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ABSTRACT
In this work we introduce attention as a state of the art mechanism for classification of radio galaxies using convolutional neural
networks. We present an attention-based model that performs on par with previous classifiers while using more than 50% fewer
parameters than the next smallest classic CNN application in this field. We demonstrate quantitatively how the selection of
normalisation and aggregation methods used in attention-gating can affect the output of individual models, and show that the
resulting attention maps can be used to interpret the classification choices made by the model. We observe that the salient regions
identified by the our model align well with the regions an expert human classifier would attend to make equivalent classifications.
We show that while the selection of normalisation and aggregation may only minimally affect the performance of individual
models, it can significantly affect the interpretability of the respective attention maps and by selecting a model which aligns well
with how astronomers classify radio sources by eye, a user can employ the model in a more effective manner.
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1 INTRODUCTION

As astronomers collect larger and larger volumes of data, machine
learning techniques are becoming increasingly prevalent in astro-
nomical analysis. Examples include the use of Support Vector Ma-
chines (SVMs; see e.g. Cervantes et al. 2020) to study coronal mass
ejections (Qu et al. 2006), gravitational lenses (Hartley et al. 2017),
and for classifying astronomical objects detected in GAIA data re-
lease 2 (Bai et al. 2018; Prusti et al. 2016), and random forests (see
e.g. Louppe 2014) for the classification of data from SDSS data re-
lease 15 (Clarke et al. 2020; Aguado et al. 2019). Neural networks
in astronomy were reviewed as early as Miller (1993), and have been
present ever since, for example in Lahav et al. (1996) for galaxy
classification and as recently as Das & Sanders (2019) to estimate
spectroscopic mass, age and distance for red giant stars.
In radio astronomy a massive increase in data volume is driving

the adoption of machine learning methodologies and automation.
This is due to the range of new instruments that have recently come
online, including the Low-Frequency Array (LOFAR; Van Haarlem
et al. 2013), the Murchison Widefield Array (MWA; Beardsley et al.
2019), the MeerKAT telescope (Jarvis et al. 2016), and the Aus-
tralian SKA Pathfinder (ASKAP) telescope (Johnston et al. 2008).
For these instruments a natural solution has been to automate the
data processing stages as much as possible, including classification
of sources.
For example, the first fully public LOFAR Two-Metre Sky Survey

(LOTSS; Shimwell et al. 2019) data release was mapped using a
fully automated calibration and imaging process. This first data re-
lease covers only 2% of the eventual coverage (424 square degrees)
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and catalogues 325,649 sources. An object classification pipeline
for LOTSS was developed and employed by Mingo et al. (2019),
who identified 5805 classifiable sources with active galactic nuclei
(AGN) in LOTSS data release 1. This pipeline split the identified
AGN into Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II
(FRII; Fanaroff & Riley 1974). This morphological classification of
radio loud AGNs separates ‘edge darkened’ FRI galaxies from ‘edge
brightened’ FRII galaxies.

Over the years the morphological dichotomy of the FR classifi-
cation has been widely investigated through both observations and
simulations of complex sources (e.g. Smithand & Donohoe 2019;
Schoenmakers et al. 2000; Mahatma et al. 2019). Various sugges-
tions of additions and alternate classifications have also been made.
A suggestion for the addition of an ‘FR0’ class was made in Baldi
et al. (2015) for compact radio sources and a number of studies have
investigated these sources, their properties and their relation to the
prevailing FRI and FRII source classes (Baldi et al. 2016, 2019; Tor-
resi et al. 2018; Capetti et al. 2020). From the LOTSS sample, Mingo
et al. (2019) found that the traditional dichotomy of the FR classi-
fication was not sufficient to describe the complex morphologies of
the detected sources, and they additionally classified ‘low luminosity
FRII’ sources, which extended to three orders of magnitude below
the luminosity break observed to accompany the morphological dis-
tinction of FRI/II sources. Furthermore, various sub-classes of the
FR scheme are commonly employed to label specific structures com-
monly found in radio galaxies. Both Miraghaei & Best (2017) and
Mingo et al. (2019) include small samples of sources which do not
clearly adhere to the FR dichotomy and it is certain that deeper and
wider radio surveys will open up even more detailed views of such
source morphologies. Additionally, a hybrid morphology, where a
given source presents FRI properties on one side of its core and FRII
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properties on the other, is also widely recognised (Gopal-Krishna &
Wiita 2000; Kapińska et al. 2017; Seymour et al. 2020).
In spite of these known issues, the FRI/II classification scheme

persists, with recent research still seeking to understand through
which processes and under what conditions these sources evolve (e.g.
Miraghaei & Best 2017; Ineson et al. 2015). Large scale samples of
FRI/II classifications are used to evaluate theoretical and simulated
populationmodels (e.g. Godfrey et al. 2017; Hardcastle 2018), model
the evolution of radio-AGN (e.g. Best et al. 2014), and support the
development of a unified AGNmodel (Netzer 2015). Further uses for
these radio sources are summarised by Hardcastle & Croston (2020).
These include uses within cosmic magnetism (e.g. Bonafede et al.
2010; Govoni et al. 2010; O’Sullivan et al. 2019) and cosmology (e.g.
Raccanelli et al. 2012). Regardless of the field using these sources,
if the sources are not confidently classified, the application suffers.
It is therefore perhaps unsurprising that an increasing number of

works in radio astronomy have been developing machine learning
approaches to classify radio galaxies in the Fanaroff-Riley scheme
(e.g. Aniyan & Thorat 2017; Lukic et al. 2019; Tang et al. 2019; Ma
et al. 2019). Since this is primarily a morphological classification
these approaches have focused on the use of convolutional neural
networks (CNNs); however, the computational cost of training typical
commercial CNNs with 10s to 100s of millions of parameters is not
insignificant and furthermore, for problemswith comparatively small
training data sets such networks can easily result in over-fitting.
For example, the classic CNN architecture VGG16 (Simonyan &

Zisserman 2014), is a deep convolutional neural network developed
by the Visual Geometry Group at Oxford. VGG16 is able to fit
complex visual tasks and can discriminate the 1000 classes of the
ImageNet data set (Deng et al. 2009) with a top-1 value-error (i. e.
the percentage of top predictions that are incorrect) of approximately
25%. At the time of its publication this was the highest performing
model for the ImageNet data set and VGG16 became popular due
to its structural simplicity and performance. However, with 138M
learnable parameters, VGG16 requires extremely large training data
sets such as Imagenet, containing ∼ 15million images, to realise its
purpose.
In radio astronomy, as with other domain specific applications of

deep learning where labelled training data sets are often significantly
smaller, it is beneficial to adjust the structure and size of CNNs. One
such example is the network proposed and evaluated in Tang et al.
(2019) which was trained on FRDEEP, a data set of 600 classified
radio sources. With many fewer degrees of freedom, this problem
does not require a network as deep as VGG16 and the implemented
model has only 250 k parameters in comparison to the 138M of
VGG16.
Similarly, the AG-Sononet architecture (Schlemper et al. 2018)

was first introduced for classification in medical imaging, specifi-
cally to classify sonogram images. Although AG-SonoNet has the
same number of convolution operations in its main body as VGG16,
it does not use VGG16’s fully connected layers, which constitute
119M (90%) of that network’s 138M parameters, and AG-Sononet
therefore contains only 696 k parameters. In order to achieve this re-
duction in parameter volume AG-Sononet employs an attention gat-
ingmechanism to perform classification rather than a fully-connected
network.
Machine learning applications of attention are increasingly used to

