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A B S T R A C T 

In this work we use variational inference to quantify the degree of uncertainty in deep learning model predictions of radio 

galaxy classification. We show that the level of model posterior variance for individual test samples is correlated with human 

uncertainty when labelling radio galaxies. We explore the model performance and uncertainty calibration for different weight 
priors and suggest that a sparse prior produces more well-calibrated uncertainty estimates. Using the posterior distributions for 
individual weights, we demonstrate that we can prune 30 per cent of the fully connected layer weights without significant loss 
of performance by removing the weights with the lowest signal-to-noise ratio. A larger degree of pruning can be achieved using 

a Fisher information based ranking, but both pruning methods affect the uncertainty calibration for F anaroff–Rile y type I and 

type II radio galaxies differently. Like other work in this field, we experience a cold posterior effect, whereby the posterior must 
be down-weighted to achieve good predictive performance. We examine whether adapting the cost function to accommodate 
model misspecification can compensate for this effect, but find that it does not make a significant difference. We also examine 
the effect of principled data augmentation and find that this impro v es upon the baseline but also does not compensate for the 
observed effect. We interpret this as the cold posterior effect being due to the o v erly ef fecti ve curation of our training sample 
leading to likelihood misspecification, and raise this as a potential issue for Bayesian deep learning approaches to radio galaxy 

classification in future. 
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 I N T RO D U C T I O N  

 new generation of radio astronomy facilities around the world such
s the Low-Frequency Array (LOFAR; van Haarlem et al. 2013 ),
he Murchison Widefield Array (MWA; Beardsley et al. 2019 ), the

eerKAT telescope (Jarvis et al. 2016 ), and the Australian SKA
athfinder ( ASKAP ) telescope (Johnston et al. 2008 ) are generating

arge volumes of data. In order to extract scientific impact from these
acilities on reasonable timescales, a natural solution has been to
utomate the data processing as far as possible and this has lead to
he increased adoption of machine learning methodologies. 

In particular for new sky surveys, automated classification algo-
ithms are being developed to replace the by eye approaches that were
ossible historically. In radio astronomy specifically, studies looking
t morphological classification using convolutional neural networks
CNNs) and deep learning have become increasingly common,
specially with respect to the classification of radio galaxies. 

The F anaroff–Rile y (FR) classification of radio galaxies was
ntroduced o v er four decades ago (Fanaroff & Riley 1974 ), and has
een widely adopted and applied to many catalogues since then.
he morphological divide seen in this classification scheme has
istorically been explained primarily as a consequence of differing
 E-mail: devina.mohan@postgrad.manchester.ac.uk 
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et dynamics. F anaroff–Rile y type I (FR I) radio galaxies have
ets that are disrupted at shorter distances from the central super-

assive black hole host and are therefore centrally brightened, whilst
 anaroff–Rile y type II (FR II) radio galaxies have jets that remain
elativistic to large distances, resulting in bright termination shocks.
hese observed structural differences may be due to the intrinsic
ower in the jets, but will also be influenced by local environmental
ensities (Bicknell 1995 ; Kaiser & Best 2007 ). 
Intrinsic and environmental effects are difficult to disentangle

sing radio luminosity alone as systematic differences in particle
ontent, environmental effects, and radiative losses make radio
uminosity an unreliable proxy for jet power (Croston, Ineson &
ardcastle 2018 ). Hence the use of morphology is important for
aining a better physical understanding of the FR dichotomy, and
f the full morphological diversity of the population, which in
urn is useful for inferring the environmental impact on radio
alaxy populations (Mingo et al. 2019 ). It is hoped that the new
eneration of radio surv e ys, with impro v ed resolution, sensitivity,
nd dynamic range, will play a key part in finally answering this 
uestion. 
From a deep learning perspective, the ground work for morpholog-

cal classification in this field was done by Aniyan & Thorat ( 2017 ),
ho used CNNs to classify FR I, FR II, and bent-tail sources. This
as followed by other works involving the use of deep learning in

ource classification (e.g. Banfield et al. 2015 ; Lukic et al. 2018 ;
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u et al. 2018 ). More recently, Bowles et al. ( 2021 ) showed that an
ttention-gated CNNs could perform classification of radio galaxies 
ith equi v alent performance to other applications in the literature, 
ut using ∼50 per cent fewer learnable parameters, Scaife & Porter
 2021 ) showed that using group-equivariant convolutional layers that 
reserved the rotational and reflectional isometries of the Euclidean 
roup resulted in impro v ed o v erall model performance and stability
f model confidence for radio galaxies at different orientations, and 
astien et al. ( 2021 ) generated synthetic populations of radio galaxies
sing structured variational inference. 
Applying deep learning to radio astronomy comes with unique 

hallenges. Unlike terrestrial labelled data sets such as MNIST, which 
ontains ∼70 000 images, and ImageNet, which contains 14 million 
mages, there is a dearth of labelled data in radio astronomy. The
argest labelled data sets for F anaroff–Rile y classification contain 
f order 10 3 labelled images. 1 For deep learning applications, this 
reates the need to augment data sets. Ho we ver, this augmentation
an lead to any biases associated with these small data sets being
ropagated into the larger augmented data sets used to train deep 
earning models and hence into any analysis that uses the outputs of
hose models. 

Another challenge is that of artefacts, misclassifed objects, and 
mbiguity arising from how the morphologies in these data sets 
re defined. Underestimation and miscalibration of uncertainties 
ssociated with model outcomes for data samples that are peripheral 
o the main data mass are well documented in the machine learning
iterature (see e.g. Guo et al. 2017b ), and it has been demonstrated that
ut-of-distribution data points will be misclassified with arbitrarily 
igh precision by standard neural networks (Hein, Andriushchenko & 

itterwolf 2018 ). 
To provide uncertainties on model outputs, probabilistic methods 

uch as Bayesian (and approximately Bayesian) neural networks 
re required (MacKay 1992a , b ). When properly calibrated, the 
ncertainty estimates from these approaches can serve as a diag- 
ostic tool to mitigate the effect of increasingly distant data points
nd out-of-distribution examples. Ho we ver, with the exception of 
caife & Porter ( 2021 ), to date there has been little work done on
nderstanding the degree of confidence with which CNN models 
redict the class of individual radio galaxies. In modern radio 
stronomy, where astrophysical analysis is driven by population 
nalyses, quantifying the confidence with which each object is 
ssigned to a particular classification is crucial for understanding 
he propagation of uncertainties within that analysis. 

In this work we use variational inference (VI) to implement 
 fully Bayesian CNN and quantify the degree of uncertainty in 
eep learning predictions of radio galaxy classifications. This differs 
rom the approach of Scaife & Porter ( 2021 ) who used dropout
s a Bayesian approximation to estimate model confidence (Gal & 

hahramani 2016 ). They studied one specific aspect of the model 
erformance (variation with sample orientation), and as such it is 
ot directly comparable to this work. We compare the variance of
ur posterior predictions to qualifications present in our test data that 
ndicate the level of human confidence in assigning a classification 
abel and show that model uncertainty is correlated with human 
ncertainty. We also investigate a number of the challenges that face 
he systematic use of Bayesian deep learning from the perspective of
adio astronomy. 
 We note that the Radio Galaxy Zoo catalogue (Banfield et al. 2015 ) contains 
f order 10 4 objects, but these are not labelled by morphological type. 
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The structure of the paper is as follows: in Section 2 we
ntroduce the variational inference method and its application to 
eural networks; in Section 3 we describe how different measures of
ncertainty can be reco v ered from the learned variational posteriors
sing this approach; and in Section 4 we describe the data set being
sed in this work. In Section 5 we introduce the convolutional neural
etwork that forms the primary model for this work, as well as how it
s trained; in Section 6 we describe the results of that training in terms
f model performance and uncertainty quantification in the context 
f the specific radio galaxy classification problem being addressed, 
s well as the wider machine learning literature; in Section 7 we
iscuss the cold posterior effect and hypotheses for mitigating it; and
n Section 8 we draw our conclusions. 

 VA R I AT I O NA L  I NFERENCE  F O R  DEEP  

E A R N I N G  

he notion of ‘noisy weights’ that can adapt during training was
rst proposed by Hinton & van Camp ( 1993 ) to reduce the amount
f information in network weights and prevent overfitting in neural 
etworks. Grav es ( 2011 ) dev eloped a stochastic variational inference
SVI) method by applying stochastic gradient descent to VI using 
iased estimates of gradients. SVI allows VI to scale to large data sets
y taking advantage of mini-batching and Graves ( 2011 ) considered
arious choices of standard prior and posterior distributions such 
s the Delta function, Gaussian, and Laplace distributions. Blundell 
t al. ( 2015 ) built on this work and proposed the Bayes by backprop
BBB) algorithm, which combines stochastic VI with the reparam- 
terization trick (Kingma, Salimans & Welling 2015 ) to o v ercome
he problems encountered while using backpropagation with SVI. 
sing this algorithm, one can calculate unbiased estimates of the 
radients and use any tractable probability distribution to represent 
ncertainties in the weights. 
To set up the problem of Bayesian inference, we consider a set of

bservations, x , and a set of hypotheses, z . For instance, for a neural
etwork z are the parameters of the model. 
Bayes rule allows us to compute the posterior distribution, p ( z| x ): 

 ( z| x) = 

p ( z, x) 

p ( x) 
= 

p ( x| z) p ( z) 

p ( x) 
, (1) 

here p ( x | z) is the likelihood of the data given the hypothesis and
uantifies how well the hypothesis fits to the data; p ( z) is the prior
istribution; and the denominator, which is called the evidence , is
he marginalized probability of the observations. 

To compute the evidence, we need a solution to the following
ntegral, 

( x) = 

∫ 
p( z, x) d z = 

∫ 
p( x| z) p( z) d z, (2) 

hich is obtained by inte grating o v er all possible values of z. This
ntegral is often intractable either because there is no closed form
olution available or the computation is exponential in time because 
t requires e v aluating the integral for all possible values of z, which
s very high dimensional. This in turn makes the posterior, p ( z| x ),
ntractable. 

