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ABSTRACT
We present a model for generating postage stamp images of synthetic Fanaroff-Riley Class I and Class II radio galaxies suitable
for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses
a fully-connected neural network to implement structured variational inference through a variational auto-encoder and decoder
architecture. In order to optimise the dimensionality of the latent space for the auto-encoder we introduce the radio morphology
inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data
pre-processing choices can affect the value of this measure. We examine the 2-dimensional latent space of the VAEs and discuss
how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when
used for data augmentation.
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1 INTRODUCTION

Since Fanaroff & Riley (1974) first introduced their classification
scheme for radio galaxies, various works have focused on finding an
explanation for such distinct morphological characteristics. Ledlow
& Owen (1996) first showed that the FRI/II transition is both a
function of the radio and optical luminosity. Other works focused on
an explanation of the two groups through the underlying mechanism
of the AGN and/or its environment. One of the most active debates
considers the relationship between the accretion mechanism and the
sourcemorphology (Gendre et al. 2013). Even if accretion correlation
has not yet been established, Croston et al. (2018) make a clear
analysis of the two classes to conclude that the difference in external
pressures of the lobes and jets, which is a distinctive intrinsic property
to each classes, could be explained by the difference in the proton
content causing a difference in energies in both classes. Kaiser &
Best (2007) worked on an evolutionary link between FRI and FRII,
where they postulated that all radio galaxies must have at some point
near the start of their life shown some FRII morphology. The lobes of
sources with weak jets came into equilibriumwith their surroundings
causing the lobes to start close to the core. The jets are then disrupted
by the ambient medium and the lobes eventually developed into FRIs.
However, the dividing line between FRI and FRII is blurry for

low flux density samples. For different redshifts and environments,
the morphology is sometimes uncertain and often leads to hybrid
morphologies. Best (2009) identified sources with one lobe showing
FRI-like morphology and the other showing FRII-like morphology.
Mingo et al. (2019b) make use of a two-sided source classification
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method and found that 20% of their sources were of hybrid morphol-
ogy.
It is evident that with new radio surveys this blurry line between

FRI and FRII radio galaxies will be made clearer by (i) providing
larger samples of sources at different redshifts and environment, and
(ii) by providing larger samples of sources at low flux levels. Various
research groups are thus working on surveys such as the Evolutionary
Map of the Universe survey (EMU; Norris et al. 2011) made using
the Australian Square Kilometre Array Pathfinder (ASKAP), the
MeerKAT International GHz Tiered Extra-galactic Exploration sur-
vey (MIGHTEE; Jarvis et al. 2017) done usingMeerKAT, theGaLac-
tic and Extragalactic All-SkyMWAsurvey (GLEAM;Hurley-Walker
et al. 2016) done using the Murchison Widefield Array (MWA), the
Very Large Array Sky Sky Survey (VLASS; Villarreal Hernández &
Andernach 2018) done using Very Large Array (VLA) and the latest
LoTSS survey (Shimwell et al. 2019) done using LOFAR.
With the advent of such huge surveys, new automated classifica-

tion algorithms have been developed to replace the “by eye” classi-
fication methods used in early classification. These new algorithms
are trained using existing databases of pre-classified FRI and FRII
sources. Aniyan & Thorat (2017) made use of a deep convolutional
neural network for the classification of FRI and FRII galaxies, while
Tang et al. (2019) made use of transfer learning to classify sources
across different surveys introducing cross-survey identification abil-
ities to existing neural networks. Lukic et al. (2019) made use of
capsule networks instead of CNNs for classifying images from the
LOFAR Two-metre Sky Survey(LoTSS) survey. Ma et al. (2019a)
trained an encoder-decoder architecture and used the encoder as a
classifier, and finally Wu et al. (2018) engineered the CLARAN net-
work, which was able to locate and classify radio sources trained
using the Radio Galaxy Zoo catalogue (Banfield et al. 2015).
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In radio astronomy, deep learning has found its way through use
in radio source classification in a similar way to classical ML. The
ground work was done by Aniyan & Thorat (2017) who made use of
CNNs for the classification of radio galaxies. This was followed by
other works involving the use of deep learning in source classifica-
tion, Lukic et al. (2018) made use of CNNs for the classification of
compact and extended radio sources from the Radio Galaxy Zoo cat-
alogue. CLARAN (Classifying Radio Sources Automatically with
Neural Network) Wu et al. (2018) made use of the Faster R-CNN
(Ren et al. 2015) to identify and classify radio sources. Alger et al.
(2018) made use of an ensemble of classifiers including CNNs to
perform host galaxy cross-identification. Tang et al. (2019) made
use of transfer learning with CNNs to do cross-survey classification.
Gheller et al. (2018) made use of deep learning for the detection of
cosmological diffuse radio sources. Lukic et al. (2019) performed
morphological classification using a novel technique known as cap-
sule networks. However, while most of these previous works focused
on the use of classifiers, in this work we focus on the use of neural
networks to generate realistic radio galaxies.
Source simulation plays an important role in the development of

modern day telescopes. Simulated sources should reflect two very
important characteristics: (i) They reflect the extrinsic properties of
the astronomical entities being simulated. For example, if we are
dealing with radio galaxies, the simulated sources should show the
jets, lobes and core structure. (ii) They should simulate the properties
of the telescopes, and as such simulate the bean width or artefacts
that might result from any receiver characteristics. In optical as-
tronomy, both aspects have been catered for by various authors and
the importance of such simulations are well established. For exam-
ple, Peterson et al. (2015) simulated astronomical objects for optical
surveys and states the importance of such tools for the planning of
future observations and for the development of sophisticated analysis
software.
In radio astronomy, equivalent simulators will be useful for the

development of the SKA. Indeed, to test existing processing tools,
in 2018 the SKA released the first SKA data challenge (Bonaldi &
Braun 2018), which consisted of a series of generated images with
specifications similar to those expected from the SKA. The commu-
nity were invited to (i) undertake source finding on the generated im-
ages, (ii) perform source property characterisation, and (iii) identify
the different source populations. The final results from the challenge
were bench-marked against the input catalogue used to generate the
images.
In addition to being used for bench-marking existing analysis tools,

source simulators are also useful for improving existing classifiers.
Most radio source classifiers make use of data augmentation to train
their models, due to a lack of labelled training data (Tang et al.
(2019),Wu et al. (2018),Aniyan&Thorat (2017)). This augmentation
involves rotating the images, flipping and inverting each image in the
training set. However Mikołajczyk & Grochowski (2018) concluded
that even if they are fast and easy to implement, the data augmentation
technique does not bring any new visual features to the data. In
comparison, using simulated sources as training datamight introduce
new features and could improve the ability of a classifier.
There are different methods that can be used to simulate radio

sources. Radio Galaxies can be simulated through astrophysical fluid
dynamics simulations. For example, Rossi et al. (2017) made use of
magneto-hydrodynamics (MHD) to simulate X-sources (Ekers et al.
1978), while Tchekhovskoy & Bromberg (2016) used MHD to simu-
late FRI and FRII jets. Although such simulations are highly realistic,
they exhibit various practical issues when it comes to general use.
Firstly, they do not cater for the telescope optics and are indeed

designed to simulate perfect sources without those constraints. Sec-
ondly, when large populations of sources are needed this method
turns out to be computationally inefficient and more complex models
must be employed to cater for different environmental effects.
Bonaldi & Braun (2018) made use of simple Gaussians to mimic

