022 ). Even so,
he quantity of images available may not allow for a large enough
ample to be statistically significant, and for this reason a separate,
arger data set of hybrid sources was created, incorporating the
ources in MiraBest; see Section 6.1 for information about this data
et and the catalogues of hybrid FR sources it draws from. 

Following the decision not to remove background sources within
 135 arcsec radius of the central FR sources, there are several
mages in which the FR source is comparatively faint, with a bright
ackground source having a noticeably brighter radio flux density;
 selection of these images is shown in Fig. 1 . As discussed in
ection 4.3 , while this does introduce some noise into the data set by

ncluding data that is unrelated to FR galaxies, background sources
ike these are expected to be present in images from other surv e ys,
nd any machine learning model that is to be used on data from a
ew surv e y will need to be able to identify FR galaxies whether or
ot a background source is present. Examples of bright background
ources being included in MiraBest, then, might serve to make more
obust classifiers by including these small pieces of irrele v ant data. 

MiraBest uses any source from Miraghaei & Best ( 2017 ) with
n angular size less than 270 arcsec; as a result, some sources
ncluded in the data set have very small angular sizes, and five
re visually very close to point-like. Of these five, four are FRI
ources, and three of them are uncertainly labelled. One point-like
ource of each class is shown in Fig. 2 . FRIs are expected to be
uch more likely than FRIIs to present this morphology, as their

ore-brightened emission can result in a source with small angular
ize compared to the resolution of the telescope used having only
heir central region detected, with diffuse jets being undetected. It is
ot apparent that the sigma-clipping process has remo v ed noticeable
mounts of source emission from these images, so it is assumed that
hese images are accurate representations of the radio emission of
hese sources. While, to humans, morphological information might
e difficult to glean from these images, it remains possible that a
achine learning model might be able to identify some properties of
ASTAI 2, 293–306 (2023) 
hese sources that allow it to classify them accurately, and perhaps be
apable of distinguishing them from other point-like radio sources;
or this reason, and because they represent a very small proportion
f the data set o v erall, the y were retained. 
While MiraBest is considerably smaller than many machine

earning data sets, this is una v oidable considering the comparative
arity of FR galaxies. As additional sources are identified that appear
ithin the extent of the FIRST survey, it will become possible

o extend it further to allow for a greater representation of the
ntire FR population; meanwhile, ho we ver, it remains the most
omprehensi ve kno wn machine learning data set of FR galaxies.
or direct comparison between MiraBest and other data sets of FR
alaxies, see Section 7 . 

.2 Deri v ati v e data sets 

s can be seen in Table 2 , the unusual morphological subclasses
epresent a small proportion of the entire data set; ‘standard’ FRI
nd FRII sources represent approximately 92 per cent of the images,
ith most other morphologies comprising too small a proportion

or their behaviour to be considered representative of their subclass
s a whole. For this reason, additional class wrappers were created
o allow the classes to be reduced down to simply FRI and FRII
opulations. The resulting simplified data sets were produced: 
Reducing the labelling system to these simplified variants allows

he study of FR galaxies to be reduced to a binary classification
roblem, removing the possibility that an image could be considered
o be ‘misclassified’ if a machine learning model predicts the correct
R class but a different human confidence label or morphological
ubclass than is given by the data set; as humans, we would recognize
he former as being irrele v ant to FR class and the latter to be ‘broadly
orrect’, but this distinction would not be made by a machine learning
odel by default. 
The possibility of some misclassifications being ‘less wrong’ than

thers in this way leads to confusion in the o v erall ability of a model
o classify FR sources accurately, and with such small populations
f sources with unusual morphology being available, it is often more
seful to simply group all sources of a particular FR class together to
etter be able to analyse the population as a whole. While the internal
abels are simplified, it is of note that neither the morphological
nformation nor the confidence of any image are lost – these are
ndependently accessible via the image filename, and thus it remains
ossible to identify any subset of interest within the data set as
esired. 

 SUPPLEMENTA RY  H Y B R I D  DATA  SET  

ybrid radio galaxies are not truly out-of-distribution sources, given
hat the same underlying mechanism is believed to create both
ybrids and binary FR sources, but they none the less represent
 source of confusion for machine learning models trained on
inary sources; they could viably show properties of both classes
imultaneously, resulting in models finding them equally probable
f belonging to both binary classes. Hybrid galaxies also present an
nteresting population to study; their disco v ery helped us to support
he theory that FR morphology is at least part environmentally driven
Gopal-Krishna & Wiita 2000 ), but the mechanism behind their
ormation is still not fully understood and it has been questioned
hether they truly represent a separate FR class (see e.g. Stroe et al.
022 ). In order to identify these sources for study, it is important to
e able to separate them from other radio galaxies and ensure they
re not accidentally misidentified as binary FR sources. 
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Figure 1 Examples of MiraBest images where the brightest source visible is not the central FR source. (a) Confidently labelled FRI (100); (b) Uncertainly 
labelled FRI (110); (c) Confidently labelled FRII (200); (d) Uncertainly labelled FRII (210). Although faint, the FR sources remain visible despite the presence 
of a background source affecting the normalization. 
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.1 Constructing the hybrid data set 

he number of hybrid FR sources contained in the catalogue used 
o create MiraBest is not particularly large; there are only 34 
ources with hybrid labels, 19 being confidently labelled and 15 
ncertainly labelled, while the binary FR classes have many hundreds 
f e xamples. To pro vide a more reliable analysis of the greater
opulation of hybrid FRs, additional hybrid sources were sought 
ut. As this variety of FR morphology is seen far less frequently
han binary FRs, it was not expected that it would be possible to
dentify an equally large population, but even a slight increase in 
he number of hybrid sources would allow for a more statistically 
horough exploration of their properties. 