.1 The variational inference cost function 

n variational inference, a parameterized probability distribution, 
 ( z), is defined as a variational approximation to the true posterior,
 ( z| x ). The family of probability distributions, D , defines the com-
lexity of the solution that can be modelled. For instance, a family
MNRAS 511, 3722–3740 (2022) 
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f Gaussians parameterized by mean, μ, and variance, σ 2 , may be
efined. The goal of VI is to find the selection of parameters that
ost closely approximates the exact posterior. 
The difference between the variational posterior, q ( z), and the

xact posterior, p ( z| x ), is typically measured using the Kullback–
eibler (KL) divergence (Kullback & Leibler 1951 ). Therefore, to
nd the optimal variational density from the family of densities, the
ollowing optimization problem is solved: 

 

∗( z) = arg min q∈ D KL [ q( z) || p( z| x)] . (3) 

f we expand above equation using the formula for KL divergence, 

L [ a( x ) || b( x )] = 

∫ 
a( x ) log 

a( x ) 

b( x ) 
d x , (4) 

e get 

 

∗( z) = arg min q∈ D 

∫ 
q ( z) log 

q ( z) 

p( z| x) 
d z 

= arg min q∈ D 

∫ 
q ( z) log q ( z) d z −

∫ 
q ( z) log p( z| x) d z 

= arg min q∈ D E q( z) [ log q( z)] − E q( z) [ log p( z| x)] 

= arg min q∈ D E q( z) [ log q( z)] − E q( z) [ log p( z, x)] + log p( x) , 

(5) 

here the expectation value is calculated according to 

 b( x) [ a( x)] = 

∫ 
a( x ) b( x ) dx . (6) 

e can see the dependence of minimizing the KL divergence on the
ntractable integral p ( x ) in equation (5). Therefore, to find the optimal
ariational density q ∗( z), the abo v e equation is only minimized up to
n additive constant, 

 

∗( z) = arg min q∈ D E q( z) [ log q( z)] − E q( z) [ log p( z, x)] . (7) 

Minimizing the abo v e function is equi v alent to maximising the
ollo wing objecti ve function, which is formulated in the literature as
he Evidence Lower Bound (ELBO) or variational free energy (Saul,
aakkola & Jordan 1996 ; Neal & Hinton 1998 ), 

LBO ( q) = E q( z) log p( z, x) − E q( z) [ log q( z)] 

= E q( z) log p( x| z) + E q( z) log p( z) − E q( z) [ log q( z)] 

= E q( z) log p( x| z) − KL ( q( z) || p( z)) . (8) 

The name ELBO stems from the fact that the log evidence is
ounded by this function such that: log p( x) ≥ ELBO . Consequently,
ariational inference reduces Bayesian inference to an optimization
roblem that can then be solved by standard deep learning optimiza-
ion algorithms such as SGD and Adam. 

.2 VI for neural networks 

ore specifically, for neural netw orks, a f amily of distributions with
arameters, θ , is posited o v er the network parameters 2 to define
 variational approximation to the posterior, q ( w| θ ). Following
quation (3), one can find a member of the family that is closest
o the true Bayesian posterior, P ( w| D ), by minimizing the following
bjective function, 

∗ = arg min θ KL [ q( w | θ ) || P ( w | D)] , (9) 
NRAS 511, 3722–3740 (2022) 

 Here we refer only to the weights, w, of the network for simplicity, but the 
quations are applicable to the biases as well. 

q

w

here D denotes the training data. Using the formula for KL
i vergence gi ven in equation (4) we can write 

∗ = arg min θ

∫ 
q ( w| θ ) log 

q ( w| θ ) 

P ( w| D) 
d w 

= arg min θ

∫ 
q ( w| θ ) log 

q ( w| θ ) 

P ( w) P ( D| w) 
d w 

= arg min θ

∫ 
q ( w| θ )[ log q ( w| θ ) − log P ( w) 

− log P ( D| w )] d w (10) 

= arg min θ

∫ 
q ( w| θ )[ log 

q ( w| θ ) 

P ( w) 
d w 

−
∫ 

q( w | θ ) log P ( D| w )] d w 

= arg min θ KL [ q( w | θ ) | P ( w )] − E q( w| θ ) [ log P ( D| w)] . (11) 

The cost function shown in equation (11) is composed of two
omponents: the first term is a complexity cost that depends on the
rior o v er the weights, P ( w), and the second is a likelihood cost
hat depends on the data and describes how well the model fits to
he data. The cost function also has a minimum description length
nterpretation according to which the best model is the one that

inimizes the cost of describing the model and the misfit between
he model and the data to a receiver (Hinton & van Camp 1993 ;
raves 2011 ). 
More practically, the cost function used by Blundell et al. ( 2015 )

s given by equation (10), which can be simplified as follows: 

( D, θ ) = 

∫ 
q ( w| θ )[ log q ( w| θ ) − log P ( w) 

− log P ( D| w )] d w (12) 

= 

∫ 
q( w | θ ) f ( w , θ ) d w (13) 

= E q( w| θ ) [ f ( w, θ )] . (14) 

The cost, F , is an expectation of the function, f ( w, θ ), with
espect to the variational posterior, q ( w| θ ). In order to optimize
he cost function, we need to calculate its gradient with respect to
he variational parameters, θ . To make F ( D, θ ) differentiable, one

ust first employ the reparameterization trick (Kingma & Welling
013 ; Kingma et al. 2015 ) to calculate samples from the variational
osterior, q ( w| θ ), that are differentiable and then use Monte Carlo
MC) estimates of the gradients to approximate the cost function. 

The reparameterization trick makes use of the change of variables
echnique to map between probability densities of random variables.
ne can sample a random deviate from a known probability dis-

ribution and map it to a sample from the variational posterior
hrough a differentiable deterministic function. This allows us to
eparameterize samples from the variational posterior, 

 ∼ q( w| θ ) , (15) 

hrough a differentiable deterministic function, 

 = t( ε, θ ) , (16) 

here ε is a random deviate sampled from the distribution ε ∼ q ( ε),
uch that 

 ( w| θ ) d w = q ( ε)d ε. (17) 

By taking MC samples from the variational posterior, 

 

( i) ∼ q( w 

( i) | θ ) , (18) 
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quation (12) becomes 

 ( D, θ ) ≈
n ∑ 

i= 1 

log q( w 

( i) | θ ) − log P ( w 

( i) ) − log P ( D| w 

( i) ) , (19) 

nd this approach is typically referred to in the literature as Bayes by
ackprop (BBB). 

.2.1 Mini-batching 

o take advantage of mini-batch optimization for BBB, a weighted 
omplexity cost is used (Graves 2011 ). This is because the likelihood
ost is calculated for each mini-batch to update the weights when the
odel sees new data, whereas the complexity cost, which involves 

alculating the prior and posterior o v er the weights of the entire
etwork, should be calculated only once per epoch because it is
ndependent of data. 

The simplest weighting factor one could use is the number of
atches and the cost function for the i th mini-batch in equation (11)
ecomes 

 i ( D i , θ ) = 

1 

M 

KL [ q( w| θ ] || P ( w)] − E q( w| θ ) [ log P ( D i | w)] , (20) 

here M = N batches . 
Several published results have reported a cold posterior effect 

hich involves further down-weighting of the complexity cost (e.g. 
enzel et al. 2020 ). This effect is discussed in more detail in

ections 5.3 and 7. 

.3 Variational posteriors 

he reparameterization trick allows us to use a variety of family 
ensities for the variational distribution. Kingma & Welling ( 2013 ) 
ive some examples of q ( w| θ ) for which the reparameterization trick
an be applied. These include any tractable family of densities such 
s the exponential, logistic, cauchy distributions; and any location- 
cale family such as Gaussian, Laplace, or Uniform densities can be 
sed with the function: t (.) = location + scale · ε. 
F or e xample, if we consider the case where the variational

osterior, q ( w| θ ), is parameterized by a family of Gaussians then
he variational parameters will be θ = ( μ, ρ), where the standard
eviation, σ , is parameterized as log (1 + exp ( ρ)), so that it remains
ositive. To obtain a posterior sample, w, of the weight from the
ariational posterior one must sample ε from a unitary Gaussian, 
∼ N (0 , 1), and then map ε to a Gaussian distribution, N ( μ, σ ),

hrough the function, 

( ε, μ, ρ) = w = μ + ε. log (1 + exp ( ρ)) , (21) 

.e. scale the random deviate by the standard deviation and shift it by
he mean of the variational posterior. 

Following Blundell et al. ( 2015 ), we can then calculate the gradient
f the cost function with respect to the variational parameters θ = 

 μ, ρ) using the standard optimization algorithms that are used with
eural networks. 

.4 Priors 

riors reflect our beliefs about the distribution of weights before 
he model has seen any data. The simplest prior we could use is a
aussian prior: 

 ( w) = 

∏ 

j 

N ( w j | 0 , σ ) , (22) 
hich is often the default prior used with Bayesian neural networks.
To allow for a wide range of weight values to be learned, Blundell

t al. ( 2015 ) suggest the use of a ‘spike-and-slab’ Gaussian Mixture
odel (GMM) prior defined o v er all the weights in the network such

hat 

 ( w) = 

∏ 

j 

πN ( w j | 0 , σ1 ) + (1 − π) N ( w j | 0 , σ2 ) , (23) 

here σ 1 > σ 2 and σ 2 < < 1. The weight of each component in the
ixture is defined by π . These parameters are chosen by comparing

he model performance on the validation set in the same manner as
or other hyperparameters of the model. 

In this work we also consider a Laplace prior which is parame-
erized by a location parameter, μ, and a scale parameter, b , and a
aplace Mixture Model (LMM) prior with two mixture components 
eighted by π , similar in form to the definition of the GMM prior. 
Some regularization techniques used with point-estimate neural 

etworks have theoretical justifications using Bayesian inference. 
or instance, it can be shown that Maximum a posteriori estimation
f neural networks with some priors is equi v alent to regularization
Jospin et al. 2020 ). F or e xample, using a Gaussian prior o v er the
eights is equi v alent to weight decay regularization, whereas using a
aplace prior induces L1 regularization. Gal & Ghahramani ( 2016 )
howed that dropout can also be considered an approximation to 
ariational inference, where the variational family is a Bernoulli 
istribution. 

.5 Bay esian conv olutional neural netw orks 

he BBB algorithm can be extended for convolutional neural net- 
orks by sampling the weights from a variational distribution defined 
 v er the shared weights of the convolutional kernels. This is followed
y fully connected layers that have weights with a variational 
istribution defined o v er them. F or simplicity, our implementation
iffers from that proposed by Shridhar, Laumann & Liwicki ( 2019 ),
n which work the acti v ations of each convolutional layer were
ampled instead of the weights in order to accelerate convergence. 

