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A B S T R A C T

With large-scale grid integration of renewable energy sources (RES), power grid operations gradually exhibit
the new characteristics of high-order uncertainty, leading to significant challenges for system operational
security. Traditional model-driven generation dispatch methods require large computational resources, whereas
the widely concerned Reinforcement Learning (RL)-based methods lead to issues such as slow training speed
due to the high complexity and dimension of processed grid state information. For this reason, this paper
proposes a novel Grid Expert Strategy Imitation Learning (GESIL)-based real-time (5 min intervals in this paper)
dispatch method. Firstly, a grid model is established based on the graph theory. Secondly, a pure rule-based
grid expert strategy (GES) considering detailed power grid operations is proposed. Then, the GES is combined
with the established model to obtain a GESIL agent using imitation learning by offline–online training, which
can produce specific grid dispatch decisions for real-time. By designing a graph theory-based grid model,
a model-driven purely rule-based GES, and embedding a penalty factor-based loss function into IL offline–
online training, GESIL ultimately achieves high training speed, high solution speed, and strong generalization
capability. A modified IEEE 118-node system is employed to compare the proposed GESIL to traditional
dispatch method and RL method. Results show that GESIL has significantly improved computational efficiency
by approximately 17 times and training speed by 14.5 times. GESIL can more stably and efficiently compute
real-time dispatch decisions of grid operations, enhancing the optimization effect in terms of transmission
overloading mitigation, transmission loading optimization, and power balancing control.
1. Introduction

With the rapid development of renewable energy sources (RES),
low-carbon, intelligent, and friendly modern power systems are grad-
ually taking shape [1]. However, the intermittency, volatility, and
uncertainty of high-penetration RES lead to the ‘‘energy trilemma’’
among system security, economy, and sustainability. How to break
through such a trilemma becomes a foremost task for system oper-
ators [2]. Power system dispatch strategies can be categorized by
time scale into day-ahead dispatching, intra-day dispatching, and real-
time dispatching. Among these, real-time dispatching has the highest
requirements for computational timeliness, as it further corrects the
results of day-ahead and intra-day dispatching based on precise ultra-
short-term forecasts of renewable energy and load data. However,
real-time dispatching has limited flexibility in mobilizing resources
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within a short timeframe, making it challenging to accurately achieve
power balance and meet N -1 contingency requirements in scenar-
ios with a high proportion of RES. Therefore, it is crucial to design
new, safe, and efficient real-time dispatch methods for modern power
systems.

Historically reported dispatch schemes are mainly based on model-
driven methods, which can be classified as grid expert-based empirical
strategies and mathematical optimization-based strategies. The grid
expert-based dispatch schemes typically carry out offline contingency
analysis to identify system operational risks, and then develop dis-
patch plans based on dispatchers’ empirical experiences [3]. However,
these approaches have difficulties in accurately tackling with real-time
operation issues promptly. On the other hand, the dispatch schemes
based on mathematical optimization algorithms mainly involve robust
optimization [4], stochastic programming [5], and chance-constrained
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Nomenclature

Abbreviations

DRO Distributionally robust optimization
GES Grid expert strategy
GESIL Grid expert strategy imitation learning
IL Imitation learning
MADRL Multi-agent deep reinforcement learning
RES Renewable energy sources
RL Reinforcement learning
RUR Renewable utilization rates
SAC Soft actor–critic
SGs Synchronous generators
TGES Traditional grid expert strategy