Two additional catalogues of hybrid sources were identified; 
umari & Pal ( 2021 ) searched systematically within FIRST data to

ocate 45 confirmed hybrids and 5 candidate hybrids, while Kapi ́nska 
t al. ( 2017 ) located 25 candidate hybrids within FIRST via the Radio
alaxy Zoo citizen science project (Banfield et al. 2015 ). These were
ssessed for suitability for inclusion in a hybrid data set matching
he image processing methods of MiraBest. 

Sources in these two catalogues were labelled as either hybrid 
r hybrid candidate rather than MiraBest’s confident and uncertain 
lassification labels; to allow for a unified labelling system, the 
ormer class w as tak en to be equi v alent to the confidently classified
ybrids in MiraBest and the latter equi v alent to uncertainly classified
ybrids. The list of coordinates was compared to those of the
ybrids in MiraBest to check for duplicate sources, resulting in two
ources from Kumari & Pal ( 2021 ) being removed for being already
ontained in MiraBest. One of these was labelled as a confident
ybrid by Miraghaei & Best, while Kumari & Pal listed it as a hybrid
andidate, highlighting that even when classified by humans, a degree 
f uncertainty remains in classification confidence; the second was 
greed by both to be a certain hybrid. 

Two sources from Kapi ́nska et al. ( 2017 ) were found to have angu-
ar sizes exceeding the 270 arcsec size limit imposed upon MiraBest,
RASTAI 2, 293–306 (2023) 
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R

Figure 2 Three examples of FR galaxies that are observed to have point-like morphology. (a) Confidently labelled FRI (100); (b) Uncertainly labelled FRI 
(110); (c) Confidently labelled FRII (200). There is no clear sign of emission having been lost due to sigma-clipping, so it is assumed that these sources simply 
have a small enough angular size that obvious FR features are not apparent. 
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nd were hence remo v ed from consideration; upon processing, a
hird was identified visually to have some of its emission cropped by
he image processing, and it was likewise remo v ed. Of the remaining
mages, seven were noted to have a bright source present that did not
ppear to be part of the hybrid emission. While it would be possible
o remo v e an y background sources that are clearly separated from the
 ybrid g alaxy, the presence of background sources is not unexpected
ithin radio data, and thus allowing these images to remain with
ackground sources intact provides a more realistic representation
f the environments around hybrid galaxies. 
With this, a data set of 104 hybrid sources was created, with a

otal of 63 confident and 41 uncertainly labelled hybrids; 34 sources
rom the original set included in MiraBest, 48 from Kumari & Pal,
nd 22 from Kapinska et al. This represents a threefold increase
pon the number originally provided by MiraBest, and is believed
o be the largest single data set of hybrid FR sources available at
resent. 

 C O M PA R I S O N  TO  EXISTING  FR  DATA  SETS  

s discussed previously, the population of labelled F anaroff–Rile y
alaxies is relatively small, and consequently relatively few data
ets have been constructed focusing upon these sources. Most derive
heir sources from a combination of several FR catalogues, notably
RICAT (Capetti et al. 2017 ) and FRIICAT (Capetti et al. 2018 )
both catalogues of FR galaxies found within the FIRST surv e y), and
oNFIG (the Combined NVSS-FIRST Galaxies sample) (Gendre &
all 2008 ). Some background regarding the composition of these

atalogues will be discussed before examining the data sets using
hese sources. 

.1 FRICAT and FRIICAT 

oth FRICAT and FRIICAT were developed with the intention
o provide large and comprehensive catalogues of F anaroff–Rile y
alaxies that would allow for better understanding of their o v erall
roperties, with the particular goals of allowing their luminosity
unctions, environment, and evolution to be studied (Capetti et al.
017 , 2018 ). At the time of its creation, FRICAT was the single
argest catalogue of FRI galaxies in existence, containing more than
ouble the sources of previous catalogues. 
ASTAI 2, 293–306 (2023) 
Both catalogues draw from a parent sample of radio sources visible
n FIRST from Best & Heckman ( 2012 ) that provide information
egarding whether their emission is associated with an active galactic
ucleus. They limit their sample for consideration to those with
edshifts z < 0.15 – greater than Miraghaei & Best ( 2017 )’s limit of
 < 0.1 – and angular size greater than 11 . ′′ 4, to ensure all sources are
esolved in FIRST. Galaxies were visually classified, and labelled
ith an FR class only if at least two of three human classifiers agreed
n a classification. 
FRICAT is comprised of a total of 219 galaxies with FRI
orphology; no specific morphological labels were provided for the

ase catalogue, although the authors note that their inclusion criteria
oth permitted the presence of narrow-angle tail sources and rejected
ide-angle tail sources. 
FRIICAT consists of 122 galaxies with FRII morphology; again,

o specific morphological labels were provided in the catalogue, but
he authors state that the majority of the galaxies used were ‘double’
ources, i.e. ones where there is no detectable core emission, with all
adio flux being in the lobes. 