radio sources in the SKA Challenge and Makhathini et al. (2015)
modeled radio galaxies by using triple Gaussians. However even
if the generated images are not as realistic as real sources, they
take into consideration the telescope characteristic. Bonaldi & Braun
(2018) simulated images corresponding to the 3 frequencies of the
SKA, namely 560MHz, 1.4GHz and 9.2GHz, also adding in noise
and convolving the sources with the point spread function (PSF) of
the telescope. However, even if such simulations respect telescope
specifications, fine structures that are typically found in jets and lobes
are absent. Hence an ideal simulator would be one which is able to
generate images with the telescope properties and generate structures
similar to those made by MHD modelling.
In this paper we use generative machine learning to simulate radio

sources. Generative algorithmswere first introduced in 2014with two
main methods: the Generative Adversarial Network (GAN; Goodfel-
low et al. 2014) and the Variational Autoencoder (VAE; Kingma et al.
2014). Generative algorithms are trained using real data to generate
fake (or synthetic) data that look similar, without memorizing the
training set. They have been employed across multiple different do-
mains, including the generation of human faces (Karras et al. 2019),
the generation of artworks (Elgammal et al. 2017), and to generate
radio sources (Ma et al. 2018).
The idea behind the use of neural networks for generating data is

based on the ability of neural networks to reduce high dimensional
data to lower dimensions or vice versa. These dimensional trans-
forms can be performed using encoders and decoders. These two
types of network are used in two basic applications of generative
algorithms: generative adversarial networks (GANs) and variational
auto-encoders (VAEs). VAEs makes use of both encoders and de-
coders. While encoders are not used in GANs, encoders do constitute
an important building block for VAEs. Encoders work by reducing
high dimensional data to lower dimensions. This is done by either
using fully connected layers or CNNs. For VAEs, the encoder can
be thought of as an embedding method similar to principal compo-
nent analysis (PCA; e.g. Rolinek et al. 2019). The decoder is the
generative network common to all generative methods. Decoders use
lower dimensional data to produce higher dimensional outputs. Sim-
ilar to the encoder, this can done using a fully connected network or
a de-convolution network.
These methods have been used used in both optical and radio

regimes as a generative method, an unsupervised clustering tool and
inference method. In the radio regime, Ralph et al. (2019) made use
of auto-encoders combined with self-organizing maps to separate
outliers by making use of k-means clustering methods. Regier et al.
(2015) applied the VAE to astronomical optical images as an infer-
ence tool, while Spindler et al. (2020) designed a VAE that can be
used for unsupervised clustering and generation of synthetic optical
images from the Sloan Digital Sky Survey (SDSS). Ravanbakhsh
et al. (2016) make use of a conditional VAE for the generation of
realistic galaxy images to be used as calibration data.
In thiswork,we use a variational auto-encoder (VAE) to implement

a structured variational inference approach to generating simulated
postage stamp images of radio galaxies in different target classes.
In Section 2 we introduce variational auto-encoders and outline the
statistical basis of their operation; in Section 3 we introduce the data
sets used for training the VAEs used in this work; in Section 4 we
introduce the concept of the radio astronomy morphology inception
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score and define how it is calculated; in Section 5 we describe the
neural network implemented in this work and how the dimensionality
of the latent space is optimised; in Section 6 we give an analysis of
the generated images from this network; in Section 7 we discuss
the implications of these results and how they differ from previous
generative applications in the field; and in Section 8 we draw our
conclusions.

2 VARIATIONAL AUTO-ENCODERS

The first proposed form for an auto-encoder was a neural network
comprised of two fully-connected layers that transformed an input to
an output without causing any distortion in the process (Rumelhart
et al. 1985). It did so by learning to generate a compact representation
of the data, in a process similar to principal component analysis
(PCA). This compact representation could then be used to re-generate
the original input through the use of a decoder. Once trained, the
decoder could be disconnected from the encoder to generate newdata.
In practice however, the original formof the encoder-decoder network
was not able to create truly new data samples as the reduced space
was not continuous. In order to address this problem of continuity,
variational auto-encoders (VAEs)were proposed (Kingma&Welling
2013). The reduced space of the VAE is continuous by design, which
implies that any point sampled from the reduced or latent space can
generate an output that will appear real.
Since their first implementation by Kingma & Welling (2013),

VAEs have been used in many different fields, including video gen-
eration (Denton & Fergus 2018), text generation (Semeniuta et al.
2017), molecular design (Blaschke et al. 2018) as well as in cos-
mology (Yi et al. 2020). When it comes to improvements, various
works have focused on the improvement of the original VAE. These
include both domain specific VAEs and those that implement gen-
eral improvements to the original architecture of Kingma &Welling
(2013). Among these are the infoVAE (Zhao et al. 2019), the VAE-
DGP (Dai et al. 2015), theHypersherical VAE (Davidson et al. 2018),
the WAE (Tolstikhin et al. 2017), the control VAE (Shao et al. 2020),
the semi amortized VAE (Kim et al. 2018) and the 𝛿-VAE (Razavi
et al. 2019), which works to prevent posterior collapse in VAEs.
Arguably, the most major advances in the field of VAEs were made

by Kingma et al. (2014) and Sohn et al. (2015). Kingma et al. (2014)
improved their original VAE by engineering a semi-supervised VAE
(sVAE) which incorporates a classifier and a VAEwith conditioning.
As such the networks could be trained using both unlabelled and
labelled images. Sohn et al. (2015) further modified the sVAE by
removing the classifer and focused on the conditional properties of
the training. The so-called Conditional VAE (CVAE) can be used to
train a VAE to generate a specific target class, an approach that we
follow in this work to generate FRIs and FRIIs, see Section 5.1. The
CVAE has been used in various domains, such as dialog generation
(Shen et al. 2017), basketball player modelling (Acuna 2017), drug
discovery Polykovskiy et al. (2018), sustainable building generation
(Ge et al. 2019) and machine translation (Pagnoni et al. 2018). Im-
provements were also made to the CVAE, such as the CDVAE (Lu
et al. 2016), the CF-VAE (Bhattacharyya et al. 2019) and the W-VAE
(Ryu et al. 2019).
Further improvements in VAEsweremade by combining theVAEs

with the discriminator of a Generative Adversarial Network (GAN).
These VAEs are trained with a binary discriminator that classifies
the generated images as fake or real. The VAEs are trained so as
to generate data that are classified as real by the discriminator. The
VAE-GAN (Boesen Lindbo Larsen et al. 2015) is a normal VAE

fitted with a GAN discriminator. Similarly, the CVAE-GAN (Bao
et al. 2017) and sVAE-GAN are CVAEs and sVAEs respectively,
which are both fitted with a GAN discriminator.
To achieve a continuous latent space Kingma et al. (2014) as-

sumed that the latent space is represented by a continuous random
variable with a parametric prior distribution. For neural networks that
introduce non-linearity between their layers, calculation of the true
posterior distribution for such a variable with respect to an input data
set is generally intractable; however, the parameters of a variational
approximation to the posterior can be learned instead.