Variables

𝛥𝑃(𝑔,𝑖),𝑡 The amount of adjusted active power of
generator i

𝛥𝑷max
𝐺,𝑡+1, 𝛥𝑷

min
𝐺,𝑡+1 The sets of upper and lower active power limits

𝛥𝑃max
r,𝑡+1 The adjusted upper limit summation of all RES

generators’ active power
𝛥𝑃𝑚𝑎𝑥

T,𝑡+1 The summation of the upper limit of active
power adjustment of all the SGs

𝛥𝑃𝑚𝑖𝑛
T,𝑡+1 The summation of the lower limit of active

power adjustment of all the SGs
𝛥𝑃min

r,𝑡+1 The summation of the lower limit of active
power adjustment of all the RES

𝛥𝑃 neg
𝑦 The adjusted active power of downstream

generator y
𝛥𝑃 pos

𝑥 The adjusted active power of upstream gener-
ator x

𝛥𝑃 S
𝑔,𝑖 The ramp power of standby generator i

𝛥𝑃 𝑡
load The load at current time step t

𝛥𝑃 𝑡+1
load The ultra-short-term load forecast value

𝐶𝑖 The shutdown operation
𝐶max The maximum value of generator operating

cost for the current dispatch time step
𝑫𝑔,𝑖 The number of branches connected to the node

where generator i is located
𝑮 The set of generators
𝑮𝑪 The set of offline generators
𝑮𝑶 The set of online generators
𝑳 The set of branch circuits
𝑃𝑑 The RES full generation criterion
𝑷G The set of generator active power outputs
𝑃𝑙∕𝑃max

𝑙 The active current/thermal capacity of branch
l

𝑃max
𝑟,𝑡 The upper limit of RES active power

𝑷max
𝑟,𝑡+1 The set of forecasted RES power outputs

𝑃min ∕max
𝑔,𝑖 The lower/upper limits of generator power

𝑃 npp
𝑏 The neutral power point

𝑃𝑟,𝑡 The summation of RES active power
𝑹 The set of branch loading ratios
𝑟(𝑔,𝑖) Ramp rate
𝑟𝑎𝑡𝑖𝑜 The proportional adjustment coefficient of the

generator’s active power
𝑅C The normalized result of 𝑟3
𝑟𝑒𝑤𝑎𝑟𝑑 The reward for real-time dispatch decision
2

𝑅𝑙∕𝑅max
𝑙 The current/maximum loading ratio of

branch l
𝑆𝑖 The startup operation
𝑻 C The set of remaining restart time for offline

generators
𝑇 C
𝑔,𝑖 The shutdown time

𝑼G The set of generator startup/shutdown
states

𝑈𝐺
𝑖 The switching action of generator i

𝑼L The set of branch on/off states
𝑎1, 𝑎2, 𝑎3 The reward weighting coefficients
𝑎𝑖, 𝑏𝑖, 𝑐𝑖 The cost coefficients of generator i
𝑟1 The grid security operation evaluation coef-

ficient
𝑟2 The RES utilization evaluation coefficients
𝑟3 The generator operation cost evaluation

coefficients
𝜃 The penalty value of reward

planning [6]. The optimization-based dispatch method focuses on find-
ing the best solution based on mathematical algorithms, ensuring effi-
ciency and accuracy. A robust optimization method is proposed in [4]
to establish an integrated electricity and natural gas system model with
a special consideration of RES outputs uncertainty. However, such a
method is overly conservative in dispatch decision-making due to the
strict grid-operation security constraints in the solving process, and it
cannot fully utilize the potential of the system for RES accommodation.
In [5], a stochastic multi-objective economic dispatch model is pro-
posed to minimize the total operating costs of generators and spinning
reserves. However, the probabilistic modeling scale of this method is
extremely large due to the uncertainty of RES outputs. In [6], a chance-
constrained dispatch method is proposed, with a Gaussian mixture
model to capture RES power uncertainty. But this method requires
establishing the probability distribution for wind power output, which
could potentially result in errors in the generated dispatch plans. A
newly proposed distributionally robust optimization (DRO) method,
which accounts for the true distribution of uncertainties lies in an ambi-
guity set, can significantly improve the accuracy of dispatch plans [7].
The general DRO method usually adopts the probability distribution
ambiguity set based on distance [8] and moment information [9],
but the resulting NP-hard problem is hard to solve [10]. In addition,
there is literature that employs model predictive control (MPC) to
achieve microgrid energy management integrated with battery energy
storage [11]. However, MPC faces challenges such as computational
real-time.