improve both the performance and interpretation of machine learning
models (Ba et al. 2014; Stollenga et al. 2014; Bahdanau et al. 2015;
Xu et al. 2015; Chen et al. 2017; Jetley et al. 2018). These applications
are analogous to the biological concept of attention (Lindsay 2020;
Itti & Koch 2001; Zhou & Desimone 2011), whereby the visual

system prioritises themost salient features in an image, i.e. the feature
containing the most information pertinent to the context.
In this work we introduce the concept of attention-gating to radio

galaxy classification. We demonstrate that attention-gated networks
can provide equivalent model performance to existing CNN-based
radio galaxy classification whilst using significantly fewer trainable
parameters. Furthermore, we demonstrate that the attention maps
produced by these networks can be used to aid the interpretabil-
ity of such machine learning models for astronomical applications.
The structure of this paper is as follows: in Section 2 we introduce
the attention mechanism for convolutional neural networks; in Sec-
tion 3 we describe the network architecture deployed in this work
and the implementation of the attention gates themselves; in Sec-
tion 4 we give an overview of the radio astronomy data sets used for
this work; in Section 5 we provide details of the model performance
with reference to alternatives in the literature and justify our choice
of normalisation and aggregation method for the attention gates; in
Section 6 we examine the average attention distribution as a function
of target class across the data set and discuss its interpretation; in
Section 7 we consider how attention distributions may inform a user
about mis-classifications in a data set; and in Section 8 we summarise
and draw our conclusions.

2 ATTENTION

There are two clear approaches to attention in machine learning:
hard spatial attention and soft spatial feature attention. These two
approaches have clear alignments to overt and covert visual attention
in the biological sense, respectively.

2.1 Hard vs. Soft Spatial Attention

When a ML algorithm outputs multiple sequential outputs based on
individual sequential inputs selected by the model, this is consid-
ered hard attention. This has become common in natural language
processing (Galassi et al. 2019). For example, consider the input
x = (𝑥1, ..., 𝑥𝑇 )ᵀ , where each element of x refers to an English
word, which is to be translated to an output y in another language. To
do this, an encoder-decoder network is used where the encoder is a
Bidirectional Recurrent Neural Network (BiRNN) and the decoder is
comprised of an attention function and a Recurrent Neural Network
(RNN). The BiRNN encodes the input to annotations, H, as:

H = (h1, ..., h𝑇 ) = BiRNN(𝑥1, ..., 𝑥𝑇 ). (1)

The selected attention function uses these annotations to calculate
a context vector, c𝑡 , for the next position 𝑡 in the translated sentence
as:

c𝑡 = Attention(H, s𝑡−1), (2)

where s𝑖 are hidden states used by the final RNN to extract the most
probable next word in the translated sentence given the input and the
translated sentence output so far:

𝑝(𝑦𝑡 |𝑦1, ..., 𝑦𝑡−1, x) = RNN(c𝑡 , s𝑡−1). (3)

The attention operation itself is best explained in three steps: first,
the annotations and hidden state of the previous output are passed
into a function, 𝑓 , which is typically a feedforward neural network
(e.g. Bahdanau et al. 2015), which creates a set of scalar values, 𝑒𝑡𝑖 ,
that score the relatedness of the inputs around 𝑖 to the outputs around
𝑡:

𝑒𝑡𝑖 = 𝑓 (s𝑡−1, h𝑖). (4)
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Attention for radio galaxy classification 3

This value is normalised across each of the inputs, using a softmax
function, to create a set of weights 𝛼𝑡𝑖 :

𝛼𝑡𝑖 =
exp 𝑒𝑡𝑖∑𝑇
𝑗=1 exp 𝑒𝑡 𝑗

, (5)

which are then used to scale the annotations and return the context
vector:

c𝑡 =
∑︁
𝑖

𝛼𝑡𝑖h𝑖 = Attention(H, s𝑡−1). (6)

This kind of hard attention has also been used for computer vision
applications such as generating image captions for a given input
by ‘translating’ image regions (Xu et al. 2015) and for classifying
multiple objects in single images (Ba et al. 2014). Such hard attention
selection for visual applications can be seen as being analogous to
saccadian motion selecting salient regions with the fovea, and thus
overt visual attention (e.g. Itti & Koch 2001).
Soft spatial attention, also referred to as feature attention, scales

the representation according to spatial location equally across all fea-
ture maps and amplifies individual channels to scale certain features
regardless of spatial location. Chen et al. (2017) used both soft spatial
and feature attention for image captioning tasks, whereas Stollenga
et al. (2014) generated soft feature attention by assigning weights
to each feature map according to the feature maps generated in a
forward pass of an image through the network.
The attention gates implemented in this work can be described as

being soft trainable attention, which defines both spatial and feature
saliencymaps used to attend an input. These were initially introduced
in Jetley et al. (2018), and were clarified and re-implemented in
Schlemper et al. (2019).

2.2 Attention Gates

Conceptually, attention gates amount to filters that prioritise salient
features and their respective spatial locations within a given input.
Soft feature attention is enforced using [1×1]-convolutions, which
scale each feature (channel) of an input according to a learnedweight.
The attention weight is implemented as a normalised single-channel
attention map which is a weighted sum of each of the salient features
present in the image.
More specifically, an input, x ∈ R𝐶𝑥×𝐻𝑥×𝑊𝑥 , is attended us-

ing a compatibility score, 𝐶 (x, g) : R𝐶𝑥×𝐻𝑥×𝑊𝑥 × R𝐶𝑔×𝐻𝑔×𝑊𝑔 →
R𝐻𝑥×𝑊𝑥 , to generate an (attended) output, 𝜶 ∈ R𝐶𝑥×𝐻𝑥×𝑊𝑥 , fol-
lowing:

𝛼𝑖 𝑗𝑘 = 𝜎2 [𝐶 (x, g) 𝑗𝑘 ] · 𝑥𝑖 𝑗𝑘 , (7)

with a normalisation 𝜎2 and the compatibility score, 𝐶 (x, g), calcu-
lated as:

𝐶 (x, g) =
[
𝜎1 (x ∗ 𝜃 + (g ∗Φ)′)

]
∗Ψ, (8)

where the ∗ operator denotes the convolution operation; 𝜃, 𝜓 and Ψ
are [1×1] convolutions; 𝜎1 is the ReLU non-linearity; and the prime
in (g ∗ 𝜓)′ refers to the up-sampling required to match width and
height dimensions to (x ∗ 𝜃). This process is visualised in Figure 1.
The [1×1]-convolutions are chosen such that (𝑥 ∗ 𝜃) and (𝑔 ∗ 𝜓)

share the same intermediate channel number as their channel dimen-
sion output, which allows for simple addition of the two tensors.
Furthermore, Ψ is a [1×1]-convolution which takes this intermedi-
ate channel dimension and reduces it to the one channel width of
the compatibility score. Once normalised this compatibility score
becomes the attention map (saliency map).