2.1 Variational Inference for Generative Models

Consider that we have 𝑁 observable data points that are contained
in a dataset X = {𝑥 (𝑖) }𝑁

𝑖=1 where x(𝑖) ∈ R𝐷 . We assume that these
data points represent examples of a continuous random variable, x,
which can be encoded into a lower-dimensional latent space, z, where
z ∈ R𝑑 with 𝑑 < 𝐷, and vice-versa that a sample drawn from z can
be decoded to generate a new example, x̂(𝑖) . However, we do not a
priori know the distribution of z or the parameters of the function
that maps one space to the other, 𝜃.
In cases where the encoder and decoder functions are complex

and/or non-linear, both the true posterior, 𝑝𝜃 (z|x), and the marginal
likelihood, 𝑝𝜃 (x), are typically intractable and therefore these re-
lationships cannot be evaluated directly. In such cases a variational
approximation to the true posterior is adopted and denoted 𝑞𝜙 (z|x),
where 𝜙 are the parameters of (e.g.) a neural network used to ap-
proximate the true transforms. Typically a Gaussian approximation
to 𝑝𝜃 (z|x) is assumed and the Kullback-Leibler (KL) Divergence
(Kullback & Leibler 1951) between 𝑝𝜃 (z|x) and 𝑞𝜙 (z|x) is used as
an optimization metric.
Following Kingma et al. (2014), in this scenario the marginal log

likelihood of an individual data point is given by,

log 𝑝𝜃 (x(𝑖) ) = 𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) ) | |𝑝𝜃 (z|x(𝑖) )) + L(𝜃, 𝜙; x(𝑖) ) (1)

where the first term is defined as,

𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) )‖𝑝𝜃 (z|x(𝑖) )) = −
∑︁

𝑞𝜙 (z|x(𝑖) ) log
𝑝𝜃 (z|x(𝑖) )
𝑞𝜙 (z|x(𝑖) )

(2)

and the second term is given by,

L(𝜃, 𝜙; x(𝑖) ) = E𝑞𝑧 (z |x) [− log 𝑞𝑧 (z|x) + log 𝑝𝜃 (x, z)] . (3)

Since Eq. 2 is always non-negative, this implies that
log 𝑝𝜃 (x(𝑖) ) > L(𝜃, 𝜙; 𝑥 (𝑖) ), which is referred to as the variational
or evidence lower bound (ELBO) and is the loss term for training a
VAE.
In practice, the expression for the lower bound given in Equation 3

can be re-written as:

L(𝜃, 𝜙; x(𝑖) ) = − 𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) )‖𝑝𝜃 (z))
+ 𝐸𝑞𝜙 (z |x(𝑖) ) [log 𝑝𝜃 (x

(𝑖) |z)] (4)

and these two terms play a key role in the understanding of the general
behaviour of the variational auto encoder.
Thefirst term inEquation 4 is theKL termandminimises the differ-

ence between the variational approximation and the true posterior. By
rearranging Equation 2 and using the Gaussian re-parameterisation
proposed by Kingma et al. (2014), which simplifies sampling a ran-
dom deviate, 𝑧, from the Gaussian distribution, N(𝜇, 𝜎2), by using
the differentiable relationship

𝑧 = 𝜇 + 𝜎 · 𝜖 where 𝜖 ∼ N(0, 1), (5)
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and we can therefore rewrite the KL term as:

𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) )‖𝑝𝜃 (z)) =
1
2

𝑑∑︁
𝑗=1

(1 + log𝜎2𝑗 − 𝜇2𝑗 − 𝜎2𝑗 ), (6)

where 𝑝𝜃 (z) = 𝑁 (0, 1) and 𝑞𝜙 (z|x(𝑖) ) = 𝑁 (𝜇, 𝜎2).
The second term in Equation 4 can be considered as the recon-

struction error and ensures that the network correctly reconstructs the
input image. Since 𝑝𝜃 (x|z) is a function that maps z into x̂, where x̂
represents the reconstructed image, we can assume that the term will
take a form 𝑝𝜃 (x|x̂) and in the Gaussian case,

𝐸𝑞𝜙 (z |x(𝑖) ) [log 𝑝𝜃 (x
(𝑖) |z)] = 1

𝑁

𝑁∑︁
𝑙=1

(x(𝑙) − x̂(𝑙) )2. (7)

Using Equations 6 & 7, we can therefore express the full loss term
as:

L(𝜃, 𝜙; x(𝑖) ) = −1
2

𝑑∑︁
𝑗=1

(1+ log𝜎2𝑗 − 𝜇2𝑗 −𝜎2𝑗 ) +
1
𝑁

𝑁∑︁
𝑙=1

(x(𝑙) − x̂(𝑙) )2.

(8)

Since the marginal log likelihood of the full training data set is
given by the sum over the marginal log likelihoods of each individual
data point, the total loss for the full data set is therefore given by

L(𝜃, 𝜙; x) =
𝑁∑︁
𝑖=1

L(𝜃, 𝜙; x(𝑖) ). (9)

2.2 Conditional VAEs

In the conditional case we again have 𝑁 observable datapoints that
are represented by the dataset X̂ = {x(𝑖) }, where x(𝑖) ∈ 𝑅𝐷 . But
it is now accompanied by the associated labels or class condition,
given as Ŷ = {y(𝑖) }. Similarly the data will be generated by the latent
space 𝑧 where z(𝑖) ∈ 𝑅𝑑 where 𝑑 < 𝐷. The encoder will take as
input X and Y to encode 𝑧 and the decoder will take 𝑧 and Y to
generate the data point x̂(𝑖) . We here make use of Bayes Theorem
with conditioning that takes into consideration the class condition,
𝑦,

𝑝𝜃 (z|x, y) =
𝑝𝜃 (x|z, y)𝑝𝜃 (z|y)

𝑝𝜃 (x|y)
. (10)

In this case the marginal likelihood of an individual data sample
can be written as,

log 𝑝𝜃 (x(𝑖) , y) = 𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) , y) | |𝑝𝜃 (z|x(𝑖) , y))+L(𝜃, 𝜙; 𝑥 (𝑖) , y)
(11)

and consequently the ELBO is defined as,

L(𝜃, 𝜙; x(𝑖) , y) = − 𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) , y)‖𝑝𝜃 (z|y))
+ E𝑞𝜙 (z |x(𝑖) ,y) [log 𝑝𝜃 (x

(𝑖) |z, y)] . (12)

3 DATA SET DEFINITIONS

In this work, we make use of FRDEEP, first introduced in Tang et al.
(2019). The FRDEEP data set consists of an imbalanced sample of
FRI and FRII radio galaxy images, extracted from the FIRST radio
survey (Becker et al. 1994) and subjected to image pre-processing
using the method described in Aniyan & Thorat (2017). It makes
use of two catalogues (i) the combined NVSS and FIRST Galaxies

Catalog (CoNFIG; Gendre et al. 2013; Gendre et al. 2010) and (ii)
the FRICAT catalogue (Capetti et al. 2017) to label the images. Here
we describe the data set in more detail.

3.1 The combined NVSS and FIRST Galaxies Catalog
(CoNFIG)

The CoNFIG catalogue of FRI and FRII galaxies is constructed from
4 sub-samples referred to as ConFIG-1, 2, 3 and 4. These subsamples
contain sources that were originally selected from the NVSS survey
(Condon et al. 1998) with flux density cuts of 𝑆1.4GHz > 1.3, 0.8, 0.2
and 0.005 Jy. These sources were first identified using the NVSS
catalogues using the process brought forward by Gendre & Wall
(2008) where they make use of component association to identify
the radio galaxies. If two or more components were found with
𝑆1.4GHz > 1.3 Jy, the components were considered as being part
of a larger resolved source. For multiple component sources with
0.1 > 𝑆1.4GHz > 1.3 Jy located within 4 arcmin of the listed sources
were set aside for visual inspection. The identified sources were
classified as FRI and FRII either by referring to existing literature
or by visually classifying them. Once identified, the sources were
visually classified. The sources were classified as FRII if distinct
hotspots were displayed at the edge of the lobes and that the lobes we
aligned. If collimated jets were observed and hot-spots were observed
close to the core and jets, these sources were further classified as FRI.
If the sources were smaller than 1 arcsec, they were classified

as compact. The sources which had an extended morphology were
classified as FRI and FRII. Using the above criteria 849 sources were
identified. These sources were classified as FRI and FRII, compact
(with no classification) or uncertain. The sources were further tagged
as ’confirmed’ or ’possible’. This resulted to a final catalogue that
contains 50 confirmed FRI and 390 confirmed FRII.