.6 Posterior predicti v e distribution 

fter the variational posterior distribution has been learned by 
ptimizing the ELBO function, we can use it to predict the labels
f ne w observ ations, D 

∗, using the posterior predicti ve distribution,
 ( D 

∗| D ) (here we have dropped the q ∗ notation for clarity). The
ariational posterior distribution conditioned on training data D , 
 ( w| D ), can be used to calculate this distribution by integrating out
he variational parameters, 

( D 

∗| D) = 

∫ 
q( D 

∗, w| D) d w 

= 

∫ 
q ( D 

∗| w, D) q ( w| D) d w 

= 

∫ 
q ( D 

∗| w) q ( w| D) d w, (24) 

here q ( D 

∗| w, D ) = p ( D 

∗| w) because for a given w, all data are
onditionally independent (i.i.d. assumptions). 

From equation (24), we see how the posterior predictive distribu- 
ion is an average of all possible variational parameters weighted by
heir posterior probability. 

The posterior predictive distribution can be estimated using MC 

amples as follows: 
MNRAS 511, 3722–3740 (2022) 
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(i) Sample variational parameters from the variational posterior
istribution conditioned on data D : w 

( i ) ∼ q ( w| D ). 
(ii) Sample prediction D 

∗( i ) from q ( D 

∗| w 

( i ) ). 
(iii) Repeat steps (i) and (ii) to construct an approximation to

 ( D 

∗| D ) using N samples such that: 

( D 

∗| D) = E q( w| D) q( D 

∗| w) (25) 

= E w ( i) ∼q( w| D) q 
(
D 

∗| w 

( i) 
)

(26) 

≈ 1 

N 

N ∑ 

i= 1 

q 
(
D 

∗| w 

( i) 
)
. (27) 

Thus BBB can be used to construct an approximate posterior
redictive distribution, which can further be used to estimate uncer-
ainties. 

 U N C E RTA I N T Y  QUANTIFICATION  

he sources of uncertainty in the predictions of neural network
odels can broadly be divided into two categories: epistemic and

leatoric (Gal 2016 ; Abdar et al. 2021 ). Epistemic uncertainty
uantifies how uncertain the model is in its predictions and this
an be reduced with more data. Aleatoric uncertainty on the
ther hand represents the uncertainty inherent in the data and
annot be reduced. Uncertainty inherent in the input data along
ith model uncertainty is propagated to the output, which gives
s predictive uncertainty (Abdar et al. 2021 ). BBB allows us to
apture model uncertainty by defining distributions o v er model
arameters. 
Using MC samples obtained from the posterior predictive distribu-

ion, one can obtain N Softmax probabilities for each class, c , in the
ata set. Adapting equation (27) for our supervised classification
etting, we can reco v er N class-wise Softmax probabilities as
ollows: 

( y | x , D) = 

1 

N 

N ∑ 

i= 1 

q( y = c| x, w 

( i) ) , (28) 

here ( x , y ) are samples from the test set and D is the training
ata. Using these samples, we can quantify the uncertainties in the
redictions using the metrics defined in the following subsections. 

.1 Predicti v e entropy 

he predictive entropy is the sum of epistemic and aleatoric uncer-
ainties. It is a measure of the average amount of information inherent
n the distribution and is defined as 

 ( y | x , D) = −
∑ 

c 

q( y = c| x, w) log q( y = c| x, w) , (29) 

hich can be approximated using MC samples as 

 ( y | x , D) = −
∑ 

c 

( 

1 

N 

N ∑ 

i= 1 
q 
(
y = c| x, w 

( i) )) 

log 

( 

1 

N 

N ∑ 

i= 1 
q 
(
y = c| x, w 

( i) )) 

(30) 

ollowing Gal ( 2016 ). 
We use the natural logarithm for all the equations described in this

ection and the values are reported in nats, which is the natural unit
f information. The entropy thus attains a maximum value of ∼0.693
ats, when the predictive entropy is maximum and a minimum value
lose to zero. 
NRAS 511, 3722–3740 (2022) 
.2 Mutual information 

e use mutual information to quantify epistemic uncertainty. Mutual
nformation is closely related to the entropy and can be calculated as
ollows: 

 ( y , w| x , D) = H ( y | x , D) − E q( w| D) [ H ( y | x , w)] , (31) 

hich can be approximated as 

 ( y , w| x , D) = 

−
∑ 

c 

( 

1 

N 

N ∑ 

i= 1 

q 
(
y = c| x, w 

( i) 
)) 

log 

( 

1 

N 

N ∑ 

i= 1 

q 
(
y = c| x, w 

( i) 
))

+ 

1 

N 

∑ 

c,N 

q 
(
y = c| x, w 

( i) 
)

log q 
(
y = c| x, w 

( i) 
)
, (3

ollowing Gal ( 2016 ). 

.3 Average entropy 

ukhoti et al. ( 2021 ) demonstrate that for classical neural networks,
he entropy of a single pass can be used to quantify aleatoric
ncertainty for in-distribution data samples. Here we extend that
efinition to our Bayesian neural network and take the average
ntropy for a single input using N MC samples to capture the aleatoric
ncertainty associated with the data point, such that, 

 q( w| D) H ( y | x , w) = − 1 

N 

∑ 

c,N 

q 
(
y = c| x, w 

( i) 
)
log q 

(
y = c| x, w 

( i) 
)
.

(33

It can be seen from equations (32) and (33) that the predictive
ncertainty in equation (30) is a sum of epistemic uncertainty and
leatoric uncertainty. 

.4 Overlap index 

n addition to the uncertainty metrics described abo v e, we also define
wo o v erlap indices: ηsoft , to quantify how much the distributions of
redicted Softmax values for the two classes o v erlap; and ηlogits , to
uantify how much the distributions of logits for the two classes
 v erlap. 3 A higher de gree of o v erlap indicates a higher lev el of
redictiv e uncertainty. The o v erlap parameters hav e contributions
rom both epistemic and aleatoric uncertainties. 

We calculate distribution free o v erlap indices (Pastore & Calcagn ̀ı
019 ; Scaife & Porter 2021 ) by first estimating the local density at
 location z using a Gaussian kernel density estimator separately for
ach class such that 

 c 1 ( z) = 

1 

N 

N ∑ 

i= 1 

1 

β
√ 

2 π
e −( z−c N 1 ) 

2 
/ 2 β2 

, (34) 

 c 2 ( z) = 

1 

N 

N ∑ 

i= 1 

1 

β
√ 

2 π
e −( z−c N 2 ) 

2 
/ 2 β2 

, (35) 

where β = 0.1 and c 1 , c 2 are the Softmax/logit values of the two
lasses in the data set. The o v erlap inde x, η, can then be calculated
sing those local densities: 

= 

M z ∑ 

i= 1 

min [ f c 1 ( z i ) , f c 2 ( z i )] δz , (36) 
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where M z defines the step size of z such that { z i } M z 

i= 1 ranges from
ero to one in M z steps. 

.5 Uncertainty calibration 

ayesian neural networks allow us to obtain uncertainty estimates on 
odel predictions, but these estimates have often been shown to be 

oorly calibrated due to the use of approximate inference methods 
nd model misspecification (Foong et al. 2020 ; Krishnan & Tickoo 
020 ). A model is considered to be well calibrated if the degree
f uncertainty is correlated with the accuracy, i.e. low uncertainty 
redictions are more likely to be classified correctly and high 
ncertainty predictions are more likely to be misclassified. Therefore, 
hen comparing different models one must also take the calibration 
f uncertainty metrics into account, in addition to the o v erall accurac y
f a model. 
F ollowing Lav es et al. ( 2019 ), we e v aluate the calibration of each

f our uncertainty metrics using the class-wise expected Uncertainty 
alibration Error (cUCE). The UCE is a more generalized form of

he widely used Expected Calibration Error (ECE; Guo et al. 2017a );
here the ECE e v aluates the calibration of Softmax probabilities 

rom classical point-wise models, the UCE e v aluates the calibration 
f more general uncertainty metrics from probabilistic models, such 
s those described earlier in this section. Laves et al. ( 2019 ) define
he cUCE value as an average of the UCE values obtained for each
lass, c , in the data set, 

UCE = 

1 

C 

C ∑ 

c= 1 

UCE ( c) , (37) 

here the UCE is a weighted average of the difference between 
ractional error and uncertainty calculated for the output of the model 
hen binned into M bins of equal width for a particular uncertainty
etric, 

CE = 

M ∑ 

m = 1 

| B( m ) | 
n 

| err ( B m 

) − uncert ( B m 

) | . (38) 

ere B m is the set of data in a particular bin, n is the total number of
ata points, and uncert( B m 

) is the average value of a given uncertainty
etric for those data points, 

ncert ( B m 

) = 

1 

| B m 

| 
∑ 

i∈ B m 
uncert i , (39) 

here uncert i can be calculated using equations (30), (32), or (33),
ollowed by minmax-normalization to bring values into the range 0–
. Equation (16) of Laves et al. ( 2019 ) defines the average fractional
rror in bin B m 

to be 

rr ( B m 

) = 

1 

| B m 

| 
∑ 

i∈ B m 
err i , (40) 

here err i is the contribution to this error from an individual data
oint, defined as 

rr i = 1 ( ̂  y i �= y) ∀ i ∈ B m 

. (41) 

ere we redefine err i to be the average error obtained for an individual
ata sample, such that 

rr i = 

1 

N 

N ∑ 

j= 1 

1 ( ̂  y ij �= y) ∀ i ∈ B m 

, (42) 

here N is the number of samples drawn from the posterior predictive
istribution. For a binary classification problem, the fractional error 
rom an untrained model is expected to converge towards a value of
.5, i.e. 50 per cent accuracy. Consequently we normalize the average
ractional error per bin, err( B m 

), by a factor of two in order to scale
he values from 0 to 1. 

