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ABSTRACT
Weight sharing in convolutional neural networks (CNNs) ensures that their feature maps will be translation-equivariant. However,
although conventional convolutions are equivariant to translation, they are not equivariant to other isometries of the input image
data, such as rotation and reflection. For the classification of astronomical objects such as radio galaxies, which are expected
statistically to be globally orientation invariant, this lack of dihedral equivariance means that a conventional CNN must learn
explicitly to classify all rotated versions of a particular type of object individually. In this work we present the first application of
group-equivariant convolutional neural networks to radio galaxy classification and explore their potential for reducing intra-class
variability by preserving equivariance for the Euclidean group E(2), containing translations, rotations and reflections. For the
radio galaxy classification problem considered here, we find that classification performance is modestly improved by the use
of both cyclic and dihedral models without additional hyper-parameter tuning, and that a 𝐷16 equivariant model provides the
best test performance. We use the Monte Carlo Dropout method as a Bayesian approximation to recover epistemic uncertainty
as a function of image orientation and show that E(2)-equivariant models are able to reduce variations in model confidence as a
function of rotation.
Key words: radio continuum: galaxies – methods: data analysis – techniques: image processing

1 INTRODUCTION

In radio astronomy, a massive increase in data volume is currently
driving the increased adoption of machine learning methodologies
and automation during data processing and analysis. This is largely
due to the high data rates being generated by new facilities such
as the Low-Frequency Array (LOFAR; Van Haarlem et al. 2013),
the Murchison Widefield Array (MWA; Beardsley et al. 2019), the
MeerKAT telescope (Jarvis et al. 2016), and the Australian SKA
Pathfinder (ASKAP) telescope (Johnston et al. 2008). For these in-
struments a natural solution has been to automate the data processing
stages as much as possible, including classification of sources.
With the advent of such huge surveys, new automated classification

algorithms have been developed to replace the “by eye” classifica-
tionmethods used in earlier work. In radio astronomy, morphological
classification using convolutional neural networks (CNNs) and deep
learning is becoming increasingly common for object classification,
in particular with respect to the classification of radio galaxies. The
ground work in this field was done by Aniyan & Thorat (2017) who
made use of CNNs for the classification of Fanaroff-Riley (FR) type
I and type II radio galaxies (Fanaroff & Riley 1974). This was fol-
lowed by other works involving the use of deep learning in source
classification. Examples include Lukic et al. (2018) who made use of
CNNs for the classification of compact and extended radio sources
from the Radio Galaxy Zoo catalogue (Banfield et al. 2015), the
CLARAN (Classifying Radio Sources Automatically with a Neural
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Network; Wu et al. 2018) model made use of the Faster R-CNN (Ren
et al. 2015) network to identify and classify radio sources; Alger
et al. (2018) made use of an ensemble of classifiers including CNNs
to perform host galaxy cross-identification. Tang et al. (2019) made
use of transfer learning with CNNs to perform cross-survey classifi-
cation, while Gheller et al. (2018) made use of deep learning for the
detection of cosmological diffuse radio sources. Lukic et al. (2018)
also performed morphological classification using a novel technique
known as capsule networks (Sabour et al. 2017), although they found
no specific advantage compared to traditional CNNs. Bowles et al.
(2020) showed that an attention-gated CNN could be used to per-
form Fanaroff-Riley classification of radio galaxies with equivalent
performance to other applications in the literature, but using ∼50%
fewer learnable parameters than the next smallest classical CNN in
the field.
Convolutional neural networks classify images by learning the

weights of convolutional kernels via a training process and using
those learned kernels to extract a hierarchical set of feature maps
from input data samples. Convolutional weight sharing makes CNNs
more efficient than multi-layer perceptrons (MLPs) as it ensures
translation-equivariant feature extraction, i.e. a translated input signal
results in a corresponding translation of the feature maps. However,
although conventional convolutions are equivariant to translation,
they are not equivariant to other isometries of the input data, such
as rotation, i.e. rotating an image and then convolving with a fixed
filter is not the same as first convolving and then rotating the re-
sult. Although many CNN training implementations use rotation as
a form of data augmentation, this lack of rotational equivariance
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means that a conventional CNN must explicitly learn to classify all
rotational augmentations of each image individually. This can result
in CNNs learning multiple copies of the same kernel but in different
orientations, an effect that is particularly notable when the data itself
possesses rotational symmetry (Dieleman et al. 2016). Furthermore,
while data augmentation thatmimicks a form of equivariance, such as
image rotation, can result in a network learning approximate equiv-
ariance if it has sufficient capacity, it is not guaranteed that invariance
learned on a training set will generalise equally well to a test set (Lenc
& Vedaldi 2014). A variety of different equivariant networks have
been developed to address this issue, each guaranteeing a particular
transformation equivariance between the input data and associated
feature maps. For example, in the field of galaxy classification using
optical data, Dieleman et al. (2015) enforced discrete rotational in-
variance through the use of a multi-branch network that concatenated
the output features from multiple convolutional branches, each using
a rotated version of the same data sample as its input. However, while
effective, the approach of Dieleman et al. (2015) requires the con-
volutional layers of a network architecture and hence the number of
model weights associated with them to be replicated 𝑁 times, where
𝑁 is the number of discrete rotations.
Recently, amore efficientmethod of using convolutional layers that

are equivariant to a particular group of transforms has been devel-
oped, which requires no replication of architecture and hence fewer
learnable parameters to be used. Explicitly enforcing an equivariance
in the network model in this way not only provides a guarantee that
it will generalise, but also prevents the network using parameter ca-
pacity to learn characteristic behaviour that can instead be specified
a priori. First introduced by Cohen & Welling (2016), these Group
equivariant Convolutional Neural Networks (G-CNNs), which pre-
serve group equivariance through their convolutional layers, are a
natural extension of conventional CNNs that ensure translational in-
variance through weight sharing. Group equivariance has also been
demonstrated to improve generalisation and increase performance
(see e.g. Weiler et al. 2017; Weiler & Cesa 2019). In particular,
Steerable G-CNNs have become an increasingly important solution
to this problem and notably those steerable CNNs that describe E(2)-
equivariant convolutions.
TheEuclidean groupE(2) is the group of isometries of the planeR2

that contains translations, rotations and reflections. Isometries such as
these are important for general image classification using convolution
as the target object in question is unlikely to appear at a fixed position
and orientation in every test image. Such variations are not only
highly significant for objects/images that have a preferred orientation,
such as text or faces, but are also important for low-level features in
nominally orientation-unbiased targets such as astrophysical objects.
In principle, E(2)-equivariant CNNswill generalize over rotationally-
transformed images by design, which reduces the amount of intra-
class variability that they have to learn. In effect such networks are
insensitive to rotational or reflection variations and therefore learn
only features that are independent of these properties.
In this work we introduce the use of 𝐺-steerable CNNs to as-