2.3 Aggregation Methods

Once attention gates have been applied within a CNN, the different
feature maps are used to generate an output. While in conventional
CNN architectures this is achieved using multiple fully connected
layers, in the case of attention-gated networks the number of fully
connected layers is minimised in order to increase the classifier’s
dependency on the attention gates themselves, the outputs fromwhich
are aggregated for classification.
Although in principle an aggregation method could be imple-

mented in any way the user desires, in this work the four methods im-
plemented by Schlemper et al. (2019) are considered. In these meth-
ods, the output of the attention gates remains as 𝛼𝑛 ∈ R𝐶𝑛×𝐻𝑛×𝑊𝑛

with a superscript 𝑛 to indicate which attention gate the output cor-
responds to. The output of each aggregation method is a vector with
length equivalent to the number of classes 𝑦 ∈ R𝑛classes , where in this
work 𝑛classes = 2. The output prediction for each class is evaluated
as 𝑦out = Softmax(𝑦).
The proposed mechanism classifies on the summed value of each

channel of the attention gate’s output, meaning that the values 𝑓 𝑛
𝑖
as

defined by Equation 9 are used to make the classification, such that

𝑓 𝑛𝑖 =
∑︁
𝑗 ,𝑘

𝛼𝑛
𝑖 𝑗𝑘

, (9)

with 𝑖 ∈ [0, ..., 𝐶𝑛] and 𝑛 ∈ [1, ..., 𝑁] where 𝑁 is the selected
number of attention gates. Logits are then constructed using one of
the following four methods.

2.3.1 Mean

In this method the classification is made by taking the mean of
multiple fully connected layers, each applied to the attention maps
𝑓 𝑛
𝑖
:

y =
1
𝑁

∑︁
𝑛

W𝑛f𝑛 + b𝑛, (10)

whereW𝑛 ∈ R2×𝐶𝑛 and b𝑛 ∈ R2 are learnable parameters.

2.3.2 Concatenation

In this method a classification is made on the concatenation of all of
the feature maps:

y = W ©«
f1
f2
f3
ª®¬ + b, (11)

whereW ∈ R2×(𝐶1+𝐶2+𝐶3) and b ∈ R2 are learnable parameters.

2.3.3 Deep Supervised

The deep supervised method is an expanded version of the mean
aggregation, where the final classification is an average of both in-
dividual classifications given in Equation 10 and the concatenated
classification given in Equation 11:

y =
1

𝑁 + 1

W ©«
f1
f2
f3
ª®¬ + b +

∑︁
𝑛

W𝑛f𝑛 + b𝑛
 , (12)

whereW and b are defined as in the definition of the concatenation
method, andW𝑛 and b𝑛 are defined as in the definition of the mean
method.
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Figure 1. The attention gate implemented in this work, which learns soft feature and spatial visual attention (see Equations 7 and 8).

2.3.4 Fine Tuned

The fine tuned method employs a single fully connected layer to
classify on the classifications made on each individual attention gate:

y = W 𝑓 𝑡
©«
W1f1 + b1
W2f2 + b2
W3f3 + b3

ª®¬ + b 𝑓 𝑡 , (13)

whereW 𝑓 𝑡 ∈ R2×6, b 𝑓 𝑡 ∈ R2,W𝑛 ∈ R2×𝐶𝑛 and b𝑛 ∈ R2 are all
learnable parameters.

3 NETWORK ARCHITECTURE

The network in this work is inspired by the SonoNet architecture
(Schlemper et al. 2019), which in turnwas inspired by theVGG-16 ar-
chitecture (Simonyan & Zisserman 2014). We alter the base SonoNet
architecture by removing the final pooling layer and all subsequent
convolutional layers. This was done to reduce the complexity of the
network and prevent over-fitting. Over-fitting is a serious problem
when using deep networks and can be combated using validation
methods. In this work, early stopping is implemented as the vali-
dation method of choice. As such a portion of the training data is
reserved for validation. This model’s loss on this validation set is
recorded throughout training, with the final output being the model
which achieved the minimal validation loss throughout training.
Validation tests showed that the original structure of the Sononet

architecture applied to radio astronomy images quickly resulted in
over-fitting of the data and the network was truncated in response.
Similarly, if there are not enough learnable parameters in a network,
the trained model may not able to differentiate between target classes
and will either predict randomly or predict all sources to belong to a
single class. For example, when the structure from Tang et al. (2019)
was adapted to attention gates, this over-fitting occurs immediately.
The largest difference here, is that the fully connected layers, which
contain 94% of the original parameters, are removed for the atten-
tion gated implementation. Although the original performs well, the

adapted model contains too few parameters and is not able to fit to
the data correctly.
A detailed summary of the primary network implemented in this

work and its parameters is given in Table 1 and depicted in Figure 2.
In the following sections we refer to the architecture implemented
here as the AG-CNN.

3.1 Attention Implementation

As described in Section 2.2, the form of the attention gates used in
this work is equivalent to that in Schlemper et al. (2019). However,
the implementation of these gates within the network itself is not the
same. In the architecture adopted here the attention gates are imple-
mented such that they are the only input on which the network makes
a classification, thus guaranteeing that the attention gate outputs are
used to make the final classification.
SonoNet uses two attention gates and additionally uses the final

featuremap of the convolutional layers as an input for the aggregation
method. In principle, aggregation of these results allows a classifi-
cation to be made based purely on the final feature map, and does
not (theoretically) require information from the attention gates to be
used at all. In this work we implement up to three attention gates
and only classify on the output of the attention gate(s) themselves.
This is more similar to the initial learned CNN attention gate imple-
mentation (Jetley et al. 2018), where it was noted that classification
under such a restriction is more consistent with the original concept
of attention as practiced in NLP.
Table 2 summarises the parameters of Attention Gate 1 as an

example of how the parameters align within each attention gate;
see also Figure 1. In this work, as well as exploring each of the
aggregation methods defined in Section 2.3, we also consider four
different attention normalisation functions for the attention gates,
denoted 𝜎2 in Equation 7. These are summarised in Table 3. Dropout
is applied to the summed channel (feature) values output from the
attention gates, prior to aggregation, see Equation 9.
The network implementation is made in such a way that not all

attention gate outputs are necessary for classification. Where classi-
fication is made using outputs from fewer than the maximum number

MNRAS 501, 1–18 (2021)
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Operation Block Output Shape Number of
Channel Width Height Parameters

1 150 150 0
[3 × 3] Conv. + ReLU + BNorm 6 150 150 72
[3 × 3] Conv. + ReLU + BNorm 6 150 150 342
[3 × 3] Conv. + ReLU + BNorm 6 150 150 342
Max Pooling 6 75 75 0
[3 × 3] Conv. + ReLU + BNorm 16 75 75 912
[3 × 3] Conv. + ReLU + BNorm 16 75 75 2,352
[3 × 3] Conv. + ReLU + BNorm 16 75 75 2,352
Max Pooling 16 37 37 0
[3 × 3] Conv. + ReLU + BNorm 32 37 37 4,704
[3 × 3] Conv. + ReLU + BNorm 32 37 37 9,312
[3 × 3] Conv. + ReLU + BNorm 32 37 37 9,312
Max Pooling 32 18 18 0
[3 × 3] Conv. + ReLU + BNorm 64 18 18 18,624
[3 × 3] Conv. + ReLU + BNorm 64 18 18 37,056
Attention Gate 1 32 37 37 6,209
Attention Gate 2 16 75 75 5,185
Attention Gate 3 6 150 150 4,545
Sum Across Height and Width 54 0
Dropout 54 0
Aggregation Function 2 14

Total Parameters: 101,447

Table 1. A summary of the primary network implemented in this work and visualised in Figure 2, its parameters and the size of each of the feature maps. This
is a valid for implementations with the fine tuned aggregation, any normalisation and three attention gates.