3.2 FRICAT

To balance the ConFIG dataset that consists mostly of FRII sources,
we make use of the FRICAT. The catalogue consists of 219 sources
that were first identified using the database of Best & Heckman
(2012) identified using the method brought forward by Best (2009).
The initial sample consists of 18,286 radio galaxies. These sources
were cross-matched with the optical spectroscopic data from the data
release 7 of the Sloan Digital Sky Survey (SDSS). They perform a
redshift selection within 𝑧 < 0.15where 3357 sources were selected.
The FIRST sources were then visually inspected and the sources
within an extent of 30 kpc from the optical host were chosen, this
corresponds to 11.5 arcsec and is ideal for morphological classifica-
tion with a 5′′ resolution.
The sources were then visually classified, they limited their se-

lection to one-side and two-sided jets and focused on those sources
whose brightness decreased along the jets with no enhanced bright-
ness at the jet end. The classification was performed independently
by the three authors and accepted if two authors agreed on a classi-
fication. The final catalogue consists of 219 FRI sources.

3.3 Combined Data

Out of the combined 659 sources from CoNFIG and FRICAT, 600
sources were randomly selected to reduce class imbalance, of which
264 sources were FRIs and 336 were FRIIs. The training set consists
of 550 sources and 50 sources were assigned to the test set. Once
augmented, the training set consists of 198,000 sources, of which
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FRI FRII Total

FRICAT 219 - 219
ConFIG 50 390 440
Total # of Sources 269 390 659

Total # of Selected Sources 264 336 600

Training 242 308 550
Test 22 28 50

Train Augmented 87,120 110,880 198,000

Table 1. Number of selected FRI and FRII sources selected from the FRICAT
and ConFIG. 600 sources were selected from both datasets with 550 Train
sources and 50 test sources.

87,120 are FRIs and 198,000 are FRIIs. Our source selection is shown
in Table 1 and the data pre-processing and augmentation process is
explained in the following section.

3.4 Image Pre-processing and Data Augmentation

An important procedure in machine learning is data pre-processing,
which helps to maintain a homogeneous sample space (Aniyan &
Thorat 2017). While human classifiers can easily deal with the back-
ground noise in images and classify objects oriented differently,
ML classifiers perform badly if an attempt is made to classify ra-
dio sources without a proper pre-processing procedure. For CNNs,
Aniyan & Thorat (2017) and Tang et al. (2019) have shown that
the noise should first be clipped at 3-sigma level, the pixels values
rescaled between 0 and 1 and finally the images augmented through
flipping and rotation for the classifier to attain a good accuracy. Wu
et al. (2018) applied a different pre-processing procedure, they per-
formed a zero-centering of the pixel values followed by a rescaling of
the source followed by a horizontal flip to attain good performance.
Our image pre-processing makes use of the method used by Aniyan
& Thorat (2017) and Tang et al. (2019). This was done in two phases.
The first phase involves the processes covered by Tang et al. (2019)
where the pre-processed data was made available through their git
repository1. This data was reprocessed to adapt to our needs in the
VAE. To augment the training dataset the sources were rotated from
0 to 360 degrees in intervals of 1 degree. This resulted in a total
of 198,000 sources in the training set with 87,120 FRI sources and
110,880 FRIIs. Table 1 summarises this source distribution.

4 RADIO ASTRONOMY MORPHOLOGY INCEPTION
SCORE

One of the main challenges of developing and implementing gener-
ative algorithms is that they are difficult to evaluate and compare.
Compared to discriminative methods, where we can make use of
metrics like accuracy, the F1-Score, the precision or the recall, gen-
erative algorithms do not have such direct measures for comparing
different outcomes. While the loss can be used as an indication of the
model performance, it cannot be used comparatively across different
architectures or algorithms.
To deal with this issue, we make use of an adapted form of the

inception score (Szegedy et al. 2014), a measure that can be used for
comparison across different generative algorithms. This standardized

1 https://github.com/HongmingTang060313/FR-DEEP

methodmakes use of classifiers to quantify the generated image qual-
ity by evaluating the degree of uncertainty in its classification. The
inception score was first introduced using the inception v1 model,
trained on 1000 target classes of the Imagenet Large Scale Visual
Recognition (ILSVRC) 2014 classification challenge (Russakovsky
et al. 2015). The inception classifier was used to evaluate the uncer-
tainty in image classification: images that were correctly generated
were assigned to one of the 1000 classes and assigned a high prob-
ability, while those that were incorrectly generated were assigned to
multiple classes with low probability. The inception score was then
used as a measure of this difference.
To calculate the score, the inception model was applied to each

generated image and the conditional probability, i.e. the probability
that the image belongs to one class, 𝑝(𝑦 |𝑥), was obtained. Using
those probabilities, the entropy was calculated in order to evaluate
the inception score, which is given by the KL divergence between
𝑝(𝑦 |𝑥) and 𝑝(𝑦):

𝐼score = exp [𝐷KL (𝑝(𝑦 |𝑥) | |𝑝(𝑦)] . (13)

Both 𝑝(𝑦 |𝑥) and 𝑝(𝑦) are evaluated from the generated dataset:
𝑝(𝑦 |𝑥) is the output of the classifier, i.e. the label distribution of an
image where 𝑦 is the set of labels and 𝑥 is the image; 𝑝(𝑦) is the
marginal distribution of the labels, 𝑦, for the generated dataset.
A high inception score implies a well performing generative algo-

rithm and the highest inception score to date for the ILSVRC 2014
classification data set is 9.46, based on the de-noising diffusion prob-
abilistic mode (Ho et al. 2020).
Although we wish to use the concept of the inception score to

evaluate radio source generation, the inception model itself was not
trained using radio sources. To address this we make use of the
existing radio source classifier architecture introduced in Tang et al.
(2019),which uses an architecture similar toAniyan&Thorat (2017).
This classifier consists of 5 convolutional layers each with batch
normalisation and max pooling. The output of the final convolution
layer is flattened and input into a fully connected network consisting
of 3 layers. The output from the fully connected layers is then passed
through a softmax function to obtain the predictions 𝑝(𝑦 |𝑥).
This CNN was trained using the FRDEEP dataset described in

Section 3 using 390 sources, validated using 110 sources, and tested
using 55 sources. The data was augmented and pre-processed using
the method described in Section 3.4. We make use of the Adagrad
optimizer with an initial learning rate of 0.001. The network was
trained for 30 epochs and the training was stopped when the vali-
dation and training loss stabilized. Using this network, we are able
to evaluate 𝑝(𝑦 |𝑥) and calculate the RAdio Morphology Inception
Score (RAMIS), our equivalent of the original inception score for
radio astronomy.

4.1 Metric Performance Evaluation

To test the ability of the RAMIS to quantify the quality of generated
images, we performed a number of tests, transforming the training
images from FRDEEP in different ways and evaluating the RAMIS
score for each transformation. To perform these tests, we make use
of the non-augmented training data set from FRDEEP. These images
once transformed were passed through the classifier model to obtain
𝑝(𝑦 |𝑥) and evaluate the RAMIS score using Equation 13.
The original images with no transformation applied had a RAMIS

score of 1.4 when evaluated. We then performed the following trans-
formations on those images, see Figure 1 : (i) blurring of the images
using kernels of different sizes; (ii) addition of noise at varying levels;
and (iii) cropping of the images.
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Figure 1. Experiment 1,2 and 3:Experiment 1 involves the image blurring with kernel size (1,1) (No blurring) to (19,19). Experiment 2 involves the cropping
of the images while experiment 3 involves the addition of random noise.