The criterion of requiring the agreement of multiple human
lassifiers for inclusion in these catalogues was commented by the
uthors to significantly limit the number of suitable sources within
he population they examined, stating that ‘more than half of the 714
adio galaxies extended more than 30 kpc cannot be allocated to any
R class’. As a result, sources from these catalogues are taken to be
qui v alent to MiraBest’s ‘confidently labelled’ images, as FRICAT
nd FRIICAT’s construction does not allow for morphological
mbiguity. 

A direct comparison between Miraghaei & Best ( 2017 ) and these
wo catalogues is also made in Capetti et al. ( 2018 ), as all three
atalogues draw from the same parent sample of sources in Best &
eckman ( 2012 ). It is noted that, despite this, only around 25 per cent
f the sources in FRICAT and FRIICAT are included in Miraghaei
 Best ( 2017 )’s catalogue; this is ascribed in part to different criteria

or inclusion for properties such as flux and angular size, and in part
ecause Miraghaei & Best ( 2017 ) requires that its sources be labelled
s having multiple radio components, thus rejecting many FRIs
ithout clearly separated radio emission that appear in FRICAT. On

he whole, ho we ver, the authors find that, despite different selection
ethods, the properties derived from each set of FR galaxies are not

issimilar. 

art/rzad017_f2.eps
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.2 The combined NVSS-FIRST Galaxies sample (CoNFIG) 

oNFIG’s construction of a catalogue of F anaroff–Rile y galaxies 
as similarly moti v ated to FRICAT and FRIICAT; to provide as large

s possible a data set of labelled FR galaxies to allow study of their
roperties for a variety of purposes, but notably to question whether 
he F anaroff–Rile y dichotomy was the best method to classify these
ypes of galaxies, given the existence of hybrid sources, which show 

haracteristics of both (Gendre & Wall 2008 ). 
Sources in CoNFIG, as the catalogue’s name suggests, were 

dentified amongst the population of sources visible in both NVSS 

nd FIRST with relatively high NVSS flux density. The catalogue 
s comprised of four sets of combined observations (CoNFIG-1 
hrough CoNFIG-4), and the flux density requirements differ between 
he dif ferent observ ation sets ( S NVSS > 1.3, 0.8, 0.2, and 0.05 Jy,
espectively). 

In all cases, sources were morphologically classified either by 
dentifying an established label from the 3CRR catalogue (Laing 
t al. 1983 ), or by visual inspection of NVSS and FIRST contours.
ossible labels within this data set are FRI, FRII, ‘compact’ (size <
 arcsec), and ‘unclassifiable’ (extended, but with morphology that 
annot be assigned an FR class). It is of note that an y observ ed hybrid
ources were ‘classified according to the characteristics of the most 
rominent jet’, and thus CoNFIG contains an indeterminate quantity 
f hybrid sources. 
The total population of CoNFIG is 71 FRIs, 466 FRIIs, 285 

ompact objects, and 37 unclassifiable sources. This population 
hows clear imbalance in fa v our of FRIIs, which is not unexpected;
iven that FRIIs have intrinsically higher luminosities than FRIs, 
n o v errepresentation of FRIIs at high redshift may be anticipated,
articularly for the CoNFIG populations with a larger minimum flux 
ensity requirement. Consequently, it is likely that a bias towards 
RIIs could have been introduced. Because of this bias, CoNFIG 

lone is not especially well-suited for use as a FRI/FRII data set
ithout appreciable data augmentation being used upon its FRI 

ources. 

.3 The FR-DEEP batched data set 

he FR-DEEP batched data set (Tang et al. 2019 ) is a catalogue of
 anaroff–Rile y galaxies of classes FRI and FRII, drawing its sources
rom a combination of FRICAT and CoNFIG, and using image data 
rom both FIRST and NVSS. 

.3.1 Source selection 

s the methods used to compile these two catalogues differed in 
heir methods of classification, the CoNFIG sources were subject to 
dditional inspection to ensure their suitability for FR-DEEP. 

A spectroscopic redshift was required for inclusion in this data 
et; these were not available for all CoNFIG sources, resulting in 
n initial reduction to 638 sources. Compact and uncertain sources 
ere remo v ed, as the lack of definite FR class rendered them useless

or a binary FR data set. The remaining FRI and FRII sources are
abelled as either ‘confirmed’ or ‘possible’ in their classification 
ithin CoNFIG, via additional visual inspection via either the VLBA 

alibrator list (Beasley et al. 2002 ; Fomalont et al. 2003 ; Petrov
t al. 2005 , 2006 ; Kov ale v et al. 2007 ) or the Pearson–Readhead
urv e y (Pearson & Readhead 1988 ); only ‘confirmed’ sources being
ncluded in this data set. Although the authors do not explicitly state
s much, it is likely that, by rejecting sources with only ‘possible’
R classification, many if not all of the hybrid sources within 
oNFIG will have been removed from FR-DEEP, reducing the risk 
f ‘confusing’ morphologies being present. With this complete, a set 
f 50 FRIs and 390 FRIIs was deemed suitable for use. 
The reduced CoNFIG sample was then combined with the 219 

RICAT FRI sources. As three of the FRIs were found in both
atalogues, this resulted in a final population of 266 FRIs and 390
RIIs. As this represents a split of approximately 40 per cent FRI,
0 per cent FRII, it is a noticeably imbalanced data set still; Tang
t al. ( 2019 ) acknowledge this, and suggest that FR-DEEP should
e augmented so as to result in a more even balance between the
lasses. 