Operation Block Output Shape Number of
Channel Width Height Parameters

Input 32 37 37 9,312
Global Input 64 18 18 37,056

[3 × 3] Conv. 64 37 37 2,048
[3 × 3] Conv. 64 18 18 4,096
Upsample 64 37 37 0
[3 × 3] Conv. 1 37 37 65
Normalise Att. Map 1 37 37 0
Input × Att. Map 32 37 37 0

Attention Gate 1: 6,209

Table 2. Summary of attention gate 1, its parameters and the size of each of
the feature maps. These values are valid for any of the implemented normal-
isations as they have no learnable parameters.

of three attention gates the models include gates 1 − 3, as shown in
Figure 2, sequentially, i.e. 2 attention gates implies that gates 1 and
2 are used. In the case where no attention gates are included an addi-
tional max-pooling layer followed by a single fully-connected layer
is used for classification.
Models are trained over 100 epochs, using the Adam opti-

miser and an initial learning rate of 5 · 10−5 (adapted only once
to enable the given model to train). The models trained on the
MiraBest (Porter 2020) data set for this work took an average of
8 hrs 18min ± 1 hr 20min on an 8GB Nvidia RTX2080 GPU. De-
pending on the hardware used and the optimisation process, i e. how
many times the intermittent models are saved to disk, the training
time can vary significantly. Further training time dependencies in-
clude the model’s hyperparameters, e. g. the choice of optimiser,
learning rate, training epochs, data set etc. Given a pre-processed

Function Functional form

(i) Softmax 𝜎2 (𝑥) = e𝑥/
∑
e𝑥

(ii) Sigmoid 𝜎2 (𝑥) = (1 + e−𝑥 )−1
(iii) Range 𝜎2 (𝑥) = (𝑥 −min(𝑥))/(max(𝑥) −min(𝑥))
(iv) Standardisation 𝜎2 (𝑥) = (𝑥 − 𝜇)/𝜎

Table 3. Attention normalisation functions. Here min and max are defined as
functions which return the minimal and maximal values of their respective
inputs, and 𝜇 and 𝜎 are the chosen mean and standard deviation of the input,
which are selected to be 𝜇 = 0.5 and 𝜎 = 0.25.

image, the trained model can output its predicted label in ∼ 0.6ms,
as measured over 1000 augmentations of the MiraBest test set.

4 DATA

4.1 Data Sets

The two data sets used in this work both use image data from theVLA
FIRST survey (Becker et al. 1995), with the number (and sources) of
labels derived from different sources. The data sets themselves are
composed as follows:

4.1.1 FR-DEEP

The FR-DEEP data set was first presented in its entirety in Tang et al.
(2019). The labels for the FR-DEEP data set were taken from the
CONFIG (Gendre & Wall 2008; Gendre et al. 2010) and FRICAT
(Capetti et al. 2017) catalogues, where sources were visually classi-
fied by their expert authors. Tang et al. (2019) selected a subset from
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6 M. Bowles et al.

Figure 2. The primary network architecture implemented in this work. The attention gates are added in numbering order shown here, according to how many
attention gates are requested. Channel width is given as a digit above each altered layer.

those catalogues to include only sources that were denoted as confi-
dently classified. In this work the FR-DEEP-F subset is used, which
contains source images from the VLA FIRST survey at 1.4GHz
(Becker et al. 1995). The data set contains 264 images labelled FRI
and 336 sources labelled FRII.

4.1.2 MiraBest

The MiraBest data set (Porter 2020) is comprised of 1,256 radio
galaxies with labels assigned using the catalogue of Miraghaei &
Best (2017), where labels were assigned using visual inspection.
Although the MiraBest data set also contains sub-classifications

of FR sources, in this work we use it only for binary FRI/FRII
classification. Table 4 shows the labels used in this work in relation
to the more detailed labels provided by the MiraBest data set itself.
We do not include objects classified as Hybrid. Furthermore the
MiraBest data set flags individual objects as confidently classified
(Certain) or unconfidently classified (Uncertain) depending on how
much human interpretation was required to label a specific object,
as described in Miraghaei & Best (2017). For the remainder of this
work, we refer to the full Certain+Uncertain data set as MiraBest
and to the Certain subset as MiraBest∗. Unless otherwise stated, the
models in this work are trained and evaluated on MiraBest.

4.2 Pre-Processing

FR-DEEP’s pre-processing, as described in Tang et al. (2019), is
the same pre-processing as was followed to create the MiraBest data
set. The extracted images are processed in three stages before data
augmentation is applied.

First the image is clipped: the image pixel values are set to zero
if their value is below a threshold of three times the root mean
squared (RMS) signal of the local noise which was determined by
a pixel histogram fit for each source image, this approach may clip
out diffuse, low-surface brightness emission but was selected to align
with Aniyan & Thorat (2017) who suggest this is the best clipping
level for radio galaxy classification. This removes most artefacts and
leaves behind cleaner images with clear sources. Any future inputs to
the model should be treated in the same manner to allow the model
to classify according to the features it has learned, and not the noise
which the original image may contain.

The second step is to clip the image size to 150 by 150 pixels,
i. e. 270′′ by 270′′ for FIRST where each pixel corresponds to 1.8′′
by 1.8′′. This is to standardise the size of the image and to provide
the model with an image which ideally only contains the source of
interest. However, by visual inspection we estimate that the clipped
FR-DEEP-F and MiraBest data sets contain ∼ 1.2 and 1.4 sources
per image, respectively.
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Label Used No. Class Confidence Morphology No. MiraBest Label

0 591 FRI
Certain

Standard 339 0
Wide-Angle Tailed 49 1

Head-Tail 9 2

Uncertain Standard 191 3
Wide-Angle Tailed 3 4

1 631 FRII Certain Standard 432 5
Double-Double 4 6

Uncertain Standard 195 7

NA 34 Hybrid Certain NA 19 8
Uncertain NA 15 9

Table 4.MiraBest data set summary. The original data set labels (MiraBest Label; Porter (2020)) are shown in relation to the labels used in this work (Label).
Hybrid sources are not included in this work, and therefore have no label assigned to them.

Finally, the image is then normalised as:

Final = 255 · Img −min(Img)
max(Img) −min(Img) , (14)

where ‘Final’ is the normalised image, ‘Img’ is the original image
and ‘min’ and ‘max’ are functions which return the single minimal
and maximal values of their input respectively. The steps in this
pre-processing are illustrated in Figure 3.