tronomical classification. The structure of the paper is as follows:
in Section 2 we describe the mathematical operation of 𝐺-steerable
CNNs and define the specific Euclidean subgroups being consid-
ered in this work; in Section 3 we describe the data sets used in
this work and the preprocessing steps implemented on those data; in
Section 4 we describe the network architecture adopted in this work,
explain how the𝐺-steerable implementation is constructed and spec-
ify the group representations; in Section 5 we give an overview of
the training outcomes including a discussion of the convergence for
different equivalence groups, validation and test performance met-

rics, and introduce a novel use of the Monte Carlo Dropout method
for quantitatively assessing the degree of model confidence in a test
prediction as a function of image orientation; in Section 6 we discuss
the validity of the assumptions that radio galaxy populations are ex-
pected to be staitsically rotation and reflection unbiased and review
the implications of this work in that context; in Section 7 we draw
our conclusions.

2 E(2)-EQUIVARIANT G-STEERABLE CNNS

Group CNNs define feature spaces using feature fields 𝑓 : R2 → R𝑐 ,
which associate a 𝑐-dimensional feature vector 𝑓 (𝑥) ∈ R𝑐 to each
point 𝑥 of an input space. Unlike conventional CNNs, the feature
fields of such networks contain transformations that preserve the
transformation law of a particular group or subgroup, which allows
them to encode orientation information. This means that if one trans-
forms the input data, 𝑥, by some transformation action, 𝑔, (translation,
rotation, etc.) and passes it through a trained layer of the network,
then the output from that layer, Φ(𝑥), must be equivalent to having
passed the data through the layer and then transformed it, i.e.

Φ(T𝑔𝑥) = T ′
𝑔 Φ(𝑥), (1)

where T𝑔 is the transformation for action 𝑔. In the case where the
transformation is invariant rather than equivariant, i.e. the input
does not change at all when it is transformed, T ′

𝑔 will be the identity
matrix for all actions 𝑔 ∈ 𝐺. In the case of equivariance, T𝑔 does
not necessarily need to be equal to T ′

𝑔 and instead must only fulfil
the property that it is a linear representation of 𝐺, i.e. T (𝑔ℎ) =

T (𝑔)T (ℎ).
Cohen & Welling (2016) demonstrated that the conventional con-

volution operation in a network can be re-written as a group convo-
lution:

[ 𝑓 ∗ 𝜙] (𝑔) =
∑︁
ℎ∈𝑋

∑︁
𝑘

𝑓𝑘 (ℎ)𝜙𝑘 (𝑔−1ℎ), (2)

where 𝑋 = R2 in layer one and 𝑋 = 𝐺 in all subsequent layers.Whilst
this operation is translationally-equivariant, 𝜙 is still rotationally
constrained. For E(2)-equivariance to hold more generally, the kernel
itself must satisfy

𝜙(𝑔𝑥) = 𝜌out (𝑔)𝜙(𝑥)𝜌in (𝑔−1) ∀ 𝑔 ∈ 𝐺, 𝑥 ∈ R2, (3)

(Weiler et al. 2018), where 𝑔 is an action from group 𝐺, and 𝜙 :
R2 → R𝑐in×𝑐out , where 𝑐in and 𝑐out are the number of channels in
the input and output data, respectively; 𝜌 is the group representation,
which specifies how the channels of each feature vector mix under
transformations. Kernels which fulfil this constraint are known as
rotation-steerable and must be constructed from a suitable family of
basis functions. As noted above, this is a linear relationship, which
means that G-steerable kernels form a subspace of the convolution
kernels used by conventional CNNs.
For planar images the input space will be R2, and for single fre-

quency or continuum radio images these feature fields will be scalar,
such that 𝑠 : R2 → R. The group representation for scalar fields is
also known as the trivial representation, 𝜌(𝑔) = 1 ∀ 𝑔 ∈ 𝐺, indicat-
ing that under a transformation there is no orientation information
to preserve and that the amplitude does not change. The group rep-
resentation of the output space from a G-steerable convolution must
be chosen by the user when designing their network architecture and
can be thought of as a variety of hyper-parameter.
However, whilst the representation of the input data is in some

senses quite trivial for radio images, in practice convolution layers are
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interleaved with other operations that are sensitive to specific choices
of representation. In particular, the range of non-linear activation
layers permissible for a particular group or subgroup representation
may be limited. Trivial representations, such as scalar fields, do not
transform under rotation and therefore conventional nonlinearities
like the widely used ReLU activation function are fine. Bias terms
in convolution allow equivariance for group convolutions only in
the case where there is a single bias parameter per group feature
map (rather than per channel feature map) and likewise for batch
normalisation (Cohen & Welling 2016).
In this work we use the G-steerable network layers from Weiler

& Cesa (2019) who define the Euclidean group as being con-
structed from the translation group, (R, +), and the orthogonal group,
O(2) = {𝑂 ∈ R2×2 | 𝑂𝑇𝑂 = id2×2}, such that the Euclidean
group is congruent with the semi-direct product of these two groups,
E(2) � (R, +)o O(2). Consequently, the operations contained in the
orthogonal group are those which leave the origin invariant, i.e.
continuous rotations and reflections. In this work we specifically
consider the cyclic subgroups of the Euclidean group with form
(R2, +) o𝐶𝑁 , where 𝐶𝑁 contains a set of discrete rotations in mul-
tiples of 2𝜋/𝑁 , and the dihedral subgroups with form (R2, +) o𝐷𝑁 ,
where 𝐷𝑁 � 𝐶𝑁 o ({±1}, ∗), which incorporate reflection around
𝑥 = 0 in addition to discrete rotation. As noted by Cohen & Welling
(2016), although convolution on continuous groups is mathemat-
ically well-defined, it is difficult to approximate numerically in a
fully equivariant manner. Furthermore, the complete description of
all transformations in larger groups is not always feasible (Gens &
Domingos 2014). Consequently, in this work we consider only the
discrete and comparatively small groups, 𝐶𝑁 and 𝐷𝑁 , with orders
𝑁 and 2𝑁 , respectively.