.3.2 Construction 

he data processing methods used in FR-DEEP, as briefly mentioned 
n Section 4 , were used as a model for MiraBest. As such, the steps
erformed to prepare images for inclusion in FR-DEEP are broadly 
dentical, and Section 4 should be referred to for full detail on these;
e will here identify principally where the methods used for FR-
EEP differ from MiraBest. 
FR-DEEP was designed for transfer learning, to e v aluate the

erformance of a classifier trained upon images from one surv e y
hen used to classify images from a different surv e y . Consequently ,

wo variants were created using the same list of sources: FRDEEPF,
hich uses data from FIRST, and FRDEEPN, which uses data from
VSS. 
Image data for both sets of sources were initially downloaded 

rom SkyV iew V irtual Observatory as 300 × 300 pixel images
entred upon the FR source; this corresponds to an angular size
f 540 arcsec for FIRST and 4500 arcsec (75 arcmin) for NVSS. As
oth NVSS and FIRST images had radio background noise present, 
mages underwent a sigma-clipping process identical to that used on 

iraBest to minimize this noise, and were scaled using a likewise
dentical method. 

At this stage, the data set was augmented via image rotation
o create a far larger quantity of images with a more even split
etween classes. FRI images were rotated in 1 ◦ increments between 
 

◦ and 73 ◦, while FRII images were rotated between 1 ◦ and 50 ◦,
esulting in approximately 20 000 images of each class. As there
s no preferred orientation for FR galaxies in space, this method
f augmentation is an ef fecti ve method to artificially increase the
umber of images that can be used in a data set; ho we ver, it being
erformed during data set construction means that any later attempts 
o augment the data set via rotation have a risk of ef fecti vely
ancelling this rotation out, resulting in multiple identical images 
eing present in the doubly augmented data set. If any further data
ugmentation were deemed desirable, rotation should be a v oided 
n fa v our of methods such as flipping, cropping, and scaling the
ources. 

Once the data set had been augmented, all of the images were
lipped down to a size of 150 × 150 pixels, again centred on the
R source. Unlike MiraBest, no circular mask was used to remo v e
ata at a radius of > 75 pixels from the image centre; this potentially
llows for a slightly greater proportion of bright background sources 
o have been included, but as discussed in Section 4.2 the inclusion
f such sources is not generally expected to have deleterious effects
pon a data set. The images were then converted into PNGs, and
he finalized data set was separated into a training set of 27 447
mages and a test set of 11 690 images, equi v alent to an approximately
0 per cent/30 per cent test-train split. As FR-DEEP was designed for
inary classification, it expresses its labels as vectors: [1,0] for FRIs,
RASTAI 2, 293–306 (2023) 
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nd [0,1] for FRIIs. This is functionally equi v alent to a MBFRFull’s
ystem of labelling FRIs as class 0 and FRIIs as class 1. 

.3.3 Comparison to MiraBest 

n its unaugmented form, FR-DEEP consists of a total of 656
mages, and hence contains around half as many sources as

iraBest, and has a noticeably more imbalanced FRI/FRII split of
0 per cent/60 per cent versus MiraBest’s 48 per cent/52 per cent.
s mentioned in Section 7.3.1 , augmentation was viewed by Tang

t al. ( 2019 ) as a necessary step to ensure both a better balance
etween classes and to create a data set of size comparable to other
ontemporary machine learning data sets. As many commonly used
odels are not equi v ariant, they will identify each rotated image

s a completely unique source, and thus augmenting the data set
ia rotation is not expected to introduce overfitting. Ho we ver, it is
one the less apparent that more information about the variety of
orphologies in FR galaxies may be obtained from having a greater

umber of unique sources than by providing multiple rotated images
f the same source; consequently, MiraBest may be considered to
rovide a broader representation of the FR population as a whole. 
FR-DEEP does not account for morphological variation in its

ources beyond the binary FR classes; it is unclear from FRICAT,
RIICAT, and CoNFIG’s source information if any sources with
onstandard morphology were included, or if all sources represent
classic’ morphology. If the former is the case, this does not
ecessarily make FR-DEEP less useful a data set, as the inclusion
f these sources would be expected to result in models flexible
nough to be able to identify non-standard morphology as belonging
o the appropriate FR class, but it would reduce the ability to
dentify any characteristics that the model might associate with such
ubclasses without manually inspecting and relabelling all images
ith an appropriate subclass label. If instead the latter is the case,

nd all images are of ‘standard’ morphology, then no relabelling
s necessary; ho we ver, gi ven that all images would then be both
onfidently labelled and standard-morphology, it might suffer from
he effects of being o v erly curated – namely, resulting in models that
re o v erconfident in their predictions on sources with morphology
he y hav e not been e xposed to during training. MiraBest’s e xplicit
nclusion of uncertainly labelled sources as well as morphological
ubclasses allows for direct comparison of model performance on
ifferent combinations of subclass and human labelling confidence,
ermitting a more in-depth study of which types of sources a
lassifier tends to struggle with and whether this corresponds to
imilar difficulty in classification by humans. 