4.3 Data Augmentation

Neither the FRDEEP norMiraBest data sets are sufficiently abundant
that all angles and possible positions of radio galaxies are represented
within the data. Human observers easily recognise that there is no
class difference between an FRI galaxy and the same galaxy rotated
by 180◦, however, the volume of data does not allow for the ML
optimisation to ‘learn’ this invariance. To allow for this, a commonly
implemented process is data augmentation, which can be defined as
the process by which the volume of training, validation and testing
data is artificially inflated.
In the case of radio galaxies, for instance, the classification of

a given source is independent of the scale, position or orientation
of the sources within the image. Therefore, such invariances can
be introduced during training by applying image transformations
that enable the model to generalise to sources at scales, positions or
orientations it would otherwise be unfamiliarwith. Figure 3 shows the
effects of the transformations used in this work. From the perspective
of parameter optimisation, the model is now able to sample the
parameter space in positions which are valid, but would otherwise
remain unsampled due to the limited size of the data set. We note
that the transformations that are applied during data augmentation
should not be selected without careful consideration of the problem
itself as not all data sets are rotationally invariant.
The transformation function of a given input, 𝐹 (𝑥), implemented

in this work can be summarised as:

𝐹 (𝑥) = 𝑅 [−180,180] ◦ 𝑇[±2px,±2𝑝𝑥 ] ◦ 𝑆 [0.9,1.1] (𝑥), (15)

where 𝑥 ∈ [0, 1]150×150 is the processed input image, 𝑆 is a scaling
translation which (from the centre of the image) randomly scales
the input by a factor in the range [0.9, 1.1], 𝑇 is randomly applied
translation operation which translates the image a number of pixels in
[−2, 2] ∈ N both vertically and horizontally, where the pixel distance
to translate is independently selected for each axis, i. e. 𝑇[2,−1] (𝑥) is
a valid translation, and 𝑅 applies a rotation to the image around an

angle randomly selected within the range [−180, 180] using bilinear
interpolation.
Assuming that at least three scales should be applied by 𝑆, and

knowing that the transformations follow a uniform random selection,
we estimate that the data can be augmented such that each image
returns 360 ·42 ·3 = 17, 280 augmented images. In practice the com-
putational cost of parsing the full data set 17, 280 times is extremely
high. Consequently, to complete the training process within a rea-
sonable amount of time, whilst maintaining the benefits of the data
augmentation, the randomly transformed training data set is passed
into the model 72 times during each epoch. This amounts to the
model optimising on 72 random augmentations of the training data
set at each epoch. This means, that throughout training, the model
will at most see 7, 200 separate data transformations of the estimated
17, 280 possible transformations. During evaluation and testing we
use 360 random data set transformations, as the computational cost
is comparatively negligible without the optimisation stages.
The test sets are split from the original data sets, containing equiva-

lent fractional populations of FRI and FRII sources, and are reserved
for model evaluation. The remaining data samples are split randomly
using an 80:20 training:validation split. The training set is used to op-
timise the network parameters, and the validation set is used for early
stopping, i.e. the model that has the lowest validation loss throughout
training is saved as the final model. Augmentation is applied after
this split, ensuring that none of the unique sources from the test set
appear within the training and/or validations sets.
Table 5 shows how the data sets are split for training, validation

and testing, and the Total∗ column lists the augmented number of
each data subset. This is done to provide an understanding of the
scale of the relatively modest augmentation. It is important to note,
that the value of data augmentation is not a replacement for the inclu-
sion of additional unique sources, or larger data sets, but rather is a
supplementary process which allows data invariances to be exploited
and reduce biases in the generalised model.

5 MODEL PERFORMANCE

To determine a baseline for our models on the MiraBest data set,
we compare the performance of the AG-CNN architecture trained on
various data sets to the Classic CNN model trained and evaluated in
Tang et al. (2019). Table 6 lists the results of the evaluation of the
various models.
From this table it can be seen that the AG-CNN architecture per-

MNRAS 501, 1–18 (2021)



8 M. Bowles et al.

Figure 3. Illustration of the pre-processing of a source from the MiraBest test set. The individual panels present: (i) The original image extracted from the FIRST
survey with a bounding box showing the applied crop. (ii) The cropped and sigma clipped image supplied by MiraBest. (iii) The equivalent data augmented
image. (iv) A final augmented image with zero padding in remaining unfilled regions.

Data Set Label Total∗ Total Train Validation Test

FR-DEEP
FRI 19, 008 264 193.6 48.4 22
FRII 24, 192 336 246.4 61.6 28
Total 43, 200 600 440 110 50

MiraBest

FRI Certain 28, 584 397 278 70 49
Uncertain 13, 968 194 135 34 25

FRII Certain 31, 392 436 305 76 55
Uncertain 14, 040 195 137 34 24

Total (excl. hybrid) 87, 984 1, 222 855 213 153

Table 5. Summary of the respective subsets of FR-DEEP and MiraBest, as implemented in this work. The Total* column refers to the totals augmented by 72
random transformations (the smallest number of random transformations applied). The training and validation data sets are split at random, and thus the values
in the training and validation columns, which refer to specific (sub) classes, are approximate expectations rather than absolute values.

Network Classic CNN AG-CNN AG-CNN AG-CNN
Data Set FR-DEEP-F FR-DEEP-F MiraBest* MiraBest
Class FRI FRII FRI FRII FRI FRII FRI FRII

F1 Score 0.90 ± 0.03 0.88 ± 0.06 0.87 0.90 0.91 0.92 0.82 0.86
Precision 0.95 ± 0.02 0.83 ± 0.04 0.87 0.90 0.89 0.89 0.91 0.80
Recall 0.85 ± 0.02 0.94 ± 0.04 0.87 0.90 0.95 0.94 0.75 0.93
Accuracy 89 ± 1% 88% 92% 84%
AUC 0.94 0.89 0.96 0.92

Table 6. A comparison of a classical CNN classifier (from Tang et al. 2019) to an implemented attention gated network (with range normalisation, aggregated
using the fine tuned method and 3 attention gates) trained and tested on the data set listed.MiraBest* refers to the sub-set of MiraBest sources labelled as certain
(see Section 4.1). The evaluation metrics are clarified in Appendix A.

forms similarly to the Classic CNN on the FR-DEEP data set, and
in the case where it is trained on the MiraBest∗ data set the result-
ing model shows an improved performance. These observations are
notable as the AG-CNN uses fewer than half as many parameters in
comparison to the Classic CNN: 101 k compared with 250 k param-
eters, see Table 1. The relative performance loss seen for the model
trained on the full MiraBest data set is expected, as the MiraBest-
Uncertain subset of sources are more difficult to classify confidently
for experts, and thus will cause larger error rates in the respective
model, both because they contain edge cases which are more difficult

to classify and because the labels of the sources themselves may not
be fully correct.
Unlike traditional CNN models, the attention maps from the AG-

CNN can also be visualised to understand how the model scales
the features it extracts to make a final classification. To illus-
trate this we use two example sources from the MiraBest data set.
As an example of the FRI class we use SDSS ID 2114-53848-625
(J 13h54m33.0s +28◦14’36”) and as an example of the FRII class we
use SDSS ID 2266-53679-612 (J 08h04m04.5s +15◦33’35”). These
sources and their combined attention maps are shown in Figure 4. In
this figure it can be seen that both attention maps attend the region
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Figure 4. Example FRI and FRII sources selected for their respective clear
classification with averaged attention maps derived from our model. (i) FRI
example source: SDSS ID 2114-53848-625. (ii) FRII example source: SDSS
ID 2266-53679-612. (iii) and (iv) are the averaged attention maps for the FRI
and FRII sources respectively.

immediately around the source of interest, with the FRI example also
attending the immediate vicinity of a secondary source to the bottom
right of the image. While the FRI attention map primarily attends the
central source, the FRII attention map primarily attends the immedi-
ate surroundings of the source, which is where the features relating
to the lobes are expected to be found. Both images attend the region
around the source more than the source itself, as shown by the dark
regions in the shape of the sources extending through the middle of
each attended region. We note the difference in scale between the
averaged maps, with the FRI source peaking at 0.98 and the peak of
the FRII region peaking at 0.74. This is a consequence of the range
normalisation used in the model and indicates that the peaks of the
three individual attention maps align more closely in the FRI case,
and less well in the FRII example.