In the first experiment, we performed a Gaussian blurring and vary
the size of the smoothing kernel from (1, 1) to (19, 19) pixels in steps
of 2. This results in a decrease in the resolution of the images. The
RAMIS score was evaluated for each kernel size.
An exponential drop in the RAMIS was observed from 1.4 to 1.05

where the non-transformed images with a kernel size of (1,1) resulted
in a RAMIS of 1.4. The classifier confusion is similar to that obtained
when observing at different resolving power, for example in Figure 1
row 3 the core and the jets are clearly unresolved, which causes class
confusion within the model and reduces the RAMIS.
The second experiment involved the addition of random noise

to the image, see Figure 1. We added random noise with varying
amplitude between 0 and 0.011 in steps of 0.01 and evaluated the
RAMIS at each stage. With no added noise the RAMIS score was
1.4, and a drastic drop in the score is observed from noise level
0.001 to 0.003. Above that noise threshold the classifier was strongly
influenced by the noise and eventually randomly classifies the images.
The final experiment involved cropping the radio images to differ-

ent sizes. In Section 3.4, where we cover the pre-processing process,
we cropped the input images to 100 x 100 pixels, i.e blanked an
edge strip with a width of 25 pixels. This was done to prevent corner
differences in the images when rotating. This process may remove in-
formation from some images, for example those that include low level
features that might result from lobes or jets. To quantify this effect,
the training images were cropped by blanking the edge with strips of
width 0 to 75 pixels, at which point the image is completely blank. In
a similar manner to the previous experiments, the RAMIS dropped
exponentially as a function of strip width, converging towards 1.0
(worst score). At a strip width of 25 pixels, which corresponds to the

pre-processing procedure used in this work, a RAMIS of 1.25 was
measured.
This analysis is relevant when quantitatively evaluating the per-

formance of VAEs or other generative algorithms. For example Ma
et al. (2019a) cropped their input images to 40 x 40, corresponding
to an edge blanking of 55 pixels. At that level the RAMIS is less than
1.05. This may be explained by the fact that many FRII lobes, which
range in radial distance up to 75 pixels from the image centre, have
been cut out of the images, causing only the core of the radio galaxy
to be seen by the VAE. This will result in poorer performance when
generating FRIIs.

5 NETWORK ARCHITECTURE & IMPLEMENTATION

The unsupervised VAE used in this work consists of two fully con-
nected neural networks: (i) the encoder and (ii) the decoder. While
many VAE implementations make use of convolutional layers (e.g.
Ma et al. 2018; Ralph et al. 2019; Spindler et al. 2020), in this work
we choose to use a fully connected network. There are a number of
known issues involved in the use of convolutional VAEs and these
are described in more detail in Section 7. Consequently, although the
use of convolutional layers may be addressed in future work, here we
retain a fully-connected architecture for simplicity.
The encoder takes in the 100 × 100 pixel input images that have

been reshaped into a 10000×1 vector using an input layer of the same
dimension. We then make use of a funnel architecture that reduces
the high dimensional inputs, 𝑥, to a lower latent dimension, 𝑧, where
𝑧 ∈ 𝑅𝑑 and 𝑥 ∈ 𝑅𝐷 with 𝐷 > 𝑑, see Figure 2. The first hidden
layer has a soft-plus activation function and is fitted with a drop-out.
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Figure 2. The VAE neural network architecture: The encoder reduces the dimensions of the input images through the use of a funnel architecture that halves at
every layer in the encoder and doubles for the decoder.

Figure 3.Modifications to the VAE for the CVAE model with two additional neurons at the input layer of the encoder and decoder. Labels are forwarded at both
the encoder and decoder.

The number of neurons are halved for each subsequent layer so as to
create the tunnel architecture with the 2nd layer consisting of 2048
neurons, 3rd layer - 1024 neurons, 4th layer - 512 neurons and 6th
layer - 256 neurons. Each layer was fitted with a leaky ReLU. As
compared with the widely used Rectified Linear Unit (ReLU) which
is a non-linear activation function that allows positive outputs from
the neuron to pass while zeroing any negative values given by the
function:

𝑓 (𝑥) =
{
𝑥 if 𝑥 > 0
0 if 𝑥 6 0.

(14)

The leaky ReLU resolves the inability of the ReLU to map the neg-
ative values by introducing a small negative slope to any negative
input by following the function:

𝑓 (𝑥) =
{
𝑥 if 𝑥 > 0
𝛼𝑥 if 𝑥 6 0

(15)

Where 𝛼 = 0.001 in our work. All these hidden layers are fitted
with a Leaky ReLU activation function and followed by a drop-out
with 𝑝 = 0.2. The final output layer of the encoder consists of two
𝑑 dimensional layers where one layer outputs the mean parameters
and the other layer outputs the variance parameter.
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The decoder on the other hand converts the sampled 𝑧 values
into outputs with the same dimension as the encoder input. The
decoder input takes the latent variable, 𝑧, that is sampled from the
two Gaussians with parameters 𝑧𝜇 and 𝑧𝜎2 . This sampling The first
layer is fitted with a Leaky ReLU and a drop-out. The network is
then a mirrored version of the encoder where the 2nd layer has 256
neurons, 3rd layer - 2048 neurons, 4th - 1024 neurons, 5th - 2048
neurons and finally 6th - 4056 neurons. These layers are each fitted
with a leaky ReLU and drop-out. The final layer is followed by a
sigmoid activation that bounds the output between 0 and 1.
The architecture of the encoder-decoder network is shown in Fig-

ure 2 and detailed in Table 2.
For the declarative definition. our encoder and decoder were de-

fined within the model and guide as:

• 𝑝𝜃 (𝑧) = 𝑁 (0, 𝐼)
• 𝑝𝜃 (𝑥 |𝑧) = 𝐻𝜃 (𝑧) where 𝐻𝜃 (𝑧) represents the encoder

The guide which was introduced in section 2.1 is given as:

• 𝑞𝜙 (𝑧 |𝑥) = 𝑁 (𝑧𝜇 , 𝑧𝜎2 ) where 𝑧𝜇 = 𝐹𝜙 (𝑥) and 𝑧𝜎2 = 𝐺𝜙 (𝑥)
where 𝐹𝜙 and 𝐺𝜙 are the same neural network with the final out-
put layer outputs 𝑧𝜇 , the mean parameters and 𝑧𝜎2 , the variance
parameters.

The VAE is trained by optimizing the guide to match the model so
as to minimize the loss function derived in equation 8.

5.1 Conditional VAE

The conditional VAE is a variation on the unsupervised VAE that
also takes in the labels on the data. The labels are the conditions
that associate particular data samples and can be used to generate
images based on specific conditions. We input these labels as one
hot-vectors at two instances in the network: firstly at the input to
the encoder along with the reshaped images, and secondly at input
to the decoder along with the latent 𝑧 for image reconstruction. The
alterations to the unsupervised VAE are shown in figure 3 and table
2.
The model was also modified following the method outlined in
Section 2.2, to accommodate this additional information. We al-
ter the definition of the model to include a prior on the class,
𝑝(𝑦) = 𝑐𝑎𝑡 (𝑦 |𝜋), and we alter the likelihood, 𝑝𝜃 (𝑥 |𝑧), to be
𝑝𝜃 (𝑥 |𝑧, 𝑦) = Bernouilli(𝑥 |𝐻𝜃 (𝑧, 𝑦)), where 𝐻𝜃 represents the en-
coder. The variational approximation, or guide, remains unchanged
with 𝑞𝜙 (𝑧 |𝑥) = 𝑁 (𝑧𝜇 , 𝑧𝜎2 ), where 𝑧𝜇 = 𝐹𝜙 (𝑥, 𝑦) and 𝑧𝜎2 =

𝐺𝜙 (𝑥, 𝑦).
All networks used in this workwere implemented using the Python

probabilistic programming library Pyro (Bingham et al. 2018; Phan
et al. 2019)2.