3 DATA

The data set used in this work is based on the catalogue of Miraghaei
& Best (2017), who used a parent galaxy sample taken from Best &
Heckman (2012) that cross-matched the Sloan Digital Sky Survey
(SDSS; York et al. 2000) data release 7 (DR7; Abazajian et al. 2009)
with the Northern VLA Sky Survey (NVSS; Condon et al. 1998) and
the Faint Images of the Radio Sky at Twenty centimetres (FIRST;
Becker et al. 1995).
From the parent sample, sources were visually classified by Mi-

raghaei & Best (2017) using the original morphological definition
provided by Fanaroff & Riley (1974): galaxies which had their most
luminous regions separated by less than half of the radio source’s
extent were classed as FRI, and those which were separated by more
than half of this were classed as FRII. Where the determination of
this separation was complicated by either the limited resolution of
the FIRST survey or by its poor sensitivity to low surface brightness
emission, the human subjectivity in this calculation was indicated
by the source classification being denoted as “Uncertain", rather
than “Confident". Galaxies were then further classified into morpho-
logical sub-types via visual inspection. Any sources which showed
FRI-like behaviour on one half of the source and FRII-like behaviour
on the other were deemed to be hybrid sources.
Each object within the catalogue of Miraghaei & Best (2017) was

given a three-digit classification identifier to allow images to be sep-
arated into different subsets. Images were classified by FR class,
confidence of classification, and morphological sub-type. These are
summarised in Table 1. For example, a radio galaxy that was confi-
dently classified as an FRI type source with a wide-angle tail mor-
phology would be denoted 102.

Digit 1 Digit 2 Digit 3

0 - FRI 0 - Confident 0 - Standard
1 - FRII 1 - Uncertain 1 - Double-double
2 - Hybrid 2 - Wide-angle Tail
3 - Unclassifiable 3 - Diffuse

4 - Head-tail

Table 1.Numerical identifiers from the catalogue ofMiraghaei&Best (2017).

We note that not all combinations of the three digits described in
Table 1 are present in the catalogue as some morphological classes
are dependent on the parent FR class, with only FRI type objects be-
ing sub-classified into head-tail or wide-angle tail, and only FRII type
objects being sub-classified as double-double. Hybrid FR sources are
not considered to have any non-standard morphologies, as their stan-
dard morphology is inherently inconsistent between sources. Con-
fidently classified objects outnumber their uncertain counterparts
across all classes, and in classes that have few examples there may
be no uncertain sources present. This is particularly apparent for
non-standard morphologies.
From the full catalog of 1329 labelled objects, 73 were excluded

from the machine learning data set. These include (i) the 40 objects
denoted as 3 - unclassifiable, (ii) 28 objects which had an angular
extent greater than a selected image size of 150 × 150 pixels, (iii)
4 objects with structure that was found to overlap the edge of the
sky area covered by the FIRST survey, and (iv) the single object in
3-digit category 103. This final object was excluded as a minimum
of two examples from each class are required for the data set: one for
the training set and one for the test set. Following these exclusions,
1256 objects remain, which we refer to as the MiraBest data set and
summarise in Table 2.
All images in theMiraBest data set are subjected to a similar data

pre-processing as other radio galaxy deep learning data sets in the
literature (see e.g. Aniyan & Thorat 2017; Tang et al. 2019). FITS
images for each object are extracted from the FIRST survey data using
the Skyview service (McGlynn et al. 1998) and the astroquery
library (Ginsburg et al. 2019). These images are then processed in
four stages before data augmentation is applied: firstly, image pixel
values are set to zero if their value is below a threshold of three times
the local rms noise, secondly the image size is clipped to 150 by 150
pixels, i. e. 270′′ by 270′′ for FIRST, where each pixel corresponds
to 1.8′′. Thirdly, all pixels outside a square central region with extent
equal to the largest angular size of the radio galaxy are set to zero.
This helps to eliminate secondary background sources in the field
and is possible for the MiraBest data set due to the inclusion of this
parameter in the catalogue of Miraghaei & Best (2017). Finally the
image is normalised as:

Output = 255 · Input −min(Input)
max(Input) −min(Input) , (4)

where ‘Output’ is the normalised image, ‘Input’ is the original image
and ‘min’ and ‘max’ are functions which return the single minimal
and maximal values of their inputs, respectively. Images are saved to
PNG format and accummulated into a PyTorch batched data set1.
For this work we extract the objects labelled as Fanaroff-Riley

Class I (FRI) and Fanaroff-Riley Class II (FRII; Fanaroff & Riley
1974) radio galaxies with classifications denoted as Confident (as

1 The MiraBest data set is available on Zenodo: 10.5281/zenodo.4288837
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4 A. M. M. Scaife & F. Porter

Figure 1. Illustration of the 𝐶4 and 𝐷4 groups for an example radio galaxy postage stamp image with 50 × 50 pixels. The members of the 𝐶4 group are each
rotated by 𝜋/2 radians, resulting in a group order |𝐶4 | = 4. The members of the 𝐷4 group are each rotated by 𝜋/2 radians and mirrored around 𝑥 = 0, resulting
in a group order |𝐷4 | = 8.

Class No. Confidence Morphology No. MiraBest Label

FRI 591
Confident

Standard 339 0
Wide-Angle Tailed 49 1

Head-Tail 9 2

Uncertain Standard 191 3
Wide-Angle Tailed 3 4

FRII 631 Confident Standard 432 5
Double-Double 4 6

Uncertain Standard 195 7

Hybrid 34 Confident NA 19 8
Uncertain NA 15 9

Table 2.MiraBest data set summary. The original data set labels (MiraBest Label) are shown in relation to the labels used in this work (Label). Hybrid sources
are not included in this work, and therefore have no label assigned to them.

opposed to Uncertain). We exclude the objects classified as Hybrid
and do not employ sub-classifications. This creates a binary classifi-
cation data set with target classes FRI and FRII.We denote the subset
of the full MiraBest data set used in this work as MiraBest∗.

The MiraBest∗ data set has pre-specified training and test data
partitions and the number of objects in each of these partitions is
shown in Table 3 along with the equivalent partitions for the full
MiraBest data set. In this work we subdivide the MiraBest* training
partition into training and validation sets using an 80:20 split. The test
partition is reserved for deriving the performance metrics presented
in Section 5.2.

To accelerate convergence, we further normalise individual data
samples from the data set by shifting and scaling as a function of the
mean and variance, both calculated from the full training set (LeCun
et al. 2012) and listed in Table 3. Data augmentation is performed
during training and validation for all models using random rotations
from 0 to 360 degrees. This is standard practice for augmentation and
is also consistent with the𝐺-steerable CNN training implementations
of Weiler & Cesa (2019), who included rotational augmentation for
their own tests in order to not disadvantage models with lower levels
of equivariance. To avoid issues arising from samples where the
structure of the radio source overlaps the edge of the field and is
artificially truncated in some orientations during augmentation, but

Table 3. Data used in this work. The table shows the number of objects of
each class that are provided in the training and test partitions for theMiraBest
data set, containing sources labeled as both Confident and Uncertain, and the
MiraBest∗ data set, containing only objects labeled as Confident, as well as
the mean and standard deviation of the training sets in each case.