5.1 Normalisation and Aggregation

To investigate how the selection of normalisation function and ag-
gregation function affect the model and its performance, we train
multiple three gated attention models on the MiraBest data set. Ta-
ble 7 shows how the model performs across each of the normali-
sations using the fine tuned aggregation method and Table 8 shows
how the model performs for each normalisation averaged across all
aggregation methods and for each aggregation method, averaged
across normalisation methods. These averaged evaluations show that
the concatenation method has a slight performance gain over the
other aggregation methods, and that softmax or sigmoid should be
the primary choices for normalisation based on performance alone.
However, whilst a model based purely on its performance may be of
interest, for the attention mechanism to be maximally effective the
interpretation of the attention maps themselves should also be taken
into consideration.
We present in Figure 5 the attention maps produced from differ-

ent normalisation and aggregation modes made using the example

Normalisation Range Norm. Standardisation Sigmoid Softmax
Class FRI FRII FRI FRII FRI FRII FRI FRII

F1 Score 0.82 0.86 0.64 0.67 0.85 0.87 0.86 0.88
Precision 0.91 0.80 0.65 0.66 0.90 0.84 0.92 0.84
Recall 0.76 0.93 0.63 0.68 0.81 0.91 0.81 0.93

Avg. Accuracy 84% 66% 87% 87%
AUC 0.92 0.66 0.92 0.93

Table 7. Evaluations of attention model with each of the four normalisations
(fine tuned aggregation and three attention gates).

Norm. Range Norm. Standardisation Sigmoid Softmax
Class FRI FRII FRI FRII FRI FRII FRI FRII

F1 Score 0.81 0.83 0.69 0.71 0.83 0.84 0.85 0.87
Precision 0.84 0.80 0.72 0.70 0.85 0.83 0.89 0.84
Recall 0.77 0.87 0.67 0.73 0.81 0.86 0.81 0.91
Accuracy 82% 70% 84% 86%
AUC 0.87 0.71 0.85 0.92

Agg. Mean Concatenation Deep Supervised Fine Tuned
Class FRI FRII FRI FRII FRI FRII FRI FRII

F1 Score 0.78 0.82 0.82 0.84 0.79 0.78 0.79 0.82
Precision 0.85 0.77 0.86 0.81 0.77 0.80 0.83 0.79
Recall 0.72 0.88 0.78 0.88 0.81 0.75 0.76 0.85
Accuracy 80% 83% 78% 81%
AUC 0.83 0.86 0.82 0.85

Table 8. Evaluations for each normalisation and aggregation. The sets of
models are averaged across aggregation to produce individual scores for the
normalisations, and grouped by normalisation to produce individual scores
for the aggregations.

FRI/II sources that were presented in Figure 4. From this figure it
is clear that the marginal improvements in performance seen for the
softmax and sigmoid methods are gained at the expense of clarity
and interpretability of the attention maps themselves. This result is
consistent with the findings of Schlemper et al. (2019), who moved
away from the use of softmax as a normalisation method for attention
gating due to the sparsity of the resulting attention maps.

5.2 Attention Gate Number

To investigate the impact of including different numbers of attention
gates, we consider models trained on the MiraBest data set using
the range normalisation and fine tuned aggregation methods with
a varying number of attention gates. Table 9 displays the resulting
evaluations of the respective models.
In this case, the highest performing model in terms of accuracy is

themodel with two attention gates. However, as with the investigation
of aggregation and normalisation methods, the resulting attention
maps also play a part in evaluating the value of a givenmodel. Figure 6
visualises the average attention maps when considering the example
FRI and FRII sources. Here, one can see that the saliency achieved by
the models with 1 and 2 attention gates is more dispersed. Although
this does not hinder the model’s performance, it is potentially more
difficult for a human observer to interpret.
Schlemper et al. (2019) state that they empirically found a third

attention gate did not provide additional value to the system, but
Jetley et al. (2018) state that the third attention gate encourages the
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(i) FRI

(ii) FRII

Figure 5. Array of averaged attention maps for (i) the FRI example source,
and (ii) the FRII example source. The models each have three attention gates
and differ by selection of normalisation and aggregation methods.

model to learn salient features earlier in the network, as these features
are used to make a third of the classification since they used mean
aggregation. We suggest that the selection of attention gates should
be considered with reference to the specific data problem and that
the ability of the user to relate to the resulting attention distributions
should be considered a factor in this process.

Gates 0 1 2 3
Class FRI FRII FRI FRII FRI FRII FRI FRII

F1 Score 0.85 0.88 0.84 0.85 0.86 0.88 0.83 0.86
Precision 0.91 0.83 0.86 0.83 0.91 0.84 0.91 0.80
Recall 0.80 0.93 0.81 0.88 0.81 0.93 0.76 0.93
Accuracy 86% 85% 87% 85%
AUC 0.93 0.90 0.94 0.92

Table 9. Evaluations for models trained on MiraBest with varying number of
attention gates (see Section 3.1 for clarification). The model with 1 attention
gate was trained with a learning rate of 10−5 instead of the otherwise used
5 · 10−5.

Figure 6. The (averaged) attentions of our models implemented with varying
number of attention gates for the FRI (left) and FRII (right) example sources,
as introduced in Figure 4.

5.3 Attention as a Function of Epoch

Figure 7 shows the two example sources and their attention maps
at different points throughout the training process. As a function of
epoch, the attention develops to become more specific to the regions
discussed previously: the attention maps show no clear feature se-
lection at epoch 0, but become more specialised throughout training.
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Note that in the FRI case, after the model learns to attend the central
source (epoch 8) it shifts to attend the region around the source to a
higher degree than it had previously. For the FRII case, the attended
regions of epochs 3 and 8 are distributed asymmetrically around the
source, with a larger focus on an offset region above the source’s
lobes. By epoch 26, the learned attention is much more symmetrical
for this example.