 DATA  

adio galaxies are a sub-class of active galactic nuclei (AGN). These
alaxies are characterized by large-scale jets and lobes that can 
xtend up to mega-parsec distances from the central black hole and
re observed in the radio spectrum. Fanaroff & Riley ( 1974 ) proposed
 classification of such extended radio sources based on the ratio of
he distance between the highest surface brightness regions on either 
ide of the galaxy to the total extent of the radio source, R FR . Based on
 threshold ratio of 0.5, the galaxies were classified into two classes
s follows: if R FR < 0.5, the source was classified into Class I (FR I;
dge-darkened), and if R FR > 0.5 it was classified into Class II (FR II;
dge-brightened). Ov er the years, sev eral other morphologies such 
s bent-tail (Rudnick & Owen 1976 ; O’Dea & Owen 1985 ), hybrid
Gopal-Krishna & Wiita 2000 ), and double-double (Schoenmakers 
t al. 2000 ) sources have also been observed and there is still a
ontinuing debate about the exact interplay between extrinsic effects, 
uch as the interaction between the jet and the environment, and
ntrinsic effects, such as differences in central engines and accretion 

odes, that give rise to the different morphologies. In this work we
se only the binary FR I/FR II classification. 
We have used the MiraBest data set which consists of 1256 images

f radio galaxies pre-processed to be used specifically for deep 
earning tasks (e.g. Bowles et al. 2021 ; Scaife & Porter 2021 ). The
ata set was constructed using the sample selection and classification 
escribed in Miraghaei & Best ( 2017 ), who made use of the parent
alaxy sample from Best & Heckman ( 2012 ). Optical data from data
elease 7 of Sloan Digital Sky Survey (SDSS DR7; Abazajian et al.
009 ) was cross-matched with NRAO VLA Sk y Surv e y (NVSS;
ondon et al. 1998 ) and Faint Images of the Radio Sky at Twenty-
entimeters (FIRST; Becker, White & Helfand 1995 ) radio surv e ys.
arent galaxies were selected such that their radio counterparts had 
n AGN host rather than emission dominated by star formation. 
o enable classification of sources based on morphology, sources 
ith multiple components in either of the radio catalogues were 

onsidered. 
The morphological classification was done by visual inspection at 

hree levels: (i) The sources were first classified as FR I/FR II based
n the original classification scheme of Fanaroff & Riley ( 1974 ).
dditionally, 35 Hybrid sources were identified as sources having FR 

-like morphology on one side and FR II-like on the other. Of the 1329
xtended sources inspected, 40 were determined to be unclassifiable. 
ii) Each source was then flagged as ‘Confident’ or ‘Uncertain’ to
epresent the degree of belief in the human classification. (iii) Some
f the sources which did not fit exactly into the standard FR I/FR
I dichotomy were given additional tags to identify their sub-type. 
hese sub-types include 53 Wide Angle Tail (WAT), nine Head Tail

HT), and five Double-Double (DD) sources. To represent these three 
evels of classification, each source was given a three-digit identifier 
s shown in Table 1 . 

To construct the machine learning data set, several pre-processing 
teps were applied to the data following the approach described in
niyan & Thorat ( 2017 ) and Tang, Scaife & Leahy ( 2019 ): 

(i) In order to minimize the background noise in the images, all
ixels below the 3 σ level of the background noise were set to 0.
his threshold was chosen because among the classifiers trained by 
MNRAS 511, 3722–3740 (2022) 
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Table 1. Three digit identifiers for sources in Miraghaei & Best ( 2017 ). 

Digit 1 Digit 2 Digit 3 

1: FR I 0: Confident 0: Standard 
2: FR II 1: Uncertain 1: Double Double 
3: Hybrid 2: Wide Angle Tail 
4: Unclassifiable 3: Diffuse 

4: Head Tail 

Table 2. MiraBest class-wise composition. 

Class Confidence No. 

FR I Confident 397 

Uncertain 194 

FR II Confident 436 
Uncertain 195 

Hybrid Confident 19 
Uncertain 15 
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niyan & Thorat ( 2017 ) on images with 2 σ, 3 σ , and 5 σ cut-offs, 3 σ
erformed most well. 
(ii) The images were clipped to 150 × 150 pixels, centred on the

ource. 
(iii) The images were normalized as follows: 

utput = 255 
Input − Input min 

Input max − Input min 
, (43) 

here Input refers to the input image, Input min and Input max are the
inimum and maximum pixel values in the input image, and Output

s the image after normalization. 

To ensure the integrity of the machine learning data set, the
ollowing 73 objects out of the 1329 extended sources identified
n the catalogue were not included: (i) 40 unclassifiable objects;
ii) 28 objects with extent greater than the chosen image size of
50 × 150 pixels; (iii) four objects which were found in o v erlapping
egions of the FIRST survey; (iv) one object in category 103 (FR I
onfident Diffuse). Since this was the only instance of this category,

t would not have been possible for the test set to be representative
f the training set. The composition of the final data set is shown in
 able 2 . W e do not include the sub-types in this table as we have not
onsidered their classification. 

In this work, we use the MiraBest Confident subset to train the
BB models. Examples of FR I and FR II galaxies from the MiraBest
onfident data set are shown in Fig. 1 . 
Additionally, we use 49 samples from the MiraBest Uncertain

ubset and 30 samples from the MiraBest Hybrid class to test the
rained model’s ability to correctly represent different measures of
ncertainty, since these samples can be considered as being drawn
rom the same data generating distribution as the MiraBest Confident
amples, b ut ha v e a differing de gree of belief in their classification.
e note that there may be components of both epistemic and aleatoric

ncertainty in the Uncertain and Hybrid samples, and this is discussed
urther in Section 6. 

We note that all the previous work published using this data set uses
ome form of data augmentation. In this work we do not use any data
ugmentation, although the effect of data augmentation is discussed
urther in Section 7.2. The reasons for this are two-fold: firstly, that
nprincipled data augmentation has been suggested to ne gativ ely
ffect the performance of Bayesian deep learning models (Nabarro
t al. 2021 ); and second, that a noted advantage of Bayesian models
NRAS 511, 3722–3740 (2022) 
s their ability to obtain good performance using only small data sets
e.g. Xiong, Barash & Frey 2011 ; Jospin et al. 2020 ; Semenova et al.
020 ). 

 M O D E L  

.1 Ar chitectur e 

he architecture used to classify the MiraBest data set using BBB
s shown in T able 3 . W e use a LeNet-5-style architecture (LeCun
t al. 1998 ) with two additional convolutional layers. We found it
ssential to add two convolutional layers to the LeNet-5 architecture
n order to obtain good model performance. Adding additional
ully connected and convolutional layers beyond this resulted in
o further impro v ement. The number of channels in the additional
onvolutional layers were also optimized. We used a kernel support
ize of 5 to be consistent with previous CNN-style architectures
sed with the MiraBest data set (e.g. Scaife & Porter 2021 ). ReLU
cti v ation functions are used for each layer with the exception of the
utput layer and max-pooling is used to down-sample the feature
ata after each convolutional layer. 
The functional form of our priors is as defined in Section 2.4 and

he hyper-parameters of the priors were tuned using the validation
ata set. We build models with four different priors: (i) a simple
aussian prior with σ = 0.1, (ii) a GMM prior with { π , σ 1 , σ 2 } =
 0.75, 1, 9.10 −4 } , (iii) a Laplace prior with b = 1, and (iv) a LMM
rior with { π , b 1 , b 2 } = { 0.75, 1, 10 −3 } . 
We use a Gaussian distribution as our variational approximation

o the posterior o v er both the weights and biases in our network.
odels using the BBB method are known to be highly sensitive to

he initialization of this posterior and in this work we initialize the
osterior means, μ, from a uniform distribution, U( −0 . 1 , 0 . 1), and
he posterior variance parametrization, ρ, from U( −5 , −4). 

.2 Training 

he MiraBest data set has a predefined training: test split. We further
ivide the training data into a ratio of 80:20 to create training and
alidation sets. The final split contains 584 training samples, 145
alidation samples, and 104 test samples. 

All the models are trained for 500 epochs, with mini-batches of size
0. We train the models using the Adam optimizer with a learning
ate of � = 5 × 10 −5 for all the priors. A learning rate scheduler
s implemented which reduces the learning rate by 95 per cent if
he validation likelihood cost does not impro v e for four consecutive
pochs. 

After a model has been trained, the test error is calculated as the
ercentage of incorrectly classified galaxies by comparing the output
f the model to the labels in the test set. 

.3 Cold posterior effect 

t has been observed by several authors (Wenzel et al. 2020 )
hat in order to get good predictive performance from Bayesian
eural networks, the Bayesian posterior has to be down-weighted
r tempered. We denote this by a weighting factor, T , in the cost
unction, 

 i ( D i , θ ) = 

T 

M 

KL [ q( w| θ ] || P ( w)] − E q( w| θ ) [ log P ( D i | w)] , (44) 

here T ≤ 1 is the temperature. We also observe this effect in our
xperiments. 
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Figure 1. Examples of (a) FR I and (b) FR II galaxies from the MiraBest Confident subset. 
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We found it necessary to temper our posterior in order to get a
ood performance from the Bayesian neural network, without which 
he accuracy remains around 55 per cent . We tempered the posterior 
or a range of temperature values, T , between [10 −5 , 1) and chose the
argest value of T for which the validation accuracy was impro v ed
ignificantly. Thus, for all experiments described in the following 
ections we use T = 10 −2 in equation (44). 

Sev eral hypotheses hav e been proposed to e xplain the cold
osterior effect including model or prior misspecification (Wenzel 
t al. 2020 ), and data augmentation or data set curation leading to
ikelihood misspecification (Aitchison 2021 ). These are discussed in 
etail and investigated further in Section 7. 

.4 Weight pruning 

ariational inference based neural networks have several advantages 
 v er non-Bayesian neural networks; ho we ver, for a typical variational
osterior such as the Gaussian distribution, the number of parameters 
n the network double compared to a non-Bayesian model with the 
ame architecture because both the mean and standard deviation 
alues need to be learned. This increases the computational and 
emory o v erhead at test time and during deployment. Thus, there

s a need to develop network pruning approaches which can be
sed to remo v e the parameters that contain least or no useful
nformation. Sev eral authors hav e also considered pruning to impro v e
he generalization performance of the netw ork (LeCun, Denk er &
olla 1989 ). Many of the pruning methods that have been developed
an also be applied to non-Bayesian neural networks, but in this
ection we discuss a signal-to-noise ratio (SNR) based pruning 
riterion which can be applied naturally to a model trained with
aussian variational densities (Graves 2011 ; Blundell et al. 2015 ). 
The SNR of a model weight is calculated as follows: 

NR = 

| μ| 
σ

, (45) 

here μ and σ are the values of the variational parameters after a
odel has been trained. In practice, we use the SNR values in dB: 

NR dB = 10 log 10 SNR . (46) 
MNRAS 511, 3722–3740 (2022) 
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Table 3. CNN architecture. Stride = 1 is used for all the convolutional and 
max pooling layers. 