Nowadays, real-time dispatch is gaining growing importance as it
serves as the ultimate mechanism for rectifying dispatching outcomes
prior to the power grid entering the closed-loop control stage. However,
the model-driven methods are generally unable to process the high vol-
ume of system state data on such a real-time scale [12]. In contrast, the
data-driven solution has excellent performance in computing efficiency,
accuracy, and decision-making rationality, without the requirement for
accurate modeling of RES outputs uncertainty [13,14]. Meanwhile, the
big data collected from a power system can be leveraged to produce
data-driven dispatch solutions, thereby strengthening the timeliness of
decision-making. As the grid operation environments may be modeled
as a Markov chain, it is possible to transform the grid dispatch strat-
egy into a sequential decision problem to solve [15]. Reinforcement
learning (RL) is among the suitable methods for solving sequential
decision problems. Literature [16] introduces a dual-depth 𝑄-learning-
based system dispatch method that uses a deep neural network as

a function approximator, thereby improving the efficiency of solving
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Table 1
Comparison of GESIL with model-driven methods and RL.
Features Proposed GESIL Model-driven method RL

Training time Short training time based on
expert system demonstration

No training required Long training time due to random
exploration of action space to
obtain rewards

Solution speed Fast Slow Fast
Computational complexity Low High Low
Generalization capability Strong generalization ability

based on efficient expert system
and offline + online training

Good generalization ability based
on optimized dispatching model.

Weak generalization ability in
facing multi-scenario dispatching
𝑃

𝑅

large grid state space. However, this method has to solve large volumes
of discrete data in both the state and action space, potentially leading to
the curse of dimensionality. To overcome this issue, deep reinforcement
learning (DRL), which combines RL with deep learning technologies,
has been studied and adopted in power system dispatch in the past
few years [17–19]. Literature [20] utilizes a depth-deterministic policy
gradient algorithm to convert discrete variables into continuous vari-
ables, effectively reducing the issues caused by dimensional catastrophe
in the solving process, but the agent training may still be inefficient.
A soft actor–critic (SAC)-based policy gradient algorithm is utilized
in [21] to reduce the dimensionality of the dispatch model, but the
method does not consider the typical grid N -1 operational requirement
in the reward function design. To improve the learning efficiency, more
advanced multi-agent deep reinforcement learning (MADRL) is applied
in autonomous voltage control [22], distribution networks [23], and
microgrids [24,25], et al. However, the low sample efficiency and high
operational data collection cost make it difficult to train MADRL algo-
rithms in practice for large-scale power systems [26]. In general, the
aforementioned RL-based system dispatch methods proposed in [16–
25] all use a random search to explore the action space and obtain
rewards. However, when applied to large power systems, they can
suffer from time-consuming training processes and difficulty in con-
verging to optimal dispatch solutions, due to the large dimensionality
of the explored action space [27]. Compared to RL, imitation learning
(IL) can achieve faster and more accurate sequential decision results
with less data. Furthermore, the sample complexity exponentially de-
creases [28–30]. An IL algorithm is applied to a cloud resource dispatch
scheme in [31], and the training efficiency of the IL-optimized agent
is significantly improved compared to the RL algorithms. The above
literature [28–31] demonstrated that IL can be solved for better dis-
patching results while taking, into account the advantages of RL, and
therefore, it is necessary to apply IL to the field of real-time power
system dispatching. However, the successful application of IL hinges
on a responsive and well-established expert system to guide its training
process. When IL is deployed in the real-time dispatching of large-scale
power systems, existing model-driven methods encounter challenges in
fulfilling the role of expert systems for imitation learning, primarily due
to their iterative optimization nature.

To enhance the solution speed and dispatch accuracy of real-time
power system dispatch methods, thereby ensuring the secure and stable
operation of the power system, this paper proposes a real-time power
system dispatch scheme using Grid Expert Strategy-based Imitation
Learning (GESIL). An efficient rule-based grid expert strategy (GES) is
designed, diverging from traditional model-driven methods character-
ized by iterative optimization. By embedding rule design and a graph
theory grid model based purely on mathematical formulations, GES can
efficiently guide IL training without the need for iterative solutions.
Moreover, for generator switching, a loss function for IL incorporating
penalty factors is designed, and the fusion of GES and IL is realized
through an offline–online training approach. Table 1 is a taxonomy
table to compare the features of GESIL with model-driven methods and
RL. The main contributions of this paper are as follows.