Train Test
Data FRI FRII FRI FRII 𝜇 𝜎

MiraBest 517 552 74 79 0.0031 0.0352
MiraBest∗ 348 381 49 55 0.0031 0.0350

not in others, we apply a circular mask to each sample image, setting
all pixels to zero outside a radial distance from the centre of 75 pixels.
An example data sample is shown in Figure 1, where it is used to

illustrate the corresponding𝐶4 and 𝐷4 groups. As noted byWeiler &
Cesa (2019), for signals digitised on a pixel grid, exact equivariance
is not possible for groups that are not symmetries of the grid itself and
in this case only subgroups of 𝐷4 will be exact symmetries with all
other subgroups requiring interpolation to be employed (Dieleman
et al. 2016).

MNRAS 000, 1–11 (2015)
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Table 4. The LeNet5-style network architecture used for all the models in this
work. 𝐺-Steerable implementations include the additional steps indicated
in italics and replace the convolutional layers with the appropriate group-
equivariant equivalent in each case. Column [1] lists the operation of each
layer in the network, where entries in italics denote operations that are applied
only in the 𝐺-steerable version of the network; Column [2] lists the kernel
size in pixels for each layer, where appropriate; Column [3] lists the number
of output channels from each layer; Column [4] denotes the degree of zero-
padding in pixels added to each edge of an image, where appropriate.

Operation Kernel Channels Padding

Invariant Projection
Convolution 5 × 5 6 1
ReLU
Max-pool 2 × 2
Convolution 5 × 5 16 1
ReLU
Max-pool 2 × 2
Invariant Projection
Global Average Pool
Fully-connected 120
ReLU
Fully-connected 84
ReLU
Dropout (𝑝 = 0.5)
Fully-connected 2

4 ARCHITECTURE

For our architecture we use a simple LeNet-style network (LeCun
et al. 1998) with two convolutional layers, followed by three fully-
connected layers. Each of the convolutional layers has a ReLU ac-
tivation function and is followed by a max-pooling operation. The
fully-connected layers are followed by ReLU activation functions
and we use a 50% dropout before the final fully-connected layer, as
is standard for LeNet (Krizhevsky et al. 2012). An overview of the
architecture is shown in Table 4. In what follows we refer to this base
architecture using conventional convolution layers as the standard
CNN and denote it {𝑒}. We also note that the use of conventional
CNN is used through the paper to refer to networks that do not employ
group-equivariant convolutions, independent of architecture.
For the 𝐺-steerable implementation of this network we use the
e2cnn extension2 to the PyTorch library (Weiler & Cesa 2019)
and replace the convolutional layers with their subgroup-equivariant
equivalent. We also introduce two additional steps into the network
in order to recast the feature data from the convolutional layers into
a format suitable for the conventional fully-connected layers. These
steps consist of reprojecting the feature data from a geometric tensor
into standard tensor format and pooling over the group features, and
are indicated in italics in Table 4. Since the additional steps in the
𝐺-steerable implementations have no learnable parameters associ-
ated with them, the overall architecture is unchanged from that of the
standard CNN; it is only the nature of the kernels in the convolutional
layers that differ.
For the input data we use the trivial representation, but for all

subsequent steps in the 𝐺-steerable implementations we adopt the
regular representation, 𝜌reg. This representation is typical for de-
scribing finite groups/subgroups such as 𝐶𝑁 and 𝐷𝑁 . The regular
representation of a finite group 𝐺 acts on a vector space R |𝐺 | by
permuting its axes, where |𝐺 | = 𝑁 for 𝐶𝑁 and |𝐺 | = 2𝑁 for 𝐷𝑁 ,

2 https://github.com/QUVA-Lab/e2cnn

see Figure 1. This representation is helpful because its action sim-
ply permutes channels of fields and is therefore equivariant under
pointwise operations such as the ReLU activation function, max and
average pooling functions (Weiler & Cesa 2019).
We train each network over 600 epochs using a standard cross-

entropy loss function and the Adam optimiser (Kingma & Ba 2014)
with an initial learning rate of 10−4 and a weight decay of 10−6. We
use a scheduler to reduce the learning rate by 10% each time the
validation loss fails to decrease for two consecutive epochs. We use
mini-batching with a batch size of 50. No additional hyper-parameter
tuning is performed. We also implement an early-stopping criterion
based on validation accuracy and for each training run we save the
model corresponding to this criterion.

5 RESULTS

5.1 Convergence of G-Steerable CNNs

Validation loss curves for both the standard CNN implementation,
denoted {𝑒}, and the group-equivariant CNN implementations for
𝑁 = {4, 8, 16, 20} are shown in Figure 2. Curves show the mean and
standard deviation for each network over five training repeats. It can
seen from Figure 2 that the standard CNN implementation achieves
a significantly poorer loss than that of its group-equivariant equiva-
lents. For both the cyclic and dihedral group-equivariant models, the
best validation loss is achieved for 𝑁 = 16. Although the final loss in
the case of the cyclic and dihedral-equivariant networks is not sig-
nificantly different in value, it is notable that the lower order dihedral
networks converge towards this value more rapidly than the equiv-
alent order cyclic networks. We observe that higher order groups
minimize the validation loss more rapidly, i.e. the initial gradient of
the loss as a function of epoch is steeper, up to order 𝑁 = 16 in this
case. Weiler & Cesa (2019), who also noted the same thing when
training on the MNIST datasets, attribute this behaviour to the in-
creased generalisation capacity of equivariant networks, since there
is no significant difference in the number of learnable parameters
between models.
Final validation error as a function of order, 𝑁 , for the group-

equivariant networks is shown in Figure 3. From this figure it can be
seen that all equivariant models improve upon the non-equivariant
CNN baseline, {𝑒}, and that the validation error decreases before
reaching a minimum for both cyclic and dihedral models at ap-
proximately 16 orientations. This behaviour is discussed further in
Section 6.4.

5.2 Performance of G-Steerable CNNs

Standard performance metrics for both the standard CNN implemen-
tation, denoted {𝑒}, and the group-equivariant CNN implementations
for 𝑁 = {4, 8, 16, 20} are shown in Table 5. The metrics in this table
are evaluated using the reserved test set of the MiraBest∗ data set,
classified using the best-performing model according to the valida-
tion early-stopping criterion. The reserved test set is augmented by a
factor of 9 using discrete rotations of 20◦ over the interval [0◦, 180◦).
This augmentation is performed in order to provide metrics that re-
flect the performance over a consistent range of orientations. The
values in the table show the mean and standard deviation for each
metric over five training repeats. All 𝐺-steerable CNNs listed in this
table use a regular representation for feature data and apply a 𝐺-
invariant map after the convolutional layers to guarantee an invariant
prediction.