Operation Kernel Channels Padding 

Convolution 5 × 5 6 1 
ReLU 

Max pooling 2 × 2 
Convolution 5 × 5 16 1 
ReLU 

Max pooling 2 × 2 
Convolution 5 × 5 26 1 
ReLU 

Max pooling 2 × 2 
Convolution 5 × 5 32 1 
ReLU 

Max pooling 2 × 2 
Fully connected 120 
ReLU 

Fully connected 84 
ReLU 

Fully connected 2 
Log Softmax 
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Table 4. Classification error and percentage cUCE on MiraBest Confident 
test set using BBB-CNN. The percentage cUCE is shown separately for 
predictive uncertainty as measured by predictive entropy (PE), epistemic un- 
certainty as measured by mutual information (MI), and aleatoric uncertainty 
as measured by average entropy (AE) as calculated on the MiraBest Confident 
test set. For a fuller explanation of these metrics, please see Section 3. 

cUCE per cent 
Prior Test error PE MI AE 

Gaussian prior 14 . 48 ± 3 . 40 per cent 30.49 21.90 25.48 
GMM prior 12 . 89 ± 2 . 23 per cent 19.92 18.86 16.86 
Laplace prior 11 . 62 ± 2 . 38 per cent 9.69 16.37 10.84 
LMM prior 17 . 29 ± 2 . 71 per cent 21.02 26.05 17.69 
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he weights of the network with the lo west SNR v alues are
emo v ed. The effect of removing these parameters is measured by
e-calculating the test error using the pruned model. While the SNR-
ased method may seem very simple, it allows for a large proportion
f weights to be remo v ed for some models. We discuss alternative
runing approaches in Section 6.4. 
We adapt SNR-based pruning for a convolutional Bayesian neural

etwork by considering only the fully connected layer weights of the
odel for pruning, instead of all the weights of the network. This

s because the convolutional layer weights are shared weights and
emo ving ev en a small fraction may result in disastrous consequences
or model performance. Ho we ver, the fully connected layers make
p ∼ 85 per cent of the total weights of our network, so pruning
ethods are still worth considering for convolutional BBB models.
runing only the fully connected layers is also consistent with
runing methods developed for standard CNN models (e.g. Gong
t al. 2014 ; Souli ́e, Gripon & Robert 2016 ; Tu et al. 2016 ). 

For the model trained on the MiraBest data set with a Laplace
rior, we find that up to 30 per cent of the fully connected layer
eights can be pruned without a significant change in performance.
his is discussed further in Section 6.4. 

 RESULTS  

.1 Classification and calibration 

he results of our classification experiments are shown in Table 4 .
he mean and standard de viation v alues of the test error are calculated
y taking 100 samples from the posterior predictive distribution for
ach test data point in the MiraBest Confident data set. 

Using the model trained with a Laplace prior, we reco v er a test
rror of 11 . 62 ± 2 . 38 per cent . We also reco v er a comparable test
rror of 12 . 89 ± 2 . 23 per cent using a GMM prior. The standard
e viation v alues represent the spread in the o v erall test error and
ndicate the model’s confidence in its predictions on the test set.
owles et al. ( 2021 ) who augment the MiraBest Confident samples
y a factor of 72 report a test error of 8 per cent , whereas Scaife &
orter ( 2021 ) who use random rotations of the same data set as
 function of epoch to augment the data, report a test error of
NRAS 511, 3722–3740 (2022) 
 . 95 ± 1 . 37 per cent with a LeNet-5 style CNN with MC dropout,
nd 3 . 43 ± 1 . 29 per cent using a D 16 group-equi v ariant CNN with
C dropout. We again emphasize that the test error values we report

re without any data augmentation. If we include data augmentation
sing random rotations from 0 to 360 degrees this improves the BBB
est error using the Laplace prior to 7 . 41 ± 2 . 22 per cent , but at the
ost of increased uncertainty calibration error. We note that the wider
ffect of using augmentation with Bayesian models is a subject of
ebate in the literature and this is discussed further in Section 7.2. 
Whilst differences in performance are often used to choose a

referred model, it is also the case that more accurate point-wise
odels are overconfident in their predictions. This problem of
 v erconfidence in standard NNs is well documented in the literature
see e.g. Nguyen, Yosinski & Clune 2015 ). In particular this effect
as been shown to lead to miscalibrated uncertainty in predictions,
specially for data samples that are less similar to canonical examples
f a class (Guo et al. 2017b ; Hein et al. 2018 ). 
Table 4 shows the percentage cUCE values of the uncertainty met-

ics calculated for the MiraBest Confident test set (see Section 3.5).
mong the four priors tested in this work, we find that the Laplace
rior gives the most well-calibrated uncertainty metrics, followed by
he GMM prior. Given the uncertainties on each test error due to the
mall size of our test set, we cannot draw any strong conclusions
bout which prior should be preferred. Ho we ver, after analysing
he uncertainty calibration error for each prior, we suggest that the
aplace prior produces the most well-calibrated uncertainties. We
lso find that the cold posterior effect is less pronounced in the
ase of the Laplace prior model (see Fig. 2 ). Similarly to the model
ccuracy, these results indicate that learning benefits most from a
parser prior and consequently in the following analysis we report
esults for the Laplace prior. 

.2 Uncertainty quantification 

e first look at some illustrative examples of galaxies from the
iraBest Confident test set to build intuition about the uncertainty
etrics used. For each test sample we make N = 200 forward passes

hrough the trained model. This results in a distribution of model
utputs following the learned predictive posterior, which allow us to
stimate the different uncertainty measures described in Section 3. 

We show some examples of galaxies that have been correctly
lassified with high confidence in Fig. 3 . These galaxies correspond
o typical FR I/FR II classifications. The corresponding uncertainty
etrics are shown in Table 5 . The predictive entropy and mutual

nformation for all the galaxies shown are very low ( < 0.01 nats).
he o v erlap indices ηsoft and ηlogits are �10 −5 , which indicates that

here is virtually no o v erlap, as can be seen in the distributions of
oftmax probabilities in Fig. 3 . 
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Figure 2. The ‘cold posterior’ effect for the MiraBest classification problem (see Section 7 for details). Data are shown for the BBB models with no data 
augmentation and the original ELBO cost function trained with a Laplace prior (solid blue line), and trained with a GMM prior (orange dashed line). 

Figure 3. Examples of galaxies correctly classified with high predictive confidence. Top: Softmax values for 200 forward passes through the trained model. 
Bottom: Input data images. 

Table 5. Predictive entropy (PE), mutual information (MI), and overlap 
indices for Softmax ( ηsoft ) and logit-space ( ηlogits ) for galaxies correctly 
classified with high confidence shown in Fig. 3 . 

Galaxy PE MI ηsoft ηlogits 

3a < 0.01 < 0.01 �10 −5 �10 −5 

3b < 0.01 < 0.01 �10 −5 �10 −5 

3c < 0.01 < 0.01 �10 −5 �10 −5 

3d < 0.01 < 0.01 �10 −5 �10 −5 
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We then consider galaxies for which the predictive uncertainty is 
igh, as shown in Fig. 4 . These galaxies have the highest predictive
ntropy among the test samples of the MiraBest Confident data set
nd large values of o v erlap indices in both the Softmax and logit
pace. These samples also have high mutual information, which 
ndicates that the model’s confidence in its classification is very low. 
he values of uncertainty metrics corresponding to these galaxies 
re shown in Table 6 . 

Finally in Fig. 5 , we show one example where the model has
ncorrectly classified a galaxy with high confidence. The galaxy has 
een labelled an FR II and the model incorrectly classifies it as
n FR I. The predictive entropy, mutual information, and o v erlap
ndices are very lo w, as sho wn in Table 7 , which means that the

odel’s confidence in its prediction is very high for this galaxy. We
an see that the galaxy deviates from the typical FR II classification
ecause it has additional bright components and its label is somewhat
mbiguous. Thus, the bias introduced by the ambiguity in the 
efinition of FR I/FR II and the ambiguity in the labels gives rise to
ncertainty metrics that can potentially be misleading. 
In this section we saw how high or low values of predictive

ntropy, mutual information, and o v erlap indices indicate the model’s 
onfidence in making predictions about individual galaxies; in the 
ext section we analyse the distributions of uncertainty metrics for 
ll the galaxies in the data set. 

.3 Analysis of uncertainty estimates 

e test the trained model’s ability to capture different measures of
ncertainty by calculating uncertainty metrics for (i) the MiraBest 
ncertain test samples (49 objects), and (ii) the MiraBest Hybrid 

amples (30 objects), using the model trained on the MiraBest 
onfident samples. As before this is done by making N = 200 forward
asses through the model for each test input. Overall distributions 
or each uncertainty metric as a function of the three different test
ets are shown in Fig. 6 . 

The MiraBest Uncertain samples are considered to be drawn from 

he same distribution as the MiraBest Confident samples, and from 

 machine learning perspective would therefore be denoted as in- 
istribution . The MiraBest Hybrid samples are a more complex 
MNRAS 511, 3722–3740 (2022) 
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Figure 4. Examples of galaxies classified with low predictive confidence. Top: Softmax values for 200 forward passes through the trained model. Bottom: Input 
data images. 

Table 6. Predictive entropy (PE), mutual information (MI), and overlap 
indices for Softmax ( ηsoft ) and logit-space ( ηlogits ) for galaxies classified 
with low confidence shown in Fig. 4 . 

Galaxy PE MI ηsoft ηlogits 

4a 0.68 0.25 0.72 0.10 
4b 0.69 0.20 0.90 0.08 
4c 0.67 0.27 0.70 0.08 
4d 0.69 0.14 0.88 0.12 

Figure 5. A galaxy that has been incorrectly classified with high predictive 
confidence. Top: Softmax values for 200 forward passes through the trained 
model. Bottom: Input data image. 
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Table 7. Predictive entropy (PE), mutual information (MI), and overlap 
indices for Softmax ( ηsoft ) and logit-space ( ηlogits ) for a galaxy incorrectly 
classified with high confidence shown in Fig. 5 . 

Galaxy PE MI ηsoft ηlogits 

5 0.10 0.02 < 0.01 < 0.01 
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ase: in principle they are a separate class that was not considered
hen training the model and therefore might be denoted as being
ut-of-distribution by some measures; ho we ver, gi ven that they are
till a sub-population of the o v er-all radio galaxy population, and
oreo v er that they are defined as amalgams of the two classes used

o train the model, they could also be considered to be in-distribution.
onsequently, in this work we treat the MiraBest Hybrid test sample
s being in-distribution. 
NRAS 511, 3722–3740 (2022) 
.3.1 Analysis of uncertainty estimates on MiraBest Uncertain 

ig. 6 shows that the MiraBest Uncertain test set has on a ver -
ge higher measures of uncertainty across all estimators than the
iraBest Confident test set. In Fig. 7 (a) we can see that this is also

eflected in the median values of the predictive entropy distribution
eing higher for both FR I and FR II classes in the MiraBest Uncertain
est set compared to the Confident test set, and that the interquartile
ange is also larger. This indicates that a larger number of galaxies
re being classified with higher predictive entropy. The predictive
ntropy distribution has a higher median value for FR II objects
or both MiraBest Confident and Uncertain samples. Ho we ver, the
istributions are wider for FR I objects. 
The distribution of mutual information is shown in Fig. 6 (b). The
utual information is also higher for samples from the MiraBest
ncertain test set. This indicates a higher epistemic uncertainty in

lassifying these samples, which is consistent with how the data sets
re defined. We also find that FR IIs have a wider distribution of
pistemic uncertainty than FR Is for MiraBest Uncertain samples
see Fig. 7 b). 