1. A graph theory-based grid model is proposed, which estab-
3

lishes the relationships among connection nodes of transmission
branches, generators, and loads based on pure mathematical for-
mulations. With such a model, the prompt identification of weak
grid risks is attainable, bypassing the necessity for traditional
fault analysis relying on power flow iterations and contingency
scanning. This advancement significantly enhances the efficiency
of model-driven solving processes.

2. Based on the established graph theory-based grid model, a rule-
based Grid Expert Strategy (GES) is proposed to effectively guide
the IL training. With the proposed GES, active power outputs of
regulated generators are adjusted to reduce overloading risks,
optimize branch loading ratio, and facilitate power balancing
control. Importantly, GES achieves these objectives without the
need for iterative solving, as is typically required in traditional
model-driven dispatching methods.

3. Embedding the penalty factor-based loss function into offline–
online training, the GES and IL are integrated to create a model-
data-driven GESIL real-time dispatch scheme. This scheme en-
hances the computational efficiency and generalization capabil-
ity of the real-time GESIL-based dispatch, as well as the dispatch
accuracy.

The rest of the paper is organized as follows. Section 2 introduces
the fundamentals of grid operation strategy and GESIL-related tech-
nologies. Section 3 presents the design of the GES scheme, including
the proposed graph theory-based grid modeling and dispatch expert
strategy. Section 4 presents the implementation framework of GESIL,
including the specific IL design and the GESIL realization in real-time
power system dispatch. Section 5 performs numerical validations and
comparisons in a modified IEEE 118-node system. Section 6 concludes
the paper.

2. Basic grid operation rules and GESIL related fundamentals

This section presents basic grid operation rules and GESIL related
fundamentals. As the basis for the design of GES and IL action spaces,
Sections 2.1 and 2.2 introduce power system operation constraints
and active power regulation actions, respectively. Sections 2.3 and
2.4 respectively delve into the following topics: graph theory as the
basis for grid modeling in Section 3.1, IL and its training methods
which are crucial for the GES and IL fusion process in Section 4.
Additionally, Sections 2.5 and 2.6 introduce the proposed comparative
SAC algorithm, evaluation metrics, and reward functions, respectively.

2.1. Power system operating constraint

The operational constraints on the active power of generators
and the thermal capacities of transmission branches can be expressed
as [32]:
∑

(𝑔,𝑖)∈𝑮
𝛥𝑃(𝑔,𝑖),𝑡 = 𝛥𝑃 𝑡+1

load − 𝛥𝑃 𝑡
load (1)

min
𝑔,𝑖 ≤ 𝑃𝑔,𝑖 ≤ 𝑃max

𝑔,𝑖 , ∀(𝑔, 𝑖) ∈ 𝑮 (2)

𝑙 =
𝑃𝑙

𝑃max
𝑙

≤ 𝑅max
𝑙 , ∀𝑙 ∈ 𝑳 (3)

where 𝑡 ∈ [1, 𝑇 ] is the time index.
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2.2. Power system active regulation action

The main active power regulation actions of a power system include
generator active power adjustment and generator switching, with the
following rules [33]:

𝛥𝑃(𝑔,𝑖),𝑡 − 𝑟𝑔,𝑖 ≤ 𝛥𝑃(𝑔,𝑖),𝑡 ≤ 𝛥𝑃(𝑔,𝑖),𝑡 + 𝑟𝑔,𝑖 ∀(𝑔, 𝑖) ∈ 𝑮 (4)

where 𝑟𝑔,𝑖 is the ramp rate.
The generator switching rules [33] can be expressed as:

{

𝐶𝑖 = 0 if 𝑃𝑔,𝑖 > 𝑃min
𝑔,𝑖

𝐶𝑖 = 1 if 𝑃𝑔,𝑖 ≤ 𝑃min
𝑔,𝑖

∀(𝑔, 𝑖) ∈ 𝑮 (5)
{

𝑆𝑖 = 0 if 𝑇 𝑐
𝑔,𝑖 ≤ 𝑇𝑐

𝑆𝑖 = 1 if 𝑇 𝑐
𝑔,𝑖 ≥ 𝑇𝑐

∀(𝑔, 𝑖) ∈ 𝑮 (6)

when the active power 𝑃𝑔,𝑖 of the generator 𝑖 is less than or equal to
the lower output limit 𝑃min

𝑔,𝑖 , 𝐶𝑖 is 1 or 0 indicating that the shutdown
operation is allowed or not allowed, respectively. When the shutdown
time 𝑇 𝑐

𝑔,𝑖 of the shutdown generator 𝑖 is larger than or equal to the set
value 𝑇𝑐 , 𝑆𝑖 is 1 or 0 indicating that the startup operation is allowed or
not allowed, respectively.

2.3. Graph theory

Graph theory can be used to integrate a grid model by extracting
the connection node relationship among generators, grid branches,
and loads. The connection point of each unit in a power grid can be
generally regarded as a node in the network [34]. Consider a weighted
directed graph 𝐺 = (𝑉 , 𝜀, 𝐴) composed by a finite node set 𝑉 =
{1, 2,… , 𝑛}, a finite edge set 𝜀 ⊆ 𝑉 × 𝑉 , and a weighted adjacency
matrix 𝐴 =

[

𝑎𝑖𝑗
]

𝑛×𝑛 with 𝑎𝑖𝑗 > 0 if (𝑗, 𝑖) ∈ 𝜀 and 𝑎𝑖𝑗 = 0 otherwise.
The ordered pair (𝑗, 𝑖) ∈ 𝜀 represents the capability of node i to receive
information from node j. Let two sets 𝑁 in

𝑖 = {𝑗 ∈ 𝑉 ∣ (𝑖, 𝑗) ∈ 𝜀} and
𝑁out

𝑖 = {𝑗 ∈ 𝑉 ∣ (𝑖, 𝑗) ∈ 𝜀} denote the in- and out-degree neighbor set of
nodes i, respectively. A directed path refers to a sequence of edges with
the form

(

𝑣1, 𝑣2
)

,
(

𝑣2, 𝑣3
)

,… ,
(

𝑣𝑛−1, 𝑣𝑛
)

. A directed strongly connected
graph is one such that, for every node in the graph, there is at least a
directed path to every other node in the graph.

2.4. IL and its training methods

IL is a learning mode characterized by imitating the behavior of ex-
perts, which refers to an agent’s acquisition of knowledge by observing
an expert demonstrating a given task, as depicted in Fig. 1 [30]. A key
distinction between RL and IL is that RL learns mostly through trial-
and-error while IL aims to learn through direct mappings from states to
actions, particularly by utilizing an expert replay buffer via supervised
learning [35]. IL possesses the advantage of its high learning efficiency
in terms of sample complexity and training time [36].

The most widely used training methods for IL are behavioral cloning
(BC) and dataset aggregation (DAgger) [36]. BC uses supervised learn-
ing to train the optimal policy trajectory by labeling the expert data to
an agent. DAgger is a data aggregation method that addresses the issue
of error accumulation by online interaction between an agent and its
environment. It utilizes expert demonstrations to showcase new states
encountered by an agent and updates a training set in real-time. This
paper prepares to use the above training methods for offline–online
learning of GES by IL in Section 4 (see Fig. 1).

2.5. SAC algorithm for proposed comparison

SAC algorithm is one of the most efficient off-policy reinforcement
learning methods, which incorporates the maximized entropy into the
objective search at the same time to prevent the agent from converging
to the local optimum prematurely, making it widely used in the field
of sequential decision-making [37]. In this paper, GESIL is compared
4

to the grid dispatch scheme based on the SAC algorithm [21].
Fig. 1. Schematic diagram of imitation learning.