MiraBest was designed to match the construction methods of FR-
EEP closely enough that the two catalogues could potentially be
erged if a yet larger data set were desirable; besides the addition

f a centred mask, MiraBest and FRDEEPF images are identically
rocessed. Doing so, ho we ver, would require that the combined
atalogue were searched for duplicate images before it were used
ith any machine learning model. As around 25 per cent of sources

n Miraghaei & Best ( 2017 ) were noted to also be present in FRICAT
nd FRIICAT (see Section 7.1 ), so it is to be expected that multiple
ources found in MiraBest may also be found in FR-DEEP. While a
mall quantity of duplicate images would be unlikely to significantly
mpact any model that trained upon this combined data set, if as many
s 25 per cent of FR-DEEP’s images have duplicates in MiraBest
hen their inclusion is expected to have a negative impact upon
he training process, either by providing extra sources that add no
ew information if both present in the training set, or by allowing
ASTAI 2, 293–306 (2023) 
or o v erfitting if identical images are in the training and test sets.
emo ving an y duplicate sources, then, is considered of significant

mportance if combining these two data sets. On the whole, if a
arger number of FR sources were deemed necessary for machine
earning, one of the simplest methods would be to merge MiraBest
nd FR-DEEP with appropriate filtering to identify possible image
uplicates, with the caveat that some effort should be made to
nv estigate if an y sources show ob viously non-standard morphology
nd relabel them accordingly if so. 

.4 Aniyan and Thorat’s catalogue 

niyan & Thorat ( 2017 )’s work presents a data set of Fanaroff–
iley galaxies of classes FRI and FRII as well as radio galaxies with
ent-tail morphologies, using sources from CoNFIG, FRICAT, and
roctor ( 2011 )’s catalogue of bent radio galaxies. All image data
ere obtained from FIRST. The authors did not offer a name for this
ata set, but for brevity it will be referred to hereon as AT17. 

.4.1 Source selection 

T17’s methodology of initially selecting sources from CoNFIG
as similar to Tang et al. ( 2019 ), in that they chose to use only

mages which were labelled by CoNFIG as ‘confident’ FRI or FRII
ources, rejecting all compact objects, unclassifiable sources, and
ources with less certain morphological class which were labelled
ith a ‘possible’ FR class, resulting in a sample of 50 FRIs and
90 FRIIs. Likewise, to reduce the imbalance between classes,
RICAT’s 219 FRI sources were added. While MiraBest treats
ent-tail morphologies as simply being non-standard morphological
ariants of FRI galaxies, Aniyan & Thorat ( 2017 ) chose to treat them
s a third class of radio galaxy; as the other FR galaxies are presumed
o show ‘standard’ morphology, they could be considered distinct
nough to form their own population. Proctor ( 2011 )’s catalogue
rovides a number of varieties of bent-trail galaxies, but only those
abelled as being both confidently classified and either wide-angle-
ail or narrow-tail morphology were included in AT17, for a total of
99 bent-tail sources. 
From this initial sample, sources were then inspected, and rejected

or inclusion if they showed ‘strong artefacts’ (which are not
laborated on, but are assumed to be inherent in FIRST’s data),
f multiple sources were visible, or if their angular size was too
reat for intended image size. Once this was done, any images found
o be present in both the FR sample and the bent-tail sample were
emo v ed to prev ent confusion from identical sources having multiple
abels, and FRICAT sources were visually inspected to remo v e an y
dditional bent-tail sources. With this done, a final population of 178
RIs, 284 FRIIs, and 254 bent-tail galaxies was obtained. 

.4.2 Construction 

he pre-processing methods used by Aniyan & Thorat ( 2017 )
ere used as a basis for those of FR-DEEP; consequently, image
rocessing follows a very similar method as has been previously
iscussed. Images of all sources were obtained from FIRST data at
n initial size of 300 × 300 pixels, and all pixels below 3 σ of the
mage mean were clipped. Sigma-clipping to the levels of 2 σ and 5 σ
ere also trialled, but it was found that this resulted in poor accuracy

n any classifiers used; while the authors do not state as much, it
s assumed that sigma-clipping to 2 σ is likely to leave some radio
ackground present, leaving machine learning models attempting
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o identify features in noise, while sigma-clipping to 5 σ could be 
 xpected to remo v e portions of diffuse emission which are significant
eatures in both FRI and bent-tail sources, destroying useful source 
ata. No normalization was performed; if not intending to convert an 
mage to PNG or another similar graphics format, normalizing to the 
olour values of said format is not necessary. Ho we ver, as discussed
reviously, the inherent flux density properties of FR galaxies are 
uch that foregoing normalization might lead to a machine learning 
odel largely ignoring morphological features to classify based on 
aximum flux density; this possibility is not discussed by the authors,

o this effect may not be clearly apparent in their work. 
In the sample used to create this data set, FRIs are noticeably

nderrepresented compared to the other two classes; as with FR- 
EEP, the data set was augmented via rotation, with each image 

otated multiple times to produce an approximately even balance 
f classes, but these augmentations were only to be applied to the
raining set, with the validation set left unaltered. Consequently, the 
rain-validation split was applied at this stage; 53 FRIs, 57 FRIIs, and
7 bent-tail sources (corresponding to around 30 per cent of the total
ata set population) were selected for the validation set and excluded 
rom the augmentation process. 