5.2 Learning Rate Search and Training

The unsupervised VAEwas first trained by performing a learning rate
search. The learning rate search was performed for the different latent
dimensions 𝑑 = 2, 4, 8, 16, 32 and 64. This was done to identify the
ideal learning rate that leads to the lowest train loss after 10 epochs.
The VAE was trained using initial learning rates between 0.0005 to
0.0015 in steps of 0.0001. Such a procedure is crucial as the initial

2 Code for this work is available on the git repository: https://github.
com/joshen1307/RAGA

Figure 4. Test loss and RAMIS Score of VAE for different latent dimensions

Figure 5. Test loss, RAMIS score and FRII fraction of the CVAE for different
latent dimensions.

learning rate is often considered to be the most important hyper-
parameter (Smith 2017). Table 3 shows the ideal initial learning rate
for each latent dimension 𝑑.
The identified initial learning rates were used to train the network

for 8000 epochs. For all the latent dimensions, the loss converged
towards a minimum showing an adequate convergence towards a
minimized loss. However the minimum differs for the different latent
dimensions. None of the networks over-fitted the training data and
the test loss remained stable after 6000 epochs. At 𝑑 = 8, the test loss
stabilizes at 130. For the other latent dimensions i.e 𝑑 = 2, 4, 16, 32
and 64, the test loss stabilizes at 120. This difference in test loss had
an impact on the RAMIS score across the epochs. Table 3 and figure
3 shows the train loss, test loss and RAMIS for the different latent
dimensions.
A similar two phase procedure was adopted for the training of the

Conditional VAE. We again made use of a learning rate search for
the different latent dimensions 𝑑 = 2, 4, 8, 16, 32 and 64. Using the
identified learning rate, the CVAEwas trained for each selected latent
dimensions ( as shown in table 4). In parallel to the VAE, the initial
learning rate search was done between 0.0005 to 0.0015 in steps
of 0.0001. Once identified, the CVAE was trained for 5000 epochs,
where the test loss, train loss and RAMIS score was calculated every
10 epochs. In addition to those three metrics, we also generated
100 FRIs and 100 FRIIs which were classified using the classifier
described in section 4 . This was done to find the class generation
efficiency and to identify any class bias in our CVAE. Those results
are shown in table 4 and figure 5, the additional metrics were denoted
as 𝐹𝑅𝐼𝑐𝑜𝑢𝑛𝑡 and 𝐹𝑅𝐼𝐼𝑐𝑜𝑢𝑛𝑡 are the respective fraction of generated
FRI and FRII that were correctly classified.
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VAE Architecture CVAE Architecture
Encoder Decoder Encoder Decoder

Layer Dimensions/
parameters Layer Dimensions/

Parameters Layer Dimensions/
parameters Layer Dimensions/

Parameters

Input Layer 10, 000 × 1 Linear FC 𝑑 × 1 Input Layer (10, 000 + 2)×
1 Linear FC (𝑑 + 2) × 1

Softplus - Leaky ReLU - Softplus - Leaky ReLU -
Linear FC 4, 096 × 1 Dropout 𝑝 = 0.2 Linear FC 4, 096 × 1 Dropout 𝑝 = 0.2
Dropout 𝑝 = 0.2 Linear FC 256 × 1 Dropout 𝑝 = 0.2 Linear FC 256 × 1
Linear FC 2, 048 × 1 Leaky ReLU - Linear FC 2, 048 × 1 Leaky ReLU -
Leaky ReLU - Dropout 𝑝 = 0.2 Leaky ReLU - Dropout 𝑝 = 0.2
Dropout 𝑝 = 0.2 Linear FC 512 × 1 Dropout 𝑝 = 0.2 Linear FC 512 × 1
Linear FC 1, 024 × 1 Leaky ReLU - Linear FC 1, 024 × 1 Leaky ReLU -
Leaky ReLU - Dropout 𝑝 = 0.2 Leaky ReLU - Dropout 𝑝 = 0.2
Dropout 𝑝 = 0.2 Linear FC 1, 024 × 1 Dropout 𝑝 = 0.2 Linear FC 1, 024 × 1
Linear FC 512 × 1 Leaky ReLU - Linear FC 512 × 1 Leaky ReLU -
Leaky ReLU - Dropout 𝑝 = 0.2 Leaky ReLU - Dropout 𝑝 = 0.2
Dropout 𝑝 = 0.2 Linear FC 2, 048 × 1 Dropout 𝑝 = 0.2 Linear FC 2, 048 × 1
Linear FC 256 × 1 Leaky ReLU - Linear FC 256 × 1 Leaky ReLU -
Leaky
ReLU - Dropout 𝑝 = 0.2 Leaky ReLU - Dropout 𝑝 = 0.2

Dropout 𝑝 = 0.2 Linear FC 4, 096 × 1 Dropout 𝑝 = 0.2 Linear FC 4, 096 × 1
𝑧𝜇 , 𝑧𝜎2 𝑑 × 1 Leaky ReLU - 𝑧𝜇 , 𝑧𝜎2 𝑑 × 1 Leaky ReLU -

Dropout 𝑝 = 0.2 Dropout 𝑝 = 0.2
Linear FC 10, 000 × 1 Linear FC 10, 000 × 1
Sigmoid - Sigmoid -

Table 2. VAE and CVAE architectures.

d 2 4 8 16 32 64

Initial LR(10−3) 1.07 0.96 1.04 0.94 0.88 0.94
Train Loss 133.6 127.2 136.3 127.2 128.3 127.4
Test Loss 125.7 121.0 127.6 120.6 121.2 121.1
RAMIS 1.17 1.10 1.12 1.16 1.18 1.13

Table 3. Selected initial learning rates, train loss, test loss and RAMIS scores
for VAE at different latent dimensions.

d 2 4 8 16 32 64

Initial LR(10−3) 0.90 1.08 0.90 0.94 0.88 0.96
Train Loss 136.9 130.9 145.8 133.1 136.0 132.8
Test Loss 129.1 125.0 136.7 124.3 127.3 125.1
RAMIS 1.18 1.14 1.18 1.11 1.17 1.10
𝐹𝑅𝐼𝑐𝑜𝑢𝑛𝑡 /% 57.5 75.5 53.4 37.1 65.0 75.9
𝐹𝑅𝐼 𝐼𝑐𝑜𝑢𝑛𝑡 /% 37.2 31.8 51.5 61.7 35.6 24.7

Table 4. Selected initial learning rates, train loss, test loss and RAMIS scores
for VAE at different latent dimensions. 𝐹𝑅𝐼𝑐𝑜𝑢𝑛𝑡 and 𝐹𝑅𝐼 𝐼𝑐𝑜𝑢𝑛𝑡 are the
percentage of generated FRIs and FRII correctly classified by the CNN.

5.3 Summary and model selection

We make a model selection using the test loss and the RAMIS score
as our main criteria. Table 3 shows the metrics for the VAE. As a
selection criteria, we make use of the mean RAMIS and mean test
loss as a benchmark. Any model with RAMIS larger than the mean
RAMIS and with a test loss lower that the mean test loss was selected
as being the best performing model. For the VAE we chose 𝑑 = 32
at 𝑒𝑝𝑜𝑐ℎ = 8000 as the best performing model. For the CVAE, only
one model conformed to our criteria at 𝑑 = 32 with a test loss of
127.33 (which is lower than the mean 127.93) with a RAMIS of
1.17 (higher than the mean which is 1.15). We settled on 𝑑 = 32

at 𝑒𝑝𝑜𝑐ℎ = 5000 for our selected CVAE model. Figure 6 shows
both the training curves for the VAE and CVAE. Samples of images
generated by the trained models are presented in Appendix A.