2.6. Evaluation metrics and reward functions

To compare the dispatch results with other schemes in Section 5,
dispatch evaluation metrics are employed as in [15]:

𝑟1 = 1 − 1
𝐿

∑

𝑙∈𝐿
min

(

𝑅𝑙 , 1
)

(7)

𝑟2 =
𝑃r,𝑡

𝑃max
r,𝑡

(8)

𝑟3 = −
∑

𝑖∈𝐺

(

𝑎𝑖𝑃
2
𝑔,𝑖 + 𝑏𝑖𝑃𝑔,𝑖 + 𝑐𝑖

)

(9)

To train the dispatch agent, reward functions are expressed as:

𝑅C =
𝑟3

𝐶max (10)

𝑟𝑒𝑤𝑎𝑟𝑑 =
{

𝜃, if grid not convergence
𝑎1𝑟1 + 𝑎2𝑟2 + 𝑎3𝑅𝑐 , else (11)

Since safe integration of RES is the task priority in power systems, 𝑎2
in this paper is set 2 3 times larger than the remaining weights, namely
𝑎1 and 𝑎3.

Based on (7)–(9), Section 5.1 will validate the algorithm perfor-
mance of GESIL, including training convergence, generalization ca-
pability, and single-step decision dime. In Section 5.2, comparisons
will be made concerning grid operation optimization, which includes
averaging grid loading ratios, addressing grid overloading scenarios,
and optimizing slack generation regulation margin.

3. New GES design solution

To reduce the risk of grid overloading under contingencies, the
novel GES is proposed in this subsection, which consists of 5 modules,
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employing a graph theory-based grid model which will be described
in Section 3.1 to adjust generator power output for overloading risk
alleviation as well as for system power balance. The designed GES will
be used as an expert strategy imitated by GESIL in Section 4.

3.1. GES graph theory-based grid modeling module

As introduced in Section 1, traditional grid contingency analysis,
based on detailed power system models, scans all possible grid contin-
gencies, and identifies grid operational risks. In real-time timescale for
grid dispatch, such an analysis can be computationally intensive and
difficult to immediately obtain analysis results. To address these chal-
lenges, this subsection proposes a graph theory-based grid modeling
module, which establishes the relationships among connection nodes
of transmission branches, generators, and loads.

The graph theory-based grid model primarily consists of three ma-
trices: the association matrix of generator-node 𝑽 , the adjacency matrix
𝑩, and the association matrix of node-branch connectivity 𝑪 . Matrix 𝑽
distinguishes between generator nodes and non-generator nodes, ma-
trix 𝑩 provides the adjacency relationships of grid nodes, and matrix 𝑪
represents the connectivity between nodes and branches. Based on the
three matrices 𝑽 , 𝑩, and 𝑪, mathematical transformations yield (12)
and (15). (12) can be used in GES Contingency Analysis and Optimization
Module, and (15) can be applied in GES Branch Loading Ratio Averaging
Module and GES Generator Power Ramping and Switching Module.

The connection information of the upstream/downstream genera-
ors of a random branch can be immediately obtained through:

= 𝑽 ⋅ 𝑩𝑛 ⋅ 𝑪 (12)