MNRAS 000, 1–11 (2015)
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6 A. M. M. Scaife & F. Porter

Figure 2. Validation losses during the training of the standard CNN, denoted {𝑒}, and (i) 𝐶𝑁 -equivariant models for the MiraBest∗ data set (left), and (ii)
𝐷𝑁 -equivariant models for the MiraBest∗ data set (right). Plots show mean and standard deviation over five training repeats. Curves are smoothed over 20
epochs to eliminate small-scale variability.

Table 5. Performance metrics for classification of the MiraBest∗ data set using the standard CNN ({𝑒}) and 𝐺-steerable CNNs for different cyclic and dihedral
subgroups of the E(2) Euclidean group. All 𝐺-steerable CNNs use a regular representation for feature data and apply a G-invariant map after the convolutions
to guarantee an invariant prediction.

FRI FRII
MiraBest∗ Accuracy [%] Precision Recall F1-score Precision Recall F1-score

{𝑒} 94.04 ± 1.37 0.935 ± 0.018 0.940 ± 0.024 0.937 ± 0.015 0.946 ± 0.020 0.941 ± 0.018 0.944 ± 0.013

𝐶4 95.24 ± 1.23 0.942 ± 0.018 0.959 ± 0.015 0.950 ± 0.013 0.963 ± 0.013 0.947 ± 0.018 0.955 ± 0.012
𝐶8 95.96 ± 1.06 0.950 ± 0.020 0.966 ± 0.016 0.958 ± 0.011 0.969 ± 0.013 0.954 ± 0.019 0.961 ± 0.010
𝐶16 96.07 ± 1.03 0.953 ± 0.020 0.964 ± 0.013 0.959 ± 0.011 0.968 ± 0.011 0.958 ± 0.019 0.963 ± 0.010
𝐶20 95.88 ± 1.12 0.951 ± 0.019 0.962 ± 0.013 0.957 ± 0.012 0.966 ± 0.011 0.956 ± 0.018 0.961 ± 0.011

𝐷4 95.45 ± 1.38 0.948 ± 0.024 0.957 ± 0.017 0.952 ± 0.014 0.962 ± 0.015 0.952 ± 0.023 0.957 ± 0.013
𝐷8 96.37 ± 0.95 0.960 ± 0.019 0.964 ± 0.014 0.962 ± 0.010 0.968 ± 0.012 0.964 ± 0.018 0.966 ± 0.009
𝐷16 96.56 ± 1.29 0.963 ± 0.025 0.965 ± 0.014 0.964 ± 0.013 0.969 ± 0.012 0.966 ± 0.023 0.967 ± 0.012
𝐷20 96.39 ± 1.00 0.959 ± 0.018 0.966 ± 0.015 0.962 ± 0.010 0.969 ± 0.013 0.962 ± 0.017 0.966 ± 0.010

Figure 3. Validation errors of 𝐶𝑁 and 𝐷𝑁 regular steerable CNNs for
different orders,𝑁 , for theMiraBest∗ data set. All equivariantmodels improve
upon the non-equivariant CNN baseline, {𝑒}.

From Table 5, it can be seen that the best test accuracy is achieved
by the 𝐷16 model, highlighted in bold. Indeed, while all equivariant
models perform better than the standard CNN, the performance of
the dihedral models is consistently better than for the cyclic models
of equivalent order.
For the cyclic models it can be observed that the largest change

in performance comes from an increased FRI recall. For a binary
classification problem, the recall of a class is defined as

Recall =
TP

TP + FN , (5)

where TP indicates the number of true positives and FN indicates the
number of false negatives. The recall therefore represents the fraction
of all objects in that class which are correctly classified. Equivalently,
the precision of the class is defined as

Precision =
TP

TP + FP . (6)

Consequently, if the recall of one class increases at the expense of
the precision of the opposing class then it indicates that the opposing
class is being disproportionately misclassified. However, in this case
we can observe fromTable 5 that the precision of the FRII class is also
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Figure 4.Average number ofmisclassifications for FRI (cyan) and FRII (grey)
over all orientations and training repeats for the standard CNN, denoted {𝑒},
the 𝐶16 CNN and the 𝐷16 CNN, see Section 5.2 for details.

increasing, suggesting that the improvement in performance is due to
a smaller number of FRI objects being misclassified as FRII. For the
cyclic models there is a smaller but not equivalent improvement in
FRII recall. This suggests that the cyclic model primarily reduces the
misclassification of FRI objects as FRII, but does not equivalently
reduce the misclassification of FRII as FRI.
The dihedral models show a more even distribution of improve-

ment across allmetrics, indicating that there aremore balanced reduc-
tions across both FRI and FRII misclassifications. This is illustrated
in Figure 4, which shows the average number of misclassifications
over all orientations and training repeats for the standard CNN, the
𝐶16 CNN and the 𝐷16 CNN for the reserved test set.
The test partition of the full Mirabest data set contains 153 FRI

and FRII-type sources labelled as both Confident and Uncertain, see
Table 3. When using this combined test set the overall performance
metrics of the networks considered in this work become accordingly
lower due to the inclusion of the Uncertain sources. This is expected,
not only because the Uncertain samples include edge cases that are
more difficult to classify but also because the assigned labels for these
objects may not be fully accurate. However, the relative performance
shows the same degree of improvement between the standard CNN,
{𝑒}, and the 𝐷16 model, which have percentage accuracies of 82.59±
1.41 and 85.30 ± 1.35, respectively, when evaluated against this
combined test set.
We note that given the comparatively small size of the Mirabest∗

training set, these results may not generalise equivalently to other
potentially larger data sets with different selection specifications and
that additional validation should be performed when considering
the use of group-equivariant convolutions for other classification
problems.