6 AGGREGATE ATTENTION

While presenting the attention maps for example sources is help-
ful when considering the model in individual cases, we must also
consider the population average of attention across the data set. We
calculate these averaged images by considering the mean of a ran-
domly transformed set of images: both the test set itself as well as
the attention maps derived from the augmented test set. Each atten-
tion map in this section is created by taking the pixel mean across
a set of attention maps generated by passing the augmented test set
into the model 100 times. We note that the statistics of the attention
distribution across the augmentations is not Gaussian and will be
considered in more detail in future work. As such, the mean is used
as a comparative measure rather than a true parameterisation.
For the input images themselves, Figure 8 presents the difference

between the mean pixel intensities of the FRI and FRII classes.
Although there is clear structure, the individual sources are far less
well defined than this figure may suggest, and we therefore caution
against over-interpretation. However, a broad interpretation suggests
that the central pixels are dominated by FRI sources, as one would
expect from the morphological definition of that population. A first
ring forms due to the lobes of FRII samples. A second ring forms
due to the extended jet emission of FRI sources, which are some of
the brightest regions of the given source image. This effect is likely
enhanced due to the min-max normalisation applied to each image.
A third ring forms due to the peak emission of FRII sources often
being the hot spots in the extended lobes, which tend to be much
brighter than their jets.
Figure 9 shows the difference in attention when separating the

mean pixel intensities by class across the whole of the augmented
MiraBest test set. The aggregate attention map shows a ring-like
structure for FRII sources, which seems to stem primarily from at-
tention gate 2. For the FRI sources, a centred Gaussian attention
is more prevalent. As FRII sources are typically classified on their
lobes and FRI sources are classified on the brightness of their central
engines, this aligns well with how a human classifier would attend a
data set on average.
By considering the aggregated attention across various subsets,

a number of insights can be gained. Analogous to the discussion
in previous section, Figure 10 shows how the aggregate attention
develops throughout training. At epoch 0 the aggregate attention is
highly similar across the two classes, but as the epochs progress the
ring and Gaussian shapes develop in the aggregate attention maps of
the respective classes, demonstrating how clearly the two classes are
separated by the model’s attention before any fully connected layers
are applied.
We also consider that it may be possible to see a difference in

the aggregate attention maps for sources that are predicted correctly
and those which the model predicts incorrectly. To visualise this,
Figure 11 shows a ‘confusionmatrix’ of aggregated attentionmaps. It
can be seen that the sources which were predicted incorrectly present
less clearly defined attention with the largest difference being in the

size of the central region and the direction of the offset of the bright
spot in the attended areas which aligns with the predicted class.
Similarly, the uncertainty in the data set becomes clear when

considering the mean pixel intensities of the MiraBest-Certain and
MiraBest-Uncertain attention maps and test data. Figure 12 shows
these maps and it can be seen that the attention maps are significantly
less distinct for the MiraBest-Uncertain sources. The mean pixel in-
tensities themselves can be separated by the peaks of the respective
maps, which do not align with those of the confident FRI and FRII
sources. The FRII peak is expected to be higher, as FRII sources
with brighter cores are expected to be ‘uncertain’. The uncertain FRI
source mean intensity map has a higher peak than the certain FRI
map. This may be due to the inherent classification bias, where fringe
source cases with bright centres are more likely to be classified as
FRI even though they are inherently uncertain.
Finally, the aggregate attention maps of the 16 models trained

with each permutation of aggregation and normalisation, introduced
in Section 5.1, are shown in Figure 13. In the case of the individual
exemplar sources, see Figure 5, the sigmoid models seem to be
attending regions that an observer cannot clearly recognise; however
in the case of the aggregate attention maps it is clear that they tend
to highlight zero space around the source distributions, with little
differences between the respective FRI and FRII distributions.
Similarly to the case of individual sources, the softmax normalised

aggregate attention map is not helpful. Beyond the softmax models,
all of the models presented demonstrate aggregate attention focused
either on the central region of the image (range normalised models
and some standardised models) or attend the zero spaces around the
mean source pixel intensities (sigmoidmodels and some standardised
models). Although knowing that the sigmoid models are attending
regions representative of the mean source pixel intensity maps builds
confidence in the models, their individual attention maps are not
helpful for individual source analysis, see Figure 5.
The value of these mean intensity and aggregated attention maps

not only lies in the analysis of the model and understanding the
difference in how it attends various subsets, but also in the assistance
they provide when developing new models, as they can be used to
analyse the data set distributions and evaluate a model’s ability to
generalise to unseen testing data.

7 INDIVIDUAL SOURCES

Using this work’s primary model, which implements range normal-
isation, fine tuned aggregation, and three attention gates trained on
the MiraBest data set, we highlight some specific sources of poten-
tial interest. To do this, we evaluate the test set across 1,000 random
augmentations, as described in Section 4.3, and calculate the false
classification rate for each test source.
By separating out sources that are classified incorrectly for more

than 95% of the augmentations, we highlight the objects which
fundamentally do not align with the model’s learned classification.
Details of these sources are given in Table 10 and Figure 14 presents
their images and respective attention maps.
Sources A and B are the only certain FRI sources mis-classified as

FRII sources at a higher rate than 95% by the model. The attention
map of source A shows that the model is attending the features of
the bright source near the centre of the image; however, it is unclear
whether this bright source is aligned with the host galaxy for this
source. If it is, then this source seems to be miss-labelled, as the only
visible jet would be edge brightened. If the bright source itself is the
central engine, then the source would be classified as an FRI. The
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Figure 7. From left to right: Example sources from Figure 4 followed by their attention maps at the respective epoch number throughout the training process.
The epochs are sampled uniformly across the epochs where the model’s minimal validation loss was improved. Epoch 26 produced the model with the minimal
validation loss, and thus the final model.

Figure 8. The difference between the mean pixel values of the 100 fold
augmented FRI and FRII MiraBest test sets, 〈FRI〉 − 〈FRII〉. To emphasise
the structures in this difference image it is saturated at ±0.05, with an original
maximal difference of 0.1 at the centre.

model’s training procedure could be adapted to allow for significantly
off-centre sources by augmenting the data such that the central engine
of each source could be anywhere on the image. This is an example
of how attention maps can help inform the training of the model and
the selection of the training data.
The class of source B is not immediately clear from a simple visual

inspection. The jets do not have individual bright spots, but rather
have bright regions which makes the classification less clear. It may
be that the training data simply did not contain any cases of FRI
sources where the jets showed bright extended regions (instead of
hot spots) which extended into the largest part of the extent of the
source. This could be remedied by training with more data, which
would hopefully ‘fill in the gaps’ which the model still has.
Sources C-G are classed as uncertain FRI sources. Sources D, E

and F are not well resolved and it is difficult to specify which class

they belong to (assuming more distant flux in the image is not from
the central radio galaxy itself). For source C, the model may in fact
be classifying a single lobe of the radio galaxy, as indicated by the
enhancement in the attention map to the top left of the image. The
model is not aware that the source has been extracted to be at the
centre of the image and may thus classify the lobe as an FRII radio
galaxy.

Source G is not a bent source, nor is it unresolved or strange in
any other way. It does however seem difficult (on first viewing) to see
whether or not it is an FRI or FRII, as the distance ratio is not clear
on first viewing, but would require explicit measurement.

Source H is labelled as an uncertain FRII within the MiraBest data
set, and is misclassified with a rate of over 95% as an FRI by the
model. The model tends to over-classify sources as FRII sources due
to the slight imbalance in the training data, which makes this object
a notable exception as the only FRII source mis-classified as FRI.
A central bright-spot is clearly visible, but unlike the exemplar FRII
source displayed in Figure 4, source H shows no clear bright-spots in
its wide-angled lobes. Mis-classification in this case may arise from
the unusually bright central source, which itself may be a chance
alignment with another galaxy along the line of sight. Alternatively
it may be due to confusion with the secondary source at the bottom
right of the image, which is associated with an enhanced area of
attention.