Unlike FR-DEEP, the increments at which each training set image 
as rotated were varied based on class rather than setting differing 
aximum angles of rotation; FRIs were rotated at increments of 1 ◦,
RIIs at 2 ◦, and bent-tail sources at 3 ◦. The authors also state that
ersions of the images that had been both flipped and rotated were
roduced, but do not specify whether these were used in the data set.
nce the training set had been supplemented, all images were again 

ropped to a final size of 150 × 150 pixels. 
At this stage, the training set was separated into two portions – a

raining set and a test set – at proportions of 80 per cent/20 per cent.
y using this test set during training, the validation set separated 
arlier could serve as examples of truly unseen data, acting as a
econd check against o v erfitting if necessary. Following this, the final
ata set population was approximately 94 000 sources in the training 
et ( ∼36 000 FRI, ∼33 000 FRII, ∼25 000 bent-tail), approximately
3 000 sources in the test set ( ∼9000 FRI, ∼7900 FRII, ∼6400 bent-
ail), and 187 sources in the validation set (53 FRIs, 57 FRIIs, 77
ent-tail). 

.4.3 Comparison to MiraBest 

n its unaugmented form, AT17 contains a smaller quantity of labelled
RI and FRII sources than both FR-DEEP and MiraBest; its total 
f 462 FR sources makes it approximately one third the size of
iraBest, and it has a similar class balance to FR-DEEP at 39 per cent

RI/61 per cent FRII. While on the whole its image selection and
rocessing methods are similar to the other two data sets (besides
ts lack of normalization), one aspect is significantly different: the 
reatment of bent-tail sources as a third class. 

At present, the exact nature of bent-tail sources is still not 
ompletely certain. Some view them as FRI galaxies with unusual 
orphologies; Miraghaei & Best ( 2017 ) are among this group, 

ncluding wide-angle-tail sources in their catalogue with a FRI 
abel, as do Terni de Gregory et al. ( 2017 ). Others view them
s potentially being a completely separate population, given that 
heir bent morphology often seems more alike FRIIs than FRIs; 
hile constructing WA TCA T (a wide-angle-tail galaxy catalogue 
uilt to complement FRICAT and FRIICAT), Missaglia et al. 
 2019 ) found that at 1.4 GHz wide-angle-tail sources have flux
ensity more comparable to FRIIs, abo v e the classic flux cut-off,
ut when their radio power is plotted against optical magnitude 
hey instead fall within the region populated by FRIs. Aniyan &
horat ( 2017 ) find that their three-class classifier is much more

ikely to mislabel bent-tail sources as FRIIs than FRIs, although as
iscussed previously this may have been affected by the lack of image 
ormalization. 
While there does not yet appear to be a full consensus as to where

ent-tail galaxies fit in to the FR dichotomy, it is generally agreed
hat if not an entirely separate class, bent-tail sources resemble FRIs

ore closely than either FRII or hybrid sources. Consequently, if 
e are to treat bent-tail sources as a subset of FRI galaxies (as
one within MiraBest), AT17 becomes imbalanced in the opposite 
irection: o v er 60 per cent of the unaugmented images are of
RIs, with 60 per cent of that group being bent-tail sources, which
oes not reflect the true pre v alence of this morphology. Because
f this imbalance and focus upon only standard FRI, standard 
RII, and bent-tail morphologies, AT17 may be considered to be 
 less diverse catalogue in terms of overall FR morphology than
iraBest, in addition to containing a noticeably smaller population of 

ources. 
Despite sharing broadly the same image processing methods, 
iraBest and AT17 are not immediately compatible to be merged 

nto a single data set because of AT17’s lack of scaling and the
reviously discussed mismatch in their class structure. The former 
s more readily o v ercome, as the application of the same scaling
ethod used in both MiraBest and FR-DEEP is still possible to

erform on the processed AT17 images, while the latter requires 
onsideration as to the most recent consensus on the properties of
ent-tail galaxies. Additionally, as with FR-DEEP, the presence of 
uplicate sources is a concern; as previously discussed, Miraghaei 
 Best ( 2017 )’s catalogue shares a noticeable population of sources
ith FRICA T and FRIICA T, and while it is unclear whether any of

he bent-tail sources of Proctor ( 2011 )’s are likewise present, both
atalogues drawing from data from the FIRST survey means it is
ntirely possible. Combining these catalogues, then, is not trivial, and 
his difficulty makes AT17 a less appealing immediate candidate than 
R-DEEP for expanding upon the o v erall source count; ho we ver, if
 larger population of bent-tail sources is desired for study, AT17
s the most straightforward catalogue to adapt for use alongside 

iraBest. 