6 RESULTS

6.1 Image Reconstruction

To qualitatively understand the general ability of the unsupervised
VAE model, a selection of images from the training set were fed into
the encoder and reconstructed images generated from those latent
coordinates were plotted for each latent dimension, see Figure 7.
As the generation is a stochastic process, it is not expected that
the output images will appear identical to the corresponding input,
however they should appear similar. In each case the image shown
is generated at the minimum test loss and maximum RAMIS score
for each model. All 6 latent dimensions were able to reconstruct the
radio sources, however some dimensions reproduce images that have
structures closer to those of the original images, for example at 𝑑 = 4,
𝑑 = 16 and 𝑑 = 32 the VAE is able to reproduce the asymmetry of the
sources: Source 3, which is asymmetric with one lobe brighter than
the other, can partially be reconstructed with 𝑑 = 4 and 𝑑 = 16. The
FRI and FRII division can also be reproduced correctly. Source 1,
which is an FRII, is reproduced as a radio source with lobes brighter
than the core; Source 7, which is an FRI, is reconstructed as a radio
source with a bright core and low brightness lobes. However for
some latent dimensions, such as 𝑑 = 8, we observe that for sources
like Source 5, the sources are reconstructed as triple sources while
the input image is a double radio source. Another limitation of the
system is its inability to reproduce bent structures: Source 2, which
is a bent source, is reconstructed as a straight source. This is assumed
to be a consequence of having only a small number of bent sources
present in the training data. Finally, one of the major drawbacks of
the VAE is the ‘blurriness’ of the generated images. This is a known
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Figure 6. The VAE and CVAE training curves with the RAMIS curve.

constraint of VAEs (Boesen Lindbo Larsen et al. 2015) and impacts
on the RAMIS score as we have seen in Section 4.1.
Figure 8 shows the reconstructed images from the unsupervised

VAE with 𝑑 = 32 for three different sources from the training set.
We can see that the model initially learns the bright central core of
the galaxy before learning the extended structure. The orientation of
the source is only learned towards the end of the training process.
For the conditional VAE, we can use an input image from the

training data set to specify a point in latent space and then choose to
generate synthetic images as either FRI or FRII.

6.2 Noise Analysis

As covered in Section 3.4, the training and testing images have been
sigma clipped. This resulted in all pixel values below a given thresh-
old being set to zero and created a gap in pixel values between 0 and
0.0039. This is equivalent to approximately 95% of the pixels being
set to zero. Generating images with zero-valued pixels is difficult
for machine learning algorithms and they instead assign an infinitely
small value to these regions in order to mimic the zeroing process.
By saturating the generated images at the 95th pixel percentile and

using a log-scale to visualise the data we can observe that artifacts are
present in the generated images at a low level. These are illustrated
in Figure 9. These artifacts appear as concentric ring-like structures
around the generated sources.

The distribution of pixel values in these regions varies between
models with different latent dimensions and we suggest that this
distribution can be used as an indicator for the performance of the
VAE. While zeroing the pixels is computationally difficult, attaining
very small values close to zero is an indicator of good network
performance. This was evident for models that became stuck in local
minima during the training process where the percentage of pixels
with values < 5 × 10−5 was significantly higher than those which
converged to a global minimum.

6.3 =2 latent space of the VAE

Although the lower dimensionality of the 𝑑 = 2 latent space produces
sub-optimal generated images, it does enable us to visualise the
mapping of the latent variable, 𝑧, to the output images. Analyzing
the latent space can also be useful to visualise the VAEs’ ability to
separate source characteristics in the 2D latent space based on their
morphology. To do this we sample points from the 𝑑 = 2 latent space
between −4.0 < 𝑧 < 4.0 in steps of 0.4 along the two dimensions
of the 𝑑 = 2 model and output the images generated at each point.
Figure 10 shows the organization of the latent space.
It can be seen that there is a clear separation between point-like

and extended sources in the latent space with point sources being
generated at the origin of the latent space. This should be considered
when generating sources from the VAE as latent points close to the
origin should not be used as thesewould generate unresolved sources.
We also note that moving around the latent space in a clockwise
direction results in a change in the orientation of the source, whereby
horizontally oriented sources lie towards the latent line 𝑧1 = 0.
For latent points with 𝑧 > 3, it can be seen that part of the structure

of the generated radio source overlaps the maximum 100× 100 pixel
image extent and, while large extended sources are spread around the
latent space, compact double radio sources are concentrated towards
the bottom left corner of the space. Towards the top left of the space
we find uncentred sources. These sources appear to have one lobe
centered at the centre of the image with the other lobe appearing on
the lower left quarter of the image.
In the same manner as was illustrated for the 𝑑 = 2 latent space

of the MNIST data set (Kingma & Welling 2013, Appendix 2) we
can see that the latent variable, 𝑧, transitions smoothly between dif-
ferent morphologies represented in the training set, even when those
morphologies do not necessarily correspond to an equivalent phys-
ical continuum. Whilst this may align with observations of hybrid
morphologies in some radio galaxies (e.g. Miraghaei & Best 2017;
Mingo et al. 2019a), it should be considered carefully when generat-
ing synthetic examples for data augmentation as the inclusion of too
many intermediate morphologies may bias the model performance
when applied to real data.

6.4 Class balance in synthetic source populations

In the case of the conditional VAE, the generated sources were used
to evaluate an additional performance metric designed to measure
the degree of class separation achieved by the conditional generator.
This was calculated by using the classifier described in Section 4
to classify a population of synthetic sources generated by the model
with an input specification of a 50:50 FRI:FRII class balance and
a uniform random sampling of the latent space in each case. The
distributions of classifications are shown in Table 4 for each dif-
ferent latent dimension. From Table 4, it can be seen that although
a balanced sample was specified at the input to the generator, the
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Figure 7. Original and reconstructed images at different latent dimensions. The 1st row shows the original images from the FRDEEP training set. Rows 2
through 6 show the reconstructed images for 𝑑 = 2, 4, 8, 16, 32 and 64.

resulting synthetic population was found to be imbalanced by the
external classifier. More specifically all models were seen to produce
an excess of FRI-type sources compared to FRIIs, with the exception
of 𝑑 = 16.
If, instead of using a uniform distribution, the latent space is sam-

pled randomly from the prior distribution,N(0, 1), this behaviour is
reversed and the synthetic population is found to be dominated by
objects classified as FRII-type sources; however, we note that this is
likely due to the fact that sources generated from the latent volume
around the origin are predominantly compact, comprising unresolved
and only marginally resolved objects, and the classifier is biased to-

wards classifying these objects as FRII sources. This effect is also
seen when sampling from the prior distribution over the latent space
of the VAE. A selection of sources generated by randomly sampling
from the prior distribution for the VAE is shown in Figure A9.

6.5 CVAE - Class evaluation

To qualitatively evaluate the CVAE’s ability to produce sources with
FRI and FRII characteristic, FRI and FRII sources originating from
the same latent coordinates were generated The sources were gener-
ated from the model with 𝑑 = 32 obtained at 𝑒𝑝𝑜𝑐ℎ = 5000. The
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Figure 8. Sources generated as a function of training epoch from a model with 𝑑 = 32. The first column shows the original image from the training set that is
used to define the point in latent space from which the synthetic images are generated.