Using the average entropy of a test sample as a measure of aleatoric
ncertainty, we see in Fig. 6 (c) that the Uncertain samples have higher
edian value and a larger interquartile range than the Confident

amples. From Fig. 7 (c) we note that that for both FR I and FR II
ype galaxies, the interquartile range has shifted to a higher value
nd the median average entropy is also higher. 

From Fig. 8 , we can also see that FR II samples have lower
ncertainty than FR I samples when combined across the Confident
nd Uncertain test sets, which could be because the training set
ontains ∼7 per cent more FR IIs than FR Is. 

Thus in general we find that BBB can correctly represent model
ncertainty in radio galaxy classification, and that this uncertainty

art/stac223_f4.eps
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Figure 6. Distributions of uncertainty metrics for MiraBest Confident (MBFR Conf), Uncertain (MBFR Uncert), and Hybrid (MBHybrid) data sets. (a) 
Predictive uncertainty as measured using predictive entropy; (b) Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as 
measured using average entropy. For a fuller explanation of these metrics, please see Section 3. 

Figure 7. Class-wise distributions of uncertainty metrics for MiraBest Confident and MiraBest Uncertain data sets. (a) Predictive uncertainty as measured using 
predictive entropy; (b) Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as measured using average entropy. For a 
fuller explanation of these metrics, please see Section 3. 

Figure 8. Morphology-wise distributions of uncertainty metrics for the MiraBest data set. (a) Predictive uncertainty as measured using predictive entropy; (b) 
Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as measured using average entropy. For a fuller explanation of these 
metrics, please see Section 3. 
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s correlated with how human classifiers defined the MiraBest 
onfident and Uncertain qualifications. 

.3.2 Analysis of uncertainty estimates on MiraBest Hybrid 

n Fig. 6 we can see that the interquartile range of the distributions
f uncertainty metrics for the MiraBest Hybrid samples are well 
eparated from the distributions for the MiraBest Confident samples. 

The median predictive entropy of the Hybrid samples is higher 
han the MiraBest Confident samples by 0.5 nats, as shown in 
ig. 6 (a). This indicates that there is a high degree of predictive
ncertainty associated with the hybrid samples, which is expected as 
he training set does not contain any hybrid samples. This behaviour 
s also echoed as a function of o v erall morphology (see Fig. 8 ). It
an be seen that the MiraBest Hybrid samples have substantially 
igher median uncertainties than either the FR I or FR II objects
combined across the MiraBest Confident and MiraBest Uncertain 
amples). 

In Fig. 6 (b) we see that the median value for the distribution
f mutual information for the Hybrid test set is higher than the
pper quartile of the MiraBest Confident test set. This high degree
f epistemic uncertainty could be because the model did not see any
ybrid samples during training. We also note that among the sub-

lasses of the Hybrid data set, the confidently labelled samples have
igher epistemic uncertainty than the uncertainly labelled samples, as 
hown in Fig. 9 (b). We suggest that this may be because the uncertain
amples are more similar to the FR I/FR II galaxies than the model
as seen during training, i.e. their classification as a Hybrid was
onsidered uncertain by a human classifier because the morphology 
 as biased tow ards one of the standard FR I or FR II classifications.
MNRAS 511, 3722–3740 (2022) 
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Figure 9. Class-wise distributions of uncertainty metrics for MiraBest Hybrid data set. (a) Predictive uncertainty as measured using predictive entropy; (b) 
Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as measured using average entropy. For a fuller explanation of these 
metrics, please see Section 3. 
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n which case their epistemic uncertainty might be expected to be
ower since the model was trained to predict those morphologies. 

The distribution of the average entropy (aleatoric uncertainty) has
 higher median value and the interquartile range has shifted to higher
alues of average entropy compared to the Confident and Uncertain
est sets (see Fig. 6 c). While it can be seen that Hybrid samples
ave higher aleatoric uncertainty on average, in Fig. 9 (c) we can also
ee how the aleatoric uncertainty is distributed among the classes in
he hybrid samples. The confidently labelled Hybrid samples span
lmost the entire range of the entropy function between (0, 0.693]
ats. The uncertainty labelled samples also have a high degree of
leatoric uncertainty. 

Thus we find that the Hybrid test set has an even higher degree of
ncertainty than the Uncertain test set. 

.4 Alternati v e pruning approaches 

n Section 5.4 we found that 30 per cent of the weights in the fully
onnected layers of our trained model could be pruned without a
oss of performance using an SNR-based pruning approach. In this
ection, we discuss an alternative pruning approach based on Fisher
nformation. We compare the performance of our BBB model trained
n radio galaxies for different pruning methods and analyse the effect
f pruning on uncertainty estimates. 
A number of alternative methods for model pruning have been

escribed in the literature. Hessian based methods have been
roposed to rank model parameters by their importance, but in
ractice the calculation of a full Hessian for typical deep learning
odels is in general prohibitively expensive in terms of computation.
onsequently, one of the most popular methods is to simply rank
arameters by their magnitude, where magnitude refers to the
bsolute value of the weights. The SNR approach, where parameters
ith low magnitudes or high variances are remo v ed (Section 5.4),
ay be considered a natural extension of this method. Tu et al.

 2016 ) showed that for deterministic neural networks it is possible to
mpro v e on a simple magnitude-based pruning by using the Fisher
nformation matrix (FIM) for a particular parameter of the network,
. Here we implement the method of Tu et al. ( 2016 ) and compare it

o the SNR-based pruning method. 
These two approaches are based on fundamentally different
ethodologies: while SNR pruning takes into account ‘noisy’
eights that are either too small in magnitude or have large posterior
ariances, the Fisher-information based method remo v es parameters
ased on their contribution to the gradients. If a parameter has smaller
IM values, this indicates that the gradients of the parameter did
ot change much during training, i.e. that the parameter contained
ess information and was less rele v ant to producing the optimized
NRAS 511, 3722–3740 (2022) 
odel. Thus one method may be preferred to the other in specific
pplications. 

The empirical FIM for a parameter, θ , can be calculated as follows: 

 ( θ ) = E y 

[ (
∂ log L 

∂θ

)(
∂ log L 

∂θ

)T 
] 

, (47) 

here L is the loss function. Tu et al. ( 2016 ) used the log likelihood
oss function for their classical neural network, but for our model
his loss is the ELBO function (see equation 8). Using the Adam
ptimizer to train the models as described in Section 5.2 allows
ne to use the bias-corrected second raw moment estimate of the
radient to approximate the FIM diagonal, since this value is used by
he Adam optimizer to adapt to the geometry of the data (Kingma &
a 2014 ). The value of the FIM diagonal for each parameter is used to

ank the parameters in order of importance and those with the lowest
alues are remo v ed. F or a more thorough discussion of different FIM
alculations used in the statistical and machine learning literature we
efer the reader to Kunstner, Hennig & Balles ( 2019 ). 

The results of our pruning experiments are shown in Fig. 10 . As
lso observed by Tu et al. ( 2016 ), pruning the weights based on Fisher
nformation alone does not allow for a large number of parameters to
e pruned ef fecti vely because many values in the FIM diagonal are
lose to zero. We find this to be true for our model as well, and that
nly 10 per cent of the fully connected layers can be pruned using
isher information alone without incurring a significant penalty in
erformance. 
To remedy this, Tu et al. ( 2016 ) suggest combining Fisher pruning

ith magnitude-based pruning. Following their approach, we define
 parameter, r , to determine the proportion of weights that are pruned
y either of these methods. To prune P parameters from the network,
e perform the following steps in order: (i) remo v e the P (1 − r )
eights with the lowest magnitude; (ii) remo v e the P r parameters
ith the lowest FIM values. The parameter r is between (0,1) and is

uned like a hyper-parameter. We get an optimal pruning performance
ith r = 0.5. We find that up to 60 per cent of the fully connected layer
eights can be pruned using this method without a significant change

n performance, which is double the volume of weights pruned by the
NR-based method discussed in Section 5.4. We refer to this method
s Fisher pruning in the following sections for conciseness. 

.4.1 Analysis of uncertainty estimates for different pruning 
ethods 

he effect of pruning on uncertainty quantification for the MiraBest
onfident test set is shown in Fig. 11 . We plot uncertainty metrics for

he two pruning methods discussed in this work: (i) based on SNR,

art/stac223_f9.eps
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Figure 10. Comparison of model performance for different pruning methods based on: SNR, Fisher information, and a combination of magnitude and Fisher 
information. The grey shaded portion indicates the standard deviation of test error for the unpruned model. 

Figure 11. Distributions of uncertainty metrics for different pruning methods for the MiraBest Confident data set. (a) Predictive uncertainty as measured using 
predictive entropy; (b) Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as measured using average entropy. For a 
fuller explanation of these metrics, please see Section 3. 
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ith 30 per cent pruning, and (ii) Fisher pruning which is based
n magnitude combined with Fisher information, with 60 per cent 
runing, and compare them to the metrics obtained for the unpruned 
odel. We complement this with an analysis of the change in 

ncertainty calibration error for the two pruning methods considered 
n this work. 

From Fig. 11 a we note that predictive entropy increases with 
runing. The interquartile range increases for both pruning methods. 
his increase is mainly due to an increase in predictive entropy for
R I galaxies in case of SNR pruning and for FR II galaxies in case
f Fisher pruning (see Fig. 12 a). The median predictive entropy and
nterquartile range increase for FR IIs with Fisher pruning. 

We also find that the cUCE of predictive entropy increases with 
runing, and that this increase is larger in the case of SNR pruning
see Table 8 ). SNR pruning has more of an adverse effect on the
lassification of FR I samples than FR II samples, whereas the effect
f Fisher pruning is similar for both classes. 
Pruning does not seem to have a large effect on the distributions

f mutual information, which narrow by a small amount for both 
runing methods (see Fig. 11 b). The cUCE does not increase 
ignificantly with SNR pruning and reduces with Fisher pruning 
see Table 8 ). 