 T H E  MIRABEST  DATA  SET  P Y T H O N  CLAS S  

he structure of the MiraBest data set mimics that of the widely used
NIST (LeCun & Cortes 2010 ) and (e.g.) CIFAR (Krizhevsky et

l. 2009 ) data sets that are used with popular deep learning software
ackages such as PYTORCH (Paszke et al. 2019 ) and KERAS (Chollet
t al. 2015 ). 

A Python class is provided with the data set itself in order to
acilitate its use with these packages with a structure inherited from
he PYTORCH data.Data set class. When using this class there 
s no need to download the MiraBest data set independently as the
ata loader will pull a remote copy automatically if no local instance
s found. As for the PYTORCH MNIST and CIFAR data loaders a
hecksum is instituted in order to a v oid corrupted versions of the
ata set being created. 
The metadata for each sample includes both a ‘label’ and a ‘fine

abel’, where the label indicates the binary FRI/FRII classification, 
ee Table 3 , and the fine label indicates the morphological sub-
lassification, see Table 2 . Child classes for the sub-samples MiraBest
onfident, MiraBest Uncertain and MiraBest Hybrid, see Table 3 , 
re also included in the Data set class. 
RASTAI 2, 293–306 (2023) 
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R

Table 3. The three deri v ati ve data sets created from MiraBest with simplified internal class labelling system and the highest 
classification accuracy reported in the literature for each, where [1] Slijepcevic et al. ( 2022 ); [2] Scaife & Porter ( 2021 ). 

Name 
No. of 
images FR classes Confidence 

No. of 
images Class label 

Best reported 
accuracy Ref. 

MBFRFull 1222 FRI Any 591 0 86.9 ± 0.5 per 
cent 

[1] 

FRII Any 631 1 – –
MBFRConfident 833 FRI Confident 397 0 96.54 ± 1.29 per 

cent 
[2] 

FRII Confident 436 1 – –
MBFRUncertain 389 FRI Uncertain 194 0 N/A –

FRII Uncertain 195 1 – –

Table 4. Mean and standard deviation of the MiraBest training data set and 
its deri v ati ves. 

Data set μ σ

MiraBest (full) 0.0031 0.0352 
MiraBest Confident 0.0031 0.0350 
MiraBest Uncertain 0.0031 0.0356 
MiraBest Hybrid 0.0036 0.0375 
CRUMB 0.0029 0.0341 
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Table 5. The ‘complete’ class labels used within the CRUMB data set. If a 
source is not present in a data set, it is labelled as ‘ −1’. 

Entry 0 Entry 1 Entry 2 Entry 3 
MiraBest FR-DEEP AT17 MB Hybrid 

0–9 0 - FRI 0 - FRI 0 - Conf. hybrid 
(see Table 2 ) 1 - FRII 1 - FRII 1 - Unc. hybrid 
– – 2 - Bent –
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.1 Data set normalization 

or deep learning applications it is standard practice to normalize
ndividual data samples from the data set by shifting and scaling as a
unction of the mean and variance calculated from the full training set
LeCun et al. 2012 ). The normalization parameters for the MiraBest
raining data set and its deri v ati ve training data sets are listed in
able 4 . 

 C RU M B :  COLLECTED  R A D I O G A L A X I E S  

SING  MIRABEST  

ll of the FR galaxy data sets discussed in this work use image
ata from the VLA FIRST surv e y, and as such it is possible to
ombine them into a single data set without encountering problems
s a result of differing surv e y properties, such as (e.g.) angular
esolution. Doing this would allow for a larger number of sources
o be used for training and, if the parent data set of each source
ere to be labelled, allow for direct comparison of performance on

ach of these data sets. Ho we ver, this cannot be done by simply
erging the data sets together; both FR-DEEP and AT17 draw from

he same catalogues for their sources, meaning that a simple merge
ould not only result in duplications of sources but potentially

hose duplications having multiple different labels, which would
f fecti vely result in label noise. This moti v ated the creation of the
ollected Radiogalaxies Using MiraBest (CRUMB) data set, which

s a cross-matched combination of MiraBest, FR-DEEP, AT17, and
iraBest Hybrid. This data set retains not only a record of which

arent data sets each source can be found in but their label in each of
hese data sets, and hence offers the ability to select labels from the
ser’s catalogue of choice. 

.1 Constructing CRUMB 

o construct CRUMB, the full lists of the sources used in FR-DEEP
Tang 2019 ) and AT17 (Aniyan & Thorat 2017 ) were cross-matched
ith the sources in MiraBest and MiraBest Hybrid to identify
uplicates. Since the location of the source centre was not expected to
ASTAI 2, 293–306 (2023) 
e exactly consistent between different catalogues, duplicates were
ound by searching for sources which had coordinates within 270
rcsec of ones another, i.e. within the same image using MiraBest’s
mage size, and checking whether the coordinates aligned with the
ame source using visual inspection. Using this method, a total of
100 unique sources were found to exist when combining these four
ata sets, with 541 being present in more than one data set. 
For this combined sourcelist, the class labels of sources which

ppear in more than one data set were examined to check for
isagreements in FR class between different data sets. The vast
ajority of the duplicate sources (518 of 541) were found to have

een classified with the same o v erall FR class in all data sets, with 470
lso agreeing on morphological subclass. A small number of sources
15) showed clearly contradictory labels, with sources labelled as FRI
n one data set being labelled as FRII in another. This demonstrates
he label noise issue that can arise if merging machine learning
atalogues without checking for duplicate sources, which if not
ddressed would result in models learning multiple labels for the
ame source. 