5.3 On the confidence of G-Steerable CNNs

Target class predictions for each test data sample are made by se-
lecting the highest softmax probability, which provides a normalised
version of the network output values. By using dropout as a Bayesian
approximation, as demonstrated in Gal & Ghahramani (2015), one
is able to obtain a posterior distribution of network outputs for each

test sample. This posterior distribution allows one to assess the de-
gree of certainty with which a prediction is being made, i.e. if the
distribution of outputs for a particular class is well-separated from
those of other classes then the input is being classified with high
confidence; however, if the distribution of outputs intersects those
of other classes then, even though the softmax probability for a par-
ticular realisation may be high (even as high as unity), the overall
distribution of softmax probabilities for that class may still fill the
entire [0, 1] range, overlapping significantly with the distributions
from other target classes. Such a circumstance denotes a low degree
of model certainty in the softmax probability and therefore in the
class prediction for that particular test sample.
By re-enabling the dropout before the final fully-connected layer

at test time, we estimate the predictive uncertainty of each model
for the data samples in the reservedMiraBest∗ test set. With dropout
enabled, we perform 𝑇 = 50 forward passes through the trained
network for each sample in the test set. On each pass we recover
(𝑥𝑡 , 𝑦𝑡 ), where 𝑥 and 𝑦 are the softmax probabilities of FRI and
FRII, respectively. An example of the results from this process can
be seen in Figure 5, where we evaluate the trained model on a rotated
version of the input image at discrete intervals of 20◦ in the range
[0◦, 180◦) using a trained model for the standard CNN (left panel)
and for the 𝐷16-equivariant CNN (right panel). For each rotation
angle, a distribution of softmax probabilities is obtained. In the case
of the standard CNN it can be seen that, although the model classifies
the source with high confidence when it is unrotated (0◦), the soft-
max probability distributions are not well-separated for the central
image orientations, indicating that the model has a lower degree of
confidence in the prediction being made in at these orientations. For
the 𝐷16-equivariant CNN it can be seen that in this particular test
case the model has a high degree of confidence in its prediction for
all orientations of the image.
To represent the degree of uncertainty for each test sample quanti-

tatively, we evaluate the degree of overlap in the distributions of soft-
max probabilities at a particular rotation angle using the distribution-
free overlap index (Pastore&Calcagnì 2019). To do this, we calculate
the local densities at position 𝑧 for each class using a Gaussian kernel
density estimator, such that

𝑓𝑥 (𝑧) =
1
𝑇

𝑇∑︁
𝑡=1

1
𝛽
√
2𝜋
e−(𝑧−𝑥𝑡 )

2/2𝛽2 , (7)

𝑓𝑦 (𝑧) =
1
𝑇

𝑇∑︁
𝑡=1

1
𝛽
√
2𝜋
e−(𝑧−𝑦𝑡 )

2/2𝛽2 , (8)

where 𝛽 = 0.1. We then use these local densities to calculate the
overlap index, 𝜂, such that

𝜂 =

𝑁𝑧∑︁
𝑖=1
min

[
𝑓𝑥 (𝑧𝑖), 𝑓𝑦 (𝑧𝑖)

]
𝛿𝑧, (9)

where {𝑧𝑖}𝑁𝑧

𝑖=1 covers the range zero to one in 𝑁𝑧 steps of size 𝛿𝑧.
For this work we assume 𝑁𝑧 = 100. The resulting overlap index, 𝜂,
varies between zero and one, with larger values indicating a higher
degree of overlap and hence a lower degree of confidence.
For each test sample we evaluate the overlap index over a range of

rotations from 0◦ to 180◦ in increments of 20◦. We then calculate the
average overlap index, 〈𝜂〉, across these nine rotations. In Figure 5
the value of this index can be seen above each plot: in this case, the
standard CNN has 〈𝜂〉{𝑒} = 0.30 and the 𝐷16-equivariant CNN has
〈𝜂〉𝐷16 < 0.01.
Of the 104 data samples in the reserved test set, 27.7 ± 11.0%

of objects show an improvement in average model confidence, i.e.
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Figure 5. A scatter of 50 forward passes of the softmax output for the standard CNN (left) and the 𝐷16-equivariant CNN (right). The lower panel shows the
rotated image of the test image. As indicated, the average overlap index for the standard CNN is 〈𝜂〉 = 0.30, and 〈𝜂〉 < 0.01 for the 𝐷16-equivariant CNN.

〈𝜂〉{𝑒} − 〈𝜂〉𝐷16 > 0.01, when classified using the 𝐷16-equivariant
CNN compared to the standard CNN, 8.4±2.5%show a deterioration
in averagemodel confidence, i.e. 〈𝜂〉𝐷16−〈𝜂〉{𝑒} > 0.01, and all other
samples show no significant change in average model confidence,
i.e. |〈𝜂〉{𝑒} − 〈𝜂〉𝐷16 | < 0.01. Mean values and uncertainties are
determined from 〈𝜂〉 values for all test samples evaluated using a
pairwise comparison of 5 training realisations of the standard CNN
and 5 training realisations of the 𝐷16 CNN.
Those objects that show an improvement in average model confi-

dence are approximately evenly divided between FRI and FRII type
objects, whereas the objects that show a reduction in model confi-
dence exhibit a weak preference for FRII. These results are discussed
further in Section 6.1.

6 DISCUSSION

6.1 Statistical distribution of radio galaxy orientations

Mathematically, 𝐺-steerable CNNs classify equivalence classes of
images, as defined by the equivalence relation of a particular group,
𝐺, whereas conventional CNNs classify equivalence classes defined
only by translations. Consequently, by using E(2)-equivalent convo-
lutions the trained models assume that the statistics of extra-galactic
astronomical images containing individual objects are expected to
be invariant not only to translations but also to global rotations and
reflections. Here we briefly review the literature in order to consider
whether this assumption is robust and highlight the limitations that
may result from it.
The orientation of radio galaxies, as defined by the direction of

their jets, is thought to be determined by the angular momentum axis
of the super-massive black hole within the host galaxy. A number of
studies have looked for evidence of preferred jet alignment directions
in populations of radio galaxies, as this has been proposed to be a
potential consequence of angular momentum transfer during galaxy
formation (e.g. White 1984; Codis et al. 2018; Kraljic et al. 2020), or
alternatively it could be caused by large-scale filamentary structures
in the cosmic web giving rise to preferential merger directions (see
e.g. Kartaltepe et al. 2008) that might result in jet alignment for radio
galaxies formed during mergers (e.g. Croton et al. 2006; Chiaberge

et al. 2015). The observational evidence for both remains a subject
of discussion in the literature.
Taylor & Jagannathan (2016) found a local alignment of radio