Some of these sources may require more intentional efforts to be
well understood and we note that outlining what could have caused
the model to classify these sources incorrectly is not an attempt
at physical analysis. This evaluation of the outlying data samples
is meant to serve in two aspects. Firstly it is meant to highlight
sources which may be of interest for improving the performance of
the model. Secondly, this evaluation is meant to demonstrate the
value of attention and machine learning for extracting individually
abnormal sources, even from a seemingly simple data set, in the
sameway that Sasmal et al. (2020)manually selected and highlighted
abnormal sources from the LOTSS data release 1. Future applications
of this technique might also consider including data sets at other
wavebands to clarify these aspects, in the same way that Wu et al.
(2019) combined FIRST and WISE data for the CLARAN classifier.
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Source SDSS ID RA Dec Redshift Extent MiraBest Class

A 1737-53055-197 07h48m18.9s +45◦44′46′′ 0.1850 228.03′′ Certain FRI
B 0875-52354-521 10h40m22.5s +50◦56′25′′ 0.1539 44.61′′ Certain FRI
C 1618-53116-159 11h29m54.5s +06◦53′12′′ 0.1162 120.67′′ Uncertain FRI
D 2598-54232-336 12h24m46.7s +18◦25′32′′ 0.1690 14.13′′ Uncertain FRI
E 2239-53726-557 12h51m57.1s +30◦09′26′′ 0.2235 11.94′′ Uncertain FRI
F 2510-53877-594 11h50m03.7s +25◦39′26′′ 0.1561 128.69′′ Uncertain FRI
G 1690-53475-090 16h49m24.0s +26◦35′03′′ 0.0545 68.49′′ Uncertain FRI
H 2203-53915-518 16h30m16.6s +14◦35′11′′ 0.2790 106.72′′ Uncertain FRII

Table 10. Details for the sources with a misclassification rate above 95%, as depicted in Figure 14. Separated by dashes, the SDSS IDs are composed of the
source’s plate ID, Julian date and Fibre ID.

Figure 9.Mean pixel values of the average and individual attention maps of
the test set after 100 fold augmentation. Left: FRI; Right: FRII.

8 CONCLUSIONS

In this work we introduce attention as a state of the art mechanism for
classification of radio galaxies using convolutional neural networks.
We present an attention-based model that performs on par with pre-
vious classifiers while using over 50% fewer parameters than the
next smallest classic CNN application in this field. Furthermore, the
AG-CNN presented in this work provides the additional benefit of
visualising the salient regions used by the model in each case to make
individual classifications.
The primary model in this work was implemented using range

normalisation, fine tuned aggregation and three attention gates. The
model primarily attends the central engine for FRI sources, and in-
creasingly attends the outer regions (i. e. lobes) of FRII sources. We
observe that the salient regions identified by the attention gatedmodel
align well with the regions an expert human classifier would attend to
make equivalent classifications. This includes both the central engine
of the respective sources, the hot spots and the lobes of the source
itself. This is also shown to be a learned trait of the model, by ex-
plicitly considering how the model’s attention develops throughout
training.
We also investigate how the selection of normalisation and aggre-

gationmethods used in attention-gating affect the output of individual
models, using both quantitative evaluation metrics and the resulting
attention maps to determine how employable each resulting model
may be. Although the selection of such parameters minimally affects
the model’s performance, it can adversely affect individual models
with regard to the interpretability of their respective attention maps.
By selecting a model which aligns with how astronomers classify ra-
dio sources, the user can then employ the model to investigate what
features the model is using to make classifications, and thus investi-
gate how future models may be improved. We find that the softmax
normalisation and concatenated aggregation methods provide the
best model performance, but suggest that the range normalisation
and fine-tuned aggregation methods provide the user with signifi-
cantly improved attention maps at the cost of a minimal difference in
performance. Similarly we find that the inclusion of a third attention
gate does not contribute significantly to model performance but does
aid in the interpretability of the resulting attention maps.
We evaluate the average performance of models across the entire

data set and use the example of individual sources in order to illustrate
how attention maps can help the user engage in classification. By
considering the aggregate attention maps across the augmented test
set we note significant differences between various subsets of the
data including the fundamental class division between FRI and FRII
as well as that between correctly and incorrectly classified sources
within each class.
Finally, we present a method through which deep learning mod-
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Figure 10. Mean pixel values of sources and attention maps throughout training at given epochs after 100 fold augmentation. See Figure 7 for the equivalent
plot with the example sources.

Figure 11. Distribution of attention maps according to the predicted and true
labels of the respective sources.

els can highlight individual sources for further study by extracting
test sources that were found to be significantly misaligned with the
predictions of the trained model. In these cases the availability of
the attention maps can be used to examine the cause of the mis-
classification in each case, as well as to understand of how complex
the data might be, and how difficult even binary classification can
become in certain cases.When applied to labelled data, this approach
might also be used to select potential targets for future research by
identifying sources that the model seems to consider as significant
outliers.
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APPENDIX A: CLASSIFICATION EVALUATION METRICS

Classifications made by any model will be true (T) or false (F) as
well as positive (P) or negative (N) for a given class. Knowing this,
models can be evaluated by how many predicitons fall into each of
the four subsets: TP, TN, FP and FN. Gron (2017) contains a helpful
overview of the metrics introduced here.

A0.1 Accuracy

Accuracy ∈ [0, 1] is the ratio between correct predictions and all
predictions. For data sets where the class sizes are not equal, accuracy
should be calculated on a per class basis:

Accuracy =
TP + TN

TP + TN + FP + FN . (A1)

Figure A1. ROC Curve and the distributions which created it. Each distribu-
tion is a normal distribution of predicted class values in [0, 1]. The threshold
of a given point on the ROC curve is equivalent to the vertical color of the
distributions. The largest class separation occurs at Predicted Value ≈ 0.5
(green), which provides the optimal trade-off between TPR and FRP in this
example case.

A0.2 Precision

precision ∈ [0, 1] is the ratio of positive classifications of all the
positive classifications made.:

Precision =
TP

TP + FP . (A2)

A0.3 Recall

Recall ∈ [0, 1] is the proportion of positive samples which are clas-
sified positively. Recall is equivalent to class specific accuracies in
the binary case:

Recall =
TP

TP + FN . (A3)

A0.4 F1 Score

F1 ∈ [0, 1] is the harmonic mean of precision and recall, averages
their respective reciprocals. This is done to ensure that if either
precision or recall is low, the F1 score suffers.

F1 =
2

Precision−1 + Recall−1
=

2TP
2TP + FP + FN (A4)

A0.5 ROC

The Receiver Operator Characteristic (ROC) curve is the name given
to the curve which results from considering true positive rates (equiv-
alent to recall) and the false positive rates:

FPR =
FP

TN + FP , (A5)

at various thresholds. Thresholds are the value at which the two
classes are separated. This is often 0 in the case of predictions in the
range of [−1, 1], or 0.5 in the case of [0, 1]. The threshold values for
a example prediction distribution are visualised in Figure A1. Given
a binary classification, the ROC curve plots the recall of one class
against the recall of the other.
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A0.6 AUC

Area Under Curve, or AUC ∈ [0, 1], is the area under the ROC curve.
It is a measure of how well the models predictions have separated
the two classes. Examples of AUC values, along with the respective
distributions and ROC curves are visualised in Figure A2. Any value
below 0.5 generally would indicate some implementation error, as
the model seemingly separates the classes, but assigns the labels in
reverse.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A2. Visualising how AUC relates to the predictions of a given model. Each distribution relates to one ROC curve, and the AUC score is listed with each
of the distributions and curves, respectively.
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