To allow for this ambiguity in class to be retained, CRUMB uses
 labelling system which provides both a ‘basic’ and a ‘complete’
abel. The ‘complete’ label is represented by vector with four entries,
ach of which represents a source’s class label in each of the four
arent data sets as shown in Table 5 . If a source is not present in
 given data set, it is denoted with ‘ −1’ in the rele v ant entry. This
llows for multiple class labels to be registered; for example, a vector
f [0, −1, 2, −1] would correspond to a source which is labelled as
 confident standard-morphology FRI in MiraBest, a bent source in
T17, and is not present in FR-DEEP or MiraBest Hybrid. 
Additionally, each source is labelled with one of three ‘basic’

abels: FRI (0), FRII (1), and hybrid (3). These labels are assigned
y the majority label in all the data sets a source appears in; in the
ase of two contradictory labels, we fa v our the label provided by
iraBest. Using this method, all sources labelled by AT17 as ‘bent’

re folded into the FRI class, and a total of 1006 FRIs, 997 FRIIs,
nd 97 hybrid sources are included in CRUMB. 

Images in the CRUMB data set were processed in the same
anner as for MiraBest. Because of the ambiguity in ‘true’ label and
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ack of information on redshift and angular size for many sources,
mage file names are formatted as ‘[source right ascension] [source 
eclination]’ for consistency across this combined data set. Both the 
le name and complete label may be retrieved for any source using

he built-in ‘filenames’ and ‘complete labels’ methods. 

0  USE  O F  MIRABEST  IN  T H E  L I T E R ATU R E  

he first use of MiraBest was made by Bowles et al. ( 2021 ) who
emonstrated that an attention-gated CNN model reco v ered a 92 
er cent accuracy on the MiraBest Confident test set (84 per cent
ccuracy on the full MiraBest test set including uncertain samples), 
xceeding the 88 per cent classification accuracy attained using 
he FRDEEP-F data set by Tang et al. ( 2019 ). Scaife & Porter
 2021 ) used the MiraBest data set to demonstrate that classification
erformance is modestly impro v ed by enforcing both cyclic and 
ihedral equi v ariance in the convolution kernels of a CNN for FR
lassification and that E(2)-equi v ariant models were able to reduce 
ariations in model confidence as a function of galaxy orientation. 
lijepcevic et al. ( 2022 ) explored the effect of data set shift in
emi-supervised learning (SSL) by combining labelled data from 

iraBest with a larger unlabelled data pool from the Radio Galaxy 
oo catalogue (Wong et al., in preparation), demonstrating that when 
ifferent underlying catalogues drawn from the same radio survey 
re used to provide the labelled and unlabelled data sets required for
SL, a significant drop in classification performance is observed. In 
ohan et al. ( 2022 ) the uncertainty associated with classification of

ndividual data samples within the MiraBest data set was explored 
sing Bayesian deep learning, confirming that the machine learning 
odel was less confident about the samples qualified as Uncertain 

y the MiraBest labelling scheme than those labelled as Confident, 
nd that this was amplified for samples labelled as Hybrid. 

1  C O N C L U S I O N S  

achine learning data sets of astronomical data often have different 
equirements than astronomical data sets used for other purposes. For 
mage classification, principle amongst these requirements is having 
eliably labelled data that either exists in large enough quantities to 
ot necessitate augmentation, or exists in smaller quantities that may 
e augmented in such a way that the data set size can be artificially
ncreased without resulting in o v erfitting. These requirements often 
esult in astronomical ML data sets being created for the specific 
esearch needs of a small number of individuals and not being made
eadily available for broader use, as it is assumed that others wishing
o construct a similar data set will likewise independently seek out 
uitable sources which meet their needs. 

F anaroff–Rile y galaxy classification has previously been per- 
ormed using machine learning, but the majority of existing cat- 
logues of FR galaxies have not been used to produce publicly 
ccessible image data sets. Data sets which have been made ac- 
essible, such as FR-DEEP, were found to be limited to only binary
R sources and to contain fewer images – O(10 2 ) – than the largest
urrent catalogues of FR galaxies, which consist of O(10 3 ) examples. 
ecause of this, we felt the need to produce a new publicly accessible
achine learning data set for F anaroff–Rile y galaxies, and created 
iraBest for this purpose. 
At time of writing, MiraBest is believed to be the largest publicly

vailable image data set labelled according to the FR classification 
nd most diverse in terms of inclusion of rarer morphologies. 
dditionally, the option of including the more morphologically 

mbiguous data represented by the ‘uncertainly labelled’ images 
eans that MiraBest may be considered a less curated data set than
any other image classification data sets, which largely present only 

lear and unambiguous images of the target classes. Because of this,
iraBest is suitable for examining the ability of classifiers to identify

nusual and ambiguous sources, and whether the inclusion of these 
ources in a model’s training data helps or hinders performance both
n the whole and in ability to recognize these unusual sources in
articular. 
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