galaxies in the ELAIS N1 field on scales < 1◦ using observations
from the Giant Metrewave Radio Telescope (GMRT) at 610MHz.
Local alignments were also reported by Contigiani et al. (2017) who
reported evidence (> 2𝜎) of local alignment on scales of ∼ 2.5◦
among radio sources from the FIRST survey using a much larger
sample of radio galaxies, catalogued by the radio galaxy zoo project.
A similar local alignment was also reported by Panwar et al. (2020)
using data from the FIRST survey. Using a sample of 7555 double-
lobed radio galaxies from the LOFAR Sky Survey (LoTSS; Shimwell
et al. 2019) at 150MHz, Osinga et al. (2020) concluded that a statis-
tical deviation from purely random distributions of orientation as a
function of projected distance was caused by systematics introduced
by the brightest objects and did not persist when redshift information
was taken into account. However, the study also suggested that larger
samples of radio galaxies should be used to confirm this result.
Whilst these results may suggest tentative evidence for spatial cor-

relations of radio galaxy orientations in local large-scale structure,
they do not provide any information on whether these orientations
differ between classes of radio galaxy, i.e. the equivalence classes
considered here. Moreover, the large spatial distribution and com-
paratively small number of galaxies that form the training set used in
this work mean that even spatial correlation effects would be unlikely
to be significant for the data set used here. However, the results of
Taylor & Jagannathan (2016); Contigiani et al. (2017); Panwar et al.
(2020) suggest that care should be taken in this assumption if data
sets are compiled from only small spatial regions.
In Section 5.1, we found that the largest improvement in perfor-

mance was seen when using dihedral, 𝐷𝑁 , models. We suggest that
this improvement over cyclic,𝐶𝑁 , models is due to image reflections
accounting for chirality, in addition to orientations on the celestial
sphere which are represented by the cyclic group. Galactic chirality
has previously been considered for populations of star-forming, or
normal, galaxies (see e.g. Slosar et al. 2009; Shamir 2020), as the
spiral structure of star-forming galaxies means that such objects can
be considered to be enantiomers, i.e. their mirror images are not su-
perimposable (Capozziello & Lattanzi 2005). It has been suggested
that a small asymmetry exists in the number of clockwise versus
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anti-clockwise star-forming galaxy spins (Shamir 2020). As far as
the authors are aware there have been no similar studies considering
the chirality of radio galaxies. However, a simple example of such
chirality for radio galaxies might include the case where relativistic
boosting causes one jet of a radio galaxy to appear brighter than the
other due to an inclination relative to the line of sight. Since the dom-
inance of a particular orientation relative to the line of sight should be
unbiased then this would imply a global equivariance to reflection.
Since the dihedral (𝐷𝑁 ) models used in this work are insensitive
to chirality, the results in Section 5.1 suggest that the radio galaxies
in the training sample used here do not have a significant degree of
preferred chirality. Whilst this does not itself validate the assumption
of global reflection invariance, in the absence of evidence to the con-
trary from the literature we suggest that it is unlikely to be significant
for the data sample used in this work.
From the perspective of classification, equivariance to reflections

implies that inference should be independent of reflections of the
input. For FR I and FR II radio galaxy classification, incorporating
such information into a classification scheme may be important more
generally: the unified picture of radio galaxies holds that both FR I and
FR II, as well as many other classifications of active galactic nuclei
(AGN) such as quasars, QSOs (quasi-stellar objects), blazars, BL
Lac objects, Seyfert galaxies etc., are in fact defined by orientation-
dependent observational differences, rather than intrinsic physical
distinctions (Urry 2004).
Consequently, under the assumptions of global rotational and re-

flection invariance, the possibility of a classification model providing
different output classifications for the same test sample at different
orientations is problematic. Furthermore, the degree of model confi-
dence in a classification should also not vary significantly as a func-
tion of sample orientation, i.e. if a galaxy is confidently classified
at one particular orientation then it should be approximately equally
confidently classified at all other orientations. If this is not the case,
as shown for the standard CNN in Figure 5 (left), then it indicates a
preferred orientation in the model weights for a given outcome, in-
consistent with the expected statistics of the true source population.
Such inconsistencies might be expected to result in biased samples
being extracted from survey data.
In this context it is then not only the average degree of model

confidence that is important as a function of sample rotation, as
quantified by the value of 〈𝜂〉 in Section 5.3, but also the stability
of the 𝜂 index as a function of rotation, i.e. a particular test sample
should be classified at a consistent degree of confidence as a function
of orientation, whether that confidence is low or high. To evaluate
the stability of the predictive confidence as a function of orientation,
we examine the variance of the 𝜂 index as a function of rotation. For
the MiraBest∗ reserved test set we find that approximately 30% of
the test samples show a reduction of more than 0.01 in the standard
deviation of their overlap index as a function of rotation, with 17%
showing a reduction of more than 0.05. Conversely approximately
8% of test samples show an increase of > 0.01 and 4% samples show
an increase of > 0.05. In a similar manner to the results for average
model confidence given in Section 5.3, those objects that show a
reduction in their variance, i.e. an improvement in the consistency of
prediction as a function of rotation, are evenly balanced between the
two classes; however, those objects showing a strong improvement
of > 0.05 are preferentially FRI type objects.

6.2 Comment on Capsule Networks

The use of capsule networks (Sabour et al. 2017) for radio galaxy
classification was investigated by Lukic et al. (2018). Capsule net-

works aim to separate the orientation (typically referred to as the
viewpoint or pose in the context of capsule networks) of an object
from its nature, i.e. class, by encoding the output of their layers as tu-
ples incorporating both a pose vector and an activation. The purpose
of this approach is to focus on the linear hierarchical relationships in
the data and remove sensitivity to orientation; however, as described
by Lenssen et al. (2018), general capsule networks do not guaran-
tee particular group equivariances and therefore cannot completely
disentangle orientation from feature data. It is perhaps partly for this
reason that Lukic et al. (2018) found that capsule networks offered
no significant advantage over standard CNNs for the radio galaxy
classification problem addressed in that work.
In Section 5, we found that not only is the test performance im-

proved by the use of equivariant CNNs, but that equivariant networks
also converge more rapidly. For image data, a standard CNN enables
generalization over classes of translated images, which provides an
advantage over the use of anMLP,where every imagemust be consid-
ered individually.𝐺-steerable CNNs extend this behaviour to include
additional equivalences, further improving generalization. This ad-
ditional equivariance enhances the data efficiency of the learning
algorithm because it means that every image is no longer an indi-
vidual data point but instead a representative of its wider equiva-
lence group. Consequently, unlike capsule networks, the equivalence
groups being classified by a 𝐺-steerable CNN are specified a priori,
rather than the orientations of individual samples being learned dur-
ing training. Whilst this creates additional capacity in the network
for learning intra-class differences that are insensitive to the specified
equivalences, it does not provide the information on orientation of
individual samples that is provided as an output by capsule networks.
Lenssen et al. (2018) combined group-equivariant convolutions

with capsule networks in order to output information on both classifi-
cation and pose, although they note that a limitation of this combined
approach is that arbitrary pose information is no longer available, but
is instead limited to the elements of the equivariant group. For radio
astronomy, where radio galaxy orientations are expected to be ex-
tracted from images at a precision that is limited by the observational
constraints of the data, it is unlikely that pose information limited
to the elements of a low-order finite group, 𝐺 < 𝐸 (2), is sufficient
for further analysis. However, given particular sets of observational
and physical constraints or specifications it is possible that such an
approach may become useful at some limiting order. Alternatively,
pose information might be used to specify a prior for a secondary
processing step that refines a measurement of orientation.