Figure 9. Image of low level noise structures in generated images from a model with 𝑑 = 32.

cross-sectional profile across the principal axis of the FRI source was
compared with that of the FRII. As such two versions (FRI and FRII)
of the "same" source could be generated and compared. Figure 11
shows 6 selected sources where the cross-section along the principal
axis have been plotted. For each pair of generated sources the main
distinctive feature lied in the lobe brightness, generated FRII sources
had lobes brighter than the core while for FRIs, the pixel intensity
decreases as we move away from the core which in most cases are
brighter than the lobe. This is inline with the definition of FRIs and
FRIIs, and shows that CVAEs can generate sources with distinctive
FRI/II morphological characteristics.

7 DISCUSSION

Previous work on the generation of radio galaxy images has been
undertaken by Ma et al. (2019a). In that work the authors used a con-
ditional VAE that used convolutional layers in both the encoder and
decoder, which is a significantly different architecture to the fully-
connected network presented here. They evaluated their network
based on standard classification scores (precision, recall, F1-score)
using the classifier defined in Ma et al. (2019b), which itself was
trained on augmented images produced using a VAE. As already
noted in Section 4.1, the data pre-processing in Ma et al. (2019a)
involved clipping the training images to 40× 40 pixels, which would
have impacted significantly on the RAMIS evaluation measure de-
fined in this work and which we suggest may have a disproportion-
ately large effect on the generation of FRII galaxies, which were
noted to achieve poorer performance metrics than FRIs in the work
of Ma et al. (2018).

The range of latent space dimensionalities considered by Ma et al.
(2019a) was significantly larger than in this work, with models up
to 𝑑 = 500 being trained. However their conclusion is inline with
the results of this work that find a relatively low latent space dimen-
sionality is preferred. Ma et al. (2018) do not explicitly state their
preferred dimensionality, but from their Figure 3 it appears to be in
the same range as proposed here.

A further interesting observation in the work of Ma et al. (2019a)
was that the generated images contained two artifacts that are not
seen in the generated images from this work. The first of these was
described as pseudo-structure, particularly in the generated FRII
images, and the second was the presence of a grid structure, or
pseudo-texture, overlying the images. Ma et al. (2019a) attributed
this structure to a bias from the mean square error (MSE) loss used
to construct those images, equivalent to Equation 7. However, we
suggest that it may be a consequence of the convolutional layers used
in their network. Chequerboard artifacts in generative algorithms that
employ convolutional and specifically deconvolutional layers are a
known issue. These artifacts arise from kernel overlap in the decon-
volution steps of the decoder (Odena et al. 2016). Although they can
be minimised by the use of deconvolution layers with stride 1 this
is typically only used in the final layer of a convolutional decoder
and artifacts that have been produced in earlier layers with larger
stride steps can still be present. Alternatively, such chequerboard ef-
fects can also be mitigated through the use of up-sampling (see e.g.
Spindler et al. 2020). Other high frequency artifacts are also thought
to be caused by the use of max-pooling to subsample the output from
convolutional layers in the encoder (e.g. Hénaff & Simoncelli 2015);
however, we note that Ma et al. (2019a) do not use max-pooling to
subsample, employing an average pooling approach instead.
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Figure 10. 2D Latent mapping of the VAE

While the VAE and CVAE presented in this work can clearly be
used to generate realistic radio sources, we note that there remain a
number of limitations to this method that should be addressed in fu-
ture work. The first of these is that VAEs and CVAEs tend to produce
blurry images, and while an ideal generative system should generate
radio sources with resolution similar to the training set, the resolu-
tion of the generated images produced here appears lower than that
of the training set, i.e. FIRST. As we have demonstrated, the effect of
this blurring will effect performance based on the RAMIS evaluation
method introduced in this work. As an alternative to the MSE loss,
Ma et al. (2019a) also used a pixel-wise cross entropy (PCE) loss,
which they propose enabled finer structures to be generated in their
output images. Another possibility for addressing this resolution is-
sue is to introduce a discriminative network after the VAE identifying
input images as real or fake. This approach is known as a VAE-GAN
(Kawai et al. 2020).

A second limitation is that VAEs cannot reproduce the sigma clip-
ping applied in data pre-processing. In principle this can be remedied
by applying a post-processing sigma clipping to the output images,
but future applications should also address the nature of the system-
atic artifacts that appear in this noise.

A final point of note is that the generator is biased towards the cre-
ation FRI radio galaxies. With the exception of models with a latent
space dimensionality of 𝑑 = 16, the CVAE creates a higher num-
ber of FRIs compared to FRIIs when the output images are passed
through a classifier. Most of these mis-classified FRIIs had an X-
shaped morphology or were double-double sources. Compact FRIIs
with smaller angular extent were correctly generated and classified
while those with large angular extent were generated with unclear
morphologies. This is similar to the performance mis-match seen by
Ma et al. (2018) for their FRI/II populations.
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Figure 11. Comparison of FRI and FRII sources. Column 1 shoes the FRI
sources, Column 2 the corresponding FRII source and Column 3 shows the
cross sectional plot across the jet axis

8 CONCLUSIONS

In this work we have demonstrated the use of generative machine
learning methods to simulate realistic radio galaxies. We present
results from both an unsupervised variational autoencoder and a
conditional variational autoencoder. The networks were trained us-
ing sources from the FIRST radio survey and produce radio sources
with FRI and FRII morphologies. Furthermore we have presented a
quantitative method for evaluating the performance of these genera-
tive models in radio astronomy, formulated as the radio morphology
inception score (RAMIS).
Using both the RAMIS as a quantitativemeasure and by inspecting

the radio sources, we found that VAEs could be used as a method for
the generation of relatistic radio sources. We found that the lowest

model loss was obtained at a latent dimension of 𝑑 = 32 with a
RAMIS of 1.175. However, we also found that the VAE could cor-
rectly construct asymmetry in the radio sources at the lower latent
dimension, 𝑑 = 4.
We also investigated the mapping of the latent space to output

images, this was done by visualising the generated sources plotted
from different latent points in the 𝑑 = 2 latent space. We identified
a ystematic distribution of morphologies in the latent space with ex-
tended radio sources separating themselves from point like sources.
We also investigated the class balance in the generative source pop-
ulation for the CVAE, illustrating the difference in outcomes when
sampling from the latent space in different ways. We suggest that
the implications of this investigation can be used if some control is
needed over the generation of synthetic radio sources but caution that
it also highlights the potential for bias when being used to augment
data sets for training other models.
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APPENDIX A: IMAGES

We here present samples of generated sources using the trained VAE
and CVAE.

(i) Figure A1 and A4 : Generated FRI sources from the CVAE
that were classified as FRI by the CNN classifier.
(ii) Figure A5 and A8 : Generated FRII sources from the CVAE

that were classified as FRII by the CNN classifier.
(iii) Figure A9 : 100 generated sources from the unsupervised

VAE for 𝑑 = 32where 𝑧 is sampled randomly from the prior 𝑁 (0, 1).
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Figure A1. Generated FRI Sample Set 1 Figure A2. Generated FRI Sample Set 2
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Figure A3. Generated FRI Sample Set 3 Figure A4. Generated FRI Sample Set 4
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Figure A5. Generated FRII Sample Set 1 Figure A6. Generated FRII Sample Set 2
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Figure A7. Generated FRII Sample Set 3 Figure A8. Generated FRII Sample Set 4
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Figure A9. Generated sources from the unsupervised VAE for 𝑑 = 32 where 𝑧 is sampled randomly from the prior 𝑁 (0, 1) .
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