Looking at the class-wise distributions of mutual information 
n Fig. 12 (b), we can see that both pruning methods narrow the
istribution of mutual information for FR I galaxies. Ho we ver, SNR
runing increases the uncertainty calibration error for FR Is and 
ecreases UCE for FR IIs. Fisher pruning on the other hand decreases
CE for FR Is and increases UCE for FR IIs. Therefore, SNR and
isher pruning both seem to be adversely affecting the uncertainty 
alibration for one of the two classes. 

The average entropy increases with both pruning methods and 
he distribution becomes more broad in the case of Fisher pruning
see Fig. 11 c). Ho we ver, we also find that Fisher pruning does not
ignificantly change cUCE and that there is more increase in cUCE
ith SNR pruning (see Table 8 ). 
Fig. 12 (c) shows that average entropy increases with pruning 

or FR I galaxies for both pruning methods and there is a greater
ncrease in average entropy with Fisher pruning for FR II galaxies.

e find that SNR pruning increases UCE for both FR I and FR
I galaxies, but the increase is more significant for FR I galaxies.
isher pruning reduces UCE for FR Is and increases UCE for
R IIs. 
Whilst we have described the differing effect of alternative pruning 
ethods on a class-wise basis, we note that pruning itself cannot

e applied selectively by class since it depends on the model
arameters. Ho we ver, based on the fundamental differences in the
esults from SNR and Fisher pruning, we suggest that FR I galaxies
re less influential on the gradients of the learnable parameters during
MNRAS 511, 3722–3740 (2022) 
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Figure 12. Class-wise distributions of uncertainty metrics for different pruning methods for the MiraBest Confident data set. (a) Predictive uncertainty as 
measured using predictive entropy; (b) Epistemic uncertainty as measured using mutual information; and (c) Aleatoric uncertainty as measured using average 
entropy. For a fuller explanation of these metrics, please see Section 3. 

Table 8. Percentage cUCE on MiraBest Confident test set for our BBB- 
CNN model trained with a Laplace prior, pruned to its threshold limit for 
SNR and Fisher pruning. The percentage cUCE is shown separately for the 
predictive entropy (PE), mutual information (MI), and average entropy (AE) 
as calculated on the MiraBest Confident test set. 

per cent cUCE 

Prior Pruning PE MI AE 

Laplace Unpruned 9.69 16.37 10.84 
SNR 14.35 16.82 13.93 

Fisher 13.43 15.29 11.25 
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raining compared to FR IIs and that the learned model weights are
ess noisy for FR IIs compared to FR Is. 

H ̈ullermeier & Waegeman ( 2021 ) argue that epistemic and
leatoric uncertainty are mutable quantities as a function of model
pecification (see also Kiureghian & Ditlevsen 2009 ); specifically,
hat the uncertainty contributed by each is affected by model com-
lexity and class separability. For example, embedding a data set into
 higher dimensional feature space may result in greater separability
f the target classes leading to lower aleatoric uncertainty, but the
dditional complexity from the higher dimensionality results in a
odel with higher epistemic uncertainty. In SNR-based pruning, we

re reducing the dimensionality of the feature space, but at the same
ime we are also removing noisy weights (and hence noisy features)
hat may adversely affect class separability, and so it is expected that

easures of both epistemic and aleatoric uncertainty will be changed
s a function of pruning degree. 

 C O L D  POSTERIOR  EFFECT  

n Section 5.3 we found that we can impro v e the generalization
erformance of our BBB model significantly by cooling the posterior
ith a temperature T � 1, deviating from the true Bayes posterior.
his cold posterior effect is shown in detail in Fig. 13 for our model

rained on radio galaxies with the Laplace prior. In Section 5.3
e modified our cost function to down-weight the posterior in

quation (44) using a temperature term, T , with all subsequent
xperiments performed using T = 10 −2 . In Fig. 13 we show the
ffect of varying T o v er a wide range of values. 

These results suggest that some component of the Bayesian
ramework in the context of this application is misspecified and
t becomes difficult to justify using a Bayesian approach to these
odels whilst artificially reducing the effect of the components that
ake the learning Bayesian in the first place. 
NRAS 511, 3722–3740 (2022) 
Finding an explanation for the cold posterior effect is an active area
f research and several hypotheses have been proposed to explain
his effect (Wenzel et al. 2020 ): use of uninformative priors, such
s the standard Gaussian, which may lead to prior misspecification
Fortuin 2021 ); model misspecification; data augmentation or data set
uration issues which lead to likelihood misspecification (Aitchison
021 ; Nabarro et al. 2021 ). Here we consider two approaches for
nvestigating the effect of these misspecifications. 

.1 Model misspecification 

e examine whether the cold posterior effect in our results is due to
odel misspecification by optimizing the model with a modified cost

unction, following the work of Masegosa ( 2019 ). The cost function
s modified on the basis of Probably Approximately Correct (PAC)-
ayesian theory. PAC theory has its roots in Statistical Learning
heory and was first described in Valiant ( 1984 ) as a method for
 v aluating learnability, i.e. ho w well a machine learns hypotheses
iven a set of examples. Although PAC started out as a frequentist
ramew ork, it w as soon combined with Bayesian principles. It
as no w e volved into a formalized mathematical theory used to
ive statistical guarantees on the performance of machine learning
lgorithms by placing bounds on their generalization performance. 

According to the PAC theory, we can obtain an approximately
orrect upper bound on the generalization performance of a model,
s measured by test loss for example, which holds true with an
rbitrarily high probability as more data is collected, hence the name
Probably Approximately Correct’. Since the goal of any learning
lgorithm is to minimize the generalization gap, which is defined as
he difference between the out-of-sample or theoretical loss, L ( θ ),
nd the in-sample or empirical loss, ˆ L ( θ ), PAC inequalities can be
sed to define new learning strategies to train models. Using PAC
heory, we can obtain the following inequality: 

 ( θ ) ≤ ˆ L ( θ ) + ε( δ, D ) , (48) 

here δ is a confidence parameter that defines the probability that a
ample in the training set is misleading, and ε( δ, D train ) is an upper
ound on the generalization gap. 
McAllester ( 1999 ) presented PAC-Bayesian inequalities which

ombine PAC-learning with Bayesian principles and provide guaran-
ees on the performance of generalized Bayesian algorithms. These
lgorithms are referred to as generalized because the PAC-Bayes
ramework has similar components to the Bayesian framework: a
rior, π , defined o v er a set of hypotheses, θ ∈  , and a posterior, ρ,
hich is updated using Bayes-rule style updates using samples from
 data generating distribution, ν( x ). But these bounds hold true for

art/stac223_f12.eps
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Figure 13. The ‘cold posterior’ effect for the MiraBest classification problem (see Section 7 for details). Data are shown for the BBB model trained with a 
Laplace prior with no data augmentation and the original ELBO cost function (solid blue line), the BBB model with no data augmentation and the Masegosa 
posterior cost function (red dashed line), the BBB model with data augmentation and the original ELBO function (orange dot–dashed line), and the BBB model 
with data augmentation and the Masegosa posterior cost function (green dotted line). 
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ll choices of priors, whereas there is no guarantee on performance 
n Bayesian inference if the data set is not generated from the prior
istribution i.e. if the prior assumptions are incorrect. The bounds 
lso hold true for all choices of posteriors, so in principle we can have
odel-free learning. Ho we ver , traditionally most of the PA C-Bayes

ounds are only applicable to bounded loss functions and this has 
ade it difficult to apply them to the unbounded loss functions that

re typically used to train neural networks. Fortunately more recent 
orks have introduced PAC Bayes bounds for unbounded losses as 
ell (e.g. Alquier, Ridgway & Chopin 2016 ; Germain et al. 2016 ;
halae v a et al. 2020 ). We refer the reader to Guedj ( 2019 ) for an
 v erview of the PAC-Bayesian framework. 
Learning in the PAC-Bayesian framework happens such that an 

ptimal value of the posterior, ρ∗, is found that minimizes the KL
ivergence between the data generating distribution, ν( x ), and the 
osterior predictive distribution given by E ρ[ p( x| θ )]: 

∗ = arg min ρKL [ ν( x ) || E ρ[ p( x| θ )] ] . (49) 

Minimizing this KL divergence is equivalent to minimizing the 
ross-entropy (CE) function, 

∗ = arg min ρCE ( ρ) , (50) 

hich is the expected log loss of the posterior predictive distribution,
 ( x | θ ), with respect to the data generating distribution, ν( x ), 

E ( ρ) = E ν( x ) [ − log E ρ( θ ) [ p( x| θ )]] . (51) 

hus, by minimizing this CE function, we can find the optimal ρ∗.
his cross entropy loss is bounded by the expected log loss of the
osterior predictive distribution as 

E ( ρ) ≤ E ρ( θ ) [ L ( θ )] . (52) 

his is an example of what is known as an ‘oracle’ bound, since
he inequality depends on the unknown data generating distribution, 
( x ). It is also an example of a first order Jensen inequality, which
ives a linear bound such that 

 ν( x ) [ − log E ρ( θ ) [ p( x| θ )]] ≤ E ρ( θ ) [ E ν( x ) [ − log p( x| θ )]] , (53) 

hich is an expansion of the terms given in equation (52). 
Germain et al. ( 2016 ) derived a first order PAC-Bayes bound for

nbounded losses 

E ( ρ) ≤ E ρ( θ ) [ L ( θ )] ≤ E ρ( θ ) [ ̂  L ( θ, D)] + 

KL ( ρ, π ) 

c 1 
+ c 2 , (54) 

here c 1 and c 2 are constants. In the same work, Germain et al. ( 2016 )
lso showed that under i.i.d. assumptions, the Bayesian posterior, 
 ( θ | D ), minimizes this PAC-Bayes bound o v er the e xpected log loss,
 ρ( θ ) [ L ( θ )], which bounds the cross-entropy loss. 
Since variational inference is an approximation to the Bayesian 
arginal likelihood, we can use PAC-Bayesian bounds to optimize 
I-based Bayesian NNs. By applying these bounds to train Bayesian 
eural networks, one deviates from the variational inference as 
efined in the Bayesian paradigm and mo v es towards a more
eneralized variational inference algorithm. Training a model with 
he modified cost function minimizes an upper bound on the test
oss and provides a more optimal learning strategy compared to 
ptimizing the Bayesian posterior or its approximations such as the 
LBO function. To do this, the cost function is modified such that it
inimizes a second-order PAC-Bayesian bound on the cross entropy 

oss (CE), rather than the standard ELBO. Following the literature, 
e refer to this new objective function as a ‘Masegosa posterior’. 