6.3 Local vs Global Equivariance

By design, the final features used for classification in equivariant
CNNs do not include any information about the global orientation
or chirality of an input image; however, this can also mean that they
are insensitive to local equivariances in the image, when these might
in fact be useful for classification. The hierarchical nature of con-
volutional networks can be used to mitigate against this, as kernels
corresponding to earlier layers in a network will have a smaller, more
local, footprint on the input image and therefore be sensitive to a
different scale of feature than those from deeper layers which en-
compass larger-scale information. Therefore, by changing the degree
of equivariance as a function of layer depth one can control the de-
gree to which local equivariance is enforced. Weiler & Cesa (2019)
refer to this practice as group restriction and find that it is beneficial
when classifying data sets that possess symmetries on a local scale
but not on a global scale, such as the CIFAR and unrotated MNIST
datasets. Conversely, the opposite situation may also be true, where
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Figure 6. Validation losses during the training of the standard CNN, denoted
{𝑒} (blue), the𝐷16 CNN (orange), and the restricted𝐷𝑁 |1 {𝑒} CNN (green;
dashed) for the MiraBest∗ data set. Plots show mean and standard deviation
over five training repeats.

no symmetry is present on a local scale, but the data are statistically
invariant on a global scale. In this case the reverse may be done and,
rather than restricting the representation of the feature data to re-
duce the degree of equivariance, one might expand the domain of the
representation at a particular layer depth in order to reflect a global
equivariance.
We investigate the effect of group restriction by using a 𝐷𝑁 |1{𝑒}

restricted version of the LeNet architecture, i.e. the first layer is 𝐷𝑁

equivariant and the second convolutional layer is a standard convo-
lution. Using 𝑁 = 16, the loss curve for this restricted architecture
relative to the unrestricted 𝐷16 equivariant CNN is shown in Fig-
ure 6. From the figure it can be seen that while exploiting local
symmetries gives an improved performance over the standard CNN,
the performance of the group restricted model is significantly poorer
than that of the full 𝐷16 CNN. This result suggests that although
local symmetries are present in the data, it is the global symmetries
of the population that result in the larger performance gain for the
radio galaxy data set.

6.4 Note on hyper-parameter tuning

In Section 5 we found that the 𝑁 = 16 cyclic and dihedral models
were preferred over the higher order 𝑁 = 20 models. This may
seem counter-intuitive as one might assume that for truly rotationally
invariant data sets the performance would converge to a limiting
value as the order increased, rather than finding a minimum at some
discrete point. Consequently, we note that the observed minimum at
𝑁 = 16might not represent a true property of the data set but instead
represent a limitation caused by discretisation artifacts from rotation
of convolution kernels with small support, in this case 𝑘 = 5, see
Table 4 (Weiler & Cesa 2019). These same discretisation errors may
also account in part for the small oscillation in validation error as
a function of group order seen in Figure 3. Consequently, while no
additional hyper-parameter tuning has been performed for any of the
networks used in this work, we note that kernel size is potentially
one hyper-parameter that could be tuned as a function of group
order, 𝑁 , and that such tuning might lead to further improvements in
performance for higher orders.

7 CONCLUSIONS

In this work, we have demonstrated that the use of even low-order
group-equivariant convolutions results in a performance improve-
ment over standard convolutions for the radio galaxy classification
problem considered here, without additional hyper-parameter tun-
ing. We have shown that both cyclic and dihedral equivariant models
converge to lower validation loss values during training and provide
improved validation errors. We attribute this improvement to the in-
creased capacity of the equivariant networks for learning hierarchical
features specific to classification, when additional capacity for en-
coding redundant feature information at multiple orientations is no
longer required, hence reducing intra-class variability.

We have shown that for the simple network architecture and train-
ing set considered here, a 𝐷16 equivariant model results in the best
test performance using a reserved test set. We suggest that the im-
provement of the dihedral over the cyclic models is due to an in-
sensitivity to - and therefore lack of preferred - chirality in the data,
and that further improvements in performance might be gained from
tuning the size of the kernels in the convolutional layers according to
the order of the equivalence group. We find that cyclic models pre-
dominantly reduce the misclassification of FRI type radio galaxies,
whereas dihedral models reduce misclassifications for both FRI and
FRII type galaxies.

By using the MC Dropout Bayesian approximation method, we
have shown that the improved performance observed for the 𝐷16
model compared to the standard CNN is reflected in the model con-
fidence as a function of rotation. Using the reserved test set, we have
quantified this difference in confidence using the overlap between
predictive probability distributions of different target classes, as en-
capsulated in the distribution free overlap index parameter, 𝜂. We
find that not only is average model confidence improved when using
the equivariant model, but also that the consistency of model confi-
dence as a function of image orientation is improved. We emphasise
the importance of such consistency for applications of CNN-based
classification in order to avoid biases in samples being extracted from
future survey data.

Whilst the results presented here are encouraging, we note that this
work addresses a specific classification problem in radio astronomy
and the method used here may not result in equivalent improvements
when applied to other areas of astronomical image classification us-
ing different data sets or network architectures. In particular, the as-
sumptions of global rotational and reflectional invariance are strong
assumptions, which may not apply to all data sets. As described in
Section 6.1, data sets extracted from localised regions of the sky
may be particularly vulnerable to biases when using this method and
the properties of the MiraBest∗ data set used in this work may not
generalise to all other data sets or classification problems. We note
that this is true for all CNNs benchmarked against finite data sets and
users should be aware that additional validation should be performed
before models are deployed on new test data, as biases arising from
data selection may be reflected in biases in classifier performance
(see e.g. Wu et al. 2018; Tang 2019; Walmsley et al. 2020). However,
in conclusion, we echo the expectation of Weiler & Cesa (2019),
that equivariant CNNs may soon become a common choice for mor-
phological classification in fields like astronomy, where symmetries
may be present in the data, and note that the overhead in constructing
such networks is now minimal due to the emergence of standardised
libraries such as e2cnn. Future work will need to address the op-
timal architectures and hyper-parameter choices for such models as
specific applications evolve.
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