.1.1 Masegosa posteriors 

asegosa ( 2019 ) showed that the Bayesian posterior minimizes a
AC-Bayes bound o v er the CE loss only when the model is perfectly
pecified. When the model is misspecified, the minimum of the 
E loss is not equal to minimum of the expected log loss, and

hus optimizing the Bayesian posterior does not give an optimal 
earning strategy. Since this is more often the case, they propose
n alternative posterior by introducing a variance term , V ( ρ), that
easures the variance of the posterior predictive distribution. They 

efine a second-order oracle and Jensen bound, which is given as 

E ( ρ) ≤ E ρ( θ ) [ L ( θ )] − V ( ρ) , (55) 

here 

 ( ρ) = E ν( x ) 

[
1 

2 max θp( x| θ ) 2 
E ρ( θ ) [( p( x| θ ) − p( x)) 2 ] 

]
(56) 

s the variance term. 
Since the true data generating distribution, ν( x ), is not known, the

uthors place an upper bound on equation (55) using a second-order
AC-Bayes bound, 

E ( ρ) ≤ E ρ( θ ) [ L ( θ] − V ( ρ) ≤ E ρ( θ ) [ ̂ L ( θ, D)] − ˆ V ( ρ, D) + 

KL 

c 1 
+ c 2 

. (57) 

This alternative posterior is compatible with VI and we can modify
ur cost function to test the hypothesis that the cold posterior effect
bserved in our work is due to model misspecification. Instead of
ptimizing the ELBO function in equation (11), we optimize the 
MNRAS 511, 3722–3740 (2022) 
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ollowing function: 

rg min θ KL [ q( w | θ ) | P ( w )] − E q( w| θ ) [ log P ( D| w)] − ˆ V ( q| D) . (58) 

The empirical variance term, ˆ V , can be numerically calculated as
ollows: 

ˆ 
 ( w, w 

′ , D) = exp (2 log P ( D| w) − 2 m D 

) 

− exp ( log P ( D| w) + log P ( D| w 

′ ) − 2 m D 

) , (59) 

here w, w 

′ 
are samples from the variational posterior, q ( w| θ ), D is

he training data and m D is given as 

 D = max 
w 

log P ( D| w) . (60) 

The results of this modification for a range of temperatures is
hown in Fig. 13 , where it can be seen that the Masegosa posterior
AC bound (red dashed line) impro v es the cold posterior effect o v er
he original BBB model (solid blue line) slightly, but does not fully
ompensate for the o v erall behaviour. 

.2 Likelihood misspecification 

itchison ( 2021 ) suggested that rather than prior or model mis-
pecification, the cold posterior effect might be caused by o v er-
uration of training data sets leading to likelihood misspecification,
here the training data was not statistically representative of the
nderlying data distribution. They showed that for highly curated
ata sets, such as CIFAR-10, the cold posterior effect could be
itigated by adding label noise to the training data. Other works in

his area have suggested that unprincipled data augmentation could
e a contributing factor to the cold posterior effect (e.g. Izmailov
t al. 2021 ; Nabarro et al. 2021 ). 

The MiraBest data set used in this work is likely to be similarly
ubject to some o v er-curation in the same sense as CIFAR-10 as
t was compiled using an average or consensus labelling scheme
rom multiple human classifiers. For CIFAR-10, Aitchison ( 2021 )
ntroduced label noise by augmenting the original data set using all
ndividual classifications from 50 human classifiers in their work,
hich were provided by the CIFAR-10H data set (Peterson et al.
019 ). Here we do not have access to the individual classifications
or the MiraBest data set, but we are able to augment our data set in
 more standard manner using rotations. 

We find that the cold posterior effect observed in our work reduces
lightly with data augmentation (see Fig. 13 ). We suggest that this is
ecause we have augmented the MiraBest data set using principled
ethods that correspond to an informed prior for how radio galaxies

re oriented, as radio galaxy class is assumed to be equi v ariant
o orientation and chirality (see e.g. Ntwaetsile & Geach 2021 ;
caife & Porter 2021 ). Fig. 13 shows the cold posterior effect for the
adio galaxy classification problem addressed in this work both with
orange dot–dashed line) and without (blue solid line) data augmen-
ation. It can be seen that there is an impro v ement in performance
t temperatures below T = 0.01 causing the test accuracy to reach
 plateau at higher temperatures than for unaugmented data. Data
ugmentation also impro v es performance at temperatures abo v e T =
.01; ho we ver, we also find that the uncertainty calibration error
ncreases for the model trained with augmented data for T = 0.01. 

Fig. 13 also shows that combining a Masegosa posterior with data
ugmentation provides the most significant impro v ement to the cold
osterior effect (green dotted line); however, it does not rectify it
ompletely. Since the Masegosa posterior is a more complete test
f model misspecification than the data augmentation used here is
f likelihood misspecification, we suggest that a key element for
xploring the problem of likelihood misspecification in future may
NRAS 511, 3722–3740 (2022) 
e the availability of radio astronomy training sets that do not only
resent average or consensus target labels, but instead include all
ndividual labels from human classifiers. 

 C O N C L U S I O N S  

n this work we have presented the first application of a variational
nference based approach to deep learning classification of radio
alaxies, using a binary FR I/FR II classification. Using a Bayesian
onvolutional Neural Network based on the Bayes by Backprop

BBB) algorithm, we have shown that posterior uncertainties on the
redictions of the model can be estimated by making a variational
pproximation to the posterior probability distribution o v er the model
arameters. 
We have considered the use of four different prior distributions

 v er the parameters of our model. We find that a model trained with a
aplace prior performs better than one using a Gaussian prior in terms
f mean test error by ∼ 3 per cent , and better than a GMM prior by

1 per cent ; a model trained with a LMM prior performs worse than
hose using Gaussian priors and the Laplace prior. We also find that
he calibration of the posterior uncertainties for a model trained using
 Laplace prior is better than for models trained using the other priors
onsidered in this work. This suggests that learning in this case may
enefit from sparser weights. Ho we ver, gi ven the uncertainties on
hese values we cannot yet draw statistically significant conclusions
or prior selection. We also note that this work uses relatively simple
riors and that future extensions will look more closely at prior
pecification and whether more informative priors can help learning.

We note that we obtain a larger error value than that obtained by
ther neural network based models trained on the MiraBest Confident
ata set, but emphasize that other works have used data augmentation
o increase the size of the data set, whereas we have only used the
riginal samples. This allowed us to study the use of VI-based neural
etworks on small data sets as well. If we include data augmentation
e obtain a comparable performance to previously published results;
o we ver, this comes at the cost of increased uncertainty calibration
rror. Thus there is a trade-off between standard models, which are
omewhat more accurate, and BBB, which is reasonably accurate
hile giving more reliable posteriors and therefore potentially more

cientifically useful. 
Our analysis of different measures of uncertainty for our deep

earning model indicates that model uncertainty is correlated with the
egree of belief of the human classifiers who originally assigned the
abels in the MiraBest data set. We find that our BBB model trained
n confidently labelled radio galaxies is able to reliably estimate its
onfidence in predictions when presented with radio galaxies that
ave been classified with a lower degree of confidence. Notably,
ll measures of uncertainty are higher for the samples qualified as
ncertain . The model also made predictions with higher uncertainty

or a sample of Hybrid radio galaxies, which was expected as
hese samples were not present in the training data, but contained
R I/FR II like components nevertheless. Looking more closely
t the class-wise distributions of uncertainties, we found that FR
I type objects are associated with a lower degree of uncertainty
han FR Is. Among the classes of the Hybrid samples, we found
hat the uncertainty was higher for the confidently labelled samples
ompared to the uncertainly labelled Hybrid samples. We suggest
hat this may be because objects with uncertain labels are more
imilar to the FR I/FR II samples the model was trained on, which is
hy the human classifiers were uncertain in their classification as a
ybrid. 
We hav e e xplored different weight pruning approaches with the
oti v ation of reducing the storage and computation cost of these
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odels at deployment. We find that using a SNR based method using
osterior means and v ariances allo ws the fully connected layers of the
odel to be pruned by up to 30 per cent, but a method that combines
isher information with weight magnitudes allows an even higher 
roportion of weights to be pruned, by up to 60 per cent, without
ompromising the model performance. The effect of removing some 
f these weights can also be seen in the uncertainty metrics. We found
hat both the uncertainty and the uncertainty calibration error increase 
ith model pruning. Ho we ver, both pruning methods seem to affect
R I/FR II samples differently. Future work in this area could make a
omparison of these methods with augmented data to verify whether 
ne method should be preferred o v er the other. Another possible
xtension could be re-training a pruned model to test whether pruning 
mpro v es the generalization performance of a network. 

Finally, we consider the cold posterior effect and its implications 
or the use of Bayesian deep learning with radio galaxy data in
uture. We find that the cold posterior effect is worse when using a
MM prior than for a Laplace prior, and we consider the hypothesis

hat further model misspecification may be causing the observed 
old posterior effect. We test this hypothesis by retraining our 
odel with a modified cost function that provides a loose PAC- 
ayes bound o v er the cross-entropy loss. We find that although the
odified cost function impro v es model performance slightly, it does 

ot compensate for the cold posterior effect completely. 
We also consider the possibility of likelihood misspecification 

nd test whether a principled data augmentation could impro v e the
old posterior effect. Similarly, we find that a small impro v ement
s observed, but not a sufficiently large change to remo v e the effect
ntirely. Based on these results, we suggest that o v er-curation of the
raining data set may be responsible for the majority of the cold
osterior effect in radio galaxy classification and recommend that 
uture labelling schemes for radio astronomy data retain full details 
f labelling from all human classifiers in order to test and potentially
itigate this effect more fully. 
In this work we have considered a binary classification of mor-

hology, but a diverse and complex population of galaxies exist in the
adio universe. Understanding how populations of radio galaxies are 
istributed gives us insight into the effect of extrinsic and intrinsic
actors that may have led to the morphologies, which in turn help
hape our understanding of radio-loud AGN, their excitation and 
ccretion modes, how they evolve, and their relationship with their 
ost galaxies and environments. Deep learning will play an important 
ole in extracting scientific value from the next-generation of radio 
acilities and understanding how neural network models propagate 
ncertainties will be crucial for deploying these models scientifically. 
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