here

𝑰 =
⎡

⎢

⎢

⎣

𝐼11 … 𝐼1𝐿
… … …
𝐼𝐺1 … 𝐼𝐺𝐿

⎤

⎥

⎥

⎦

𝑽 =
⎡

⎢

⎢

⎣

𝑉11 … 𝑉1𝑁
… … …
𝑉𝐺1 … 𝑉𝐺𝑁

⎤

⎥

⎥

⎦

𝑩 =
⎡

⎢

⎢

⎣

𝐵11 … 𝐵1𝑁
… … …
𝐵𝑁1 … 𝐵𝑁𝑁

⎤

⎥

⎥

⎦

𝑪 =
⎡

⎢

⎢

⎣

𝐶11 … 𝐶1𝐿
… … …
𝐶𝑁1 … 𝐶𝑁𝐿

⎤

⎥

⎥

⎦

, 𝑰 is the

ssociation matrix of generator-branch power flow relationships in
he range of n paths (e.g., a positive/negative/zero 𝐼𝑖𝑗 indicates a
ositive/negative/no power flow correlation between generator i and
ranch j), 𝑽 is the association matrix of a generator-node connectivity
e.g., 𝑉𝑖𝑗 = 1 or 0 means generator i is connected or unconnected with
ode j), 𝑩 is an adjacency matrix weighting the proximity between two
andom grid nodes of all grid nodes (e.g., 𝐵𝑖𝑗 = 1 or 0 indicates node
is immediately adjacent with node j via only 1 branch or isolated
y at least 2 branches, respectively), and 𝑪 is an association matrix
f node-branch connectivity (e.g., 𝐶𝑖𝑗 = 1, −1, or 0 means node i
s the beginning, the end of the branch j or isolated with branch j,
espectively).

Fig. 2 visualizes the IEEE 39-node system model established using
raph theory, which is realized by python programming based on (12).
his model acts as a model foundation to be applied with the proposed
ES in the next subsection.

.2. GES contingency analysis and optimization module

As introduced in Section 1, to ensure grid operational security,
ystem operators typically perform N -1 contingency analysis to identify
verloading risks and optimize grid loading beforehand. A contingency
nalysis and optimization module is designed to adjust the active
ower of generators with highest sensitivities on branch 𝑙 prone to
verloading, expressed as:
{

𝛥𝑃 pos
𝑥 = −𝛼𝑃max

𝑥 , 𝐼𝑥,𝑙 > 0, 𝑥 ∈ 𝑋

𝛥𝑃 neg
𝑦 = 𝛼𝑃max

𝑦 , 𝐼𝑦,𝑙 < 0, 𝑦 ∈ 𝑌
(13)

𝑃imb1 = −

(

∑

𝛥𝑃 pos
𝑥 +

∑

𝛥𝑃 neg
𝑦

)

(14)
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𝑥∈𝑋 𝑦∈𝑌
here 𝛼 is a power adjustment factor with a fixed increment (in this
aper 𝛼 is set as 0.05 p.u.), 𝑋 and 𝑌 are the sets of the upstream
nd downstream generators within 𝑛 paths to the overloading branch
in this paper 𝑛 is set as 2), respectively, obtained from generator-
ranch association matrix 𝑰 of (12), and 𝛥𝑃imb1 is a total system power
mbalance resulting from generator active power adjustments above.

.3. GES branch loading ratio averaging module

To enhance transmission branch utilization and reduce transmission
ower losses in real time, a branch loading ratio averaging module is
esigned here to average branch loading as weighted by branch loading
atio. Firstly, the number of branches connected with generator nodes
s obtained a connectivity degree matrix 𝑫 as:

= 𝑽 ⋅ diag

(

∑

𝑢∈𝑁
𝐵𝑢1,

∑

𝑢∈𝑁
𝐵𝑢2,…

∑

𝑢∈𝑁
𝐵𝑢𝑁

)

(15)

where 𝑫 indicates the number of branches connected to a generator
node, obtained by diagonalizing the summations of each row of 𝑩 and
multiplying 𝑽 .

The higher value in 𝑫 a specific generator has, the more branches
he generator is directly connected with. Therefore, the larger the
enerator power output shall be adjusted to change the power flow of
certain branch connected with the generator.

.4. GES power balancing control module

To ensure system power balancing, it is essential to accurately
ccount for power system imbalances, including the grid loading opti-
ization in (14), the prevailing system imbalance in (16), and the slack

enerator margin optimization in (17). In response, a power balance
ontrol module is embedded in the GES.

Firstly, the initial power imbalance 𝛥𝑃imb2 can be obtained by
comparing the maximum forecasted load increase with the largest
generation infeed loss 𝛥𝑃max

𝑠𝑔 at the next time step, as:

𝛥𝑃imb2 = max
{

𝛥𝑃max
𝑠𝑔 , 𝛥𝑃 𝑡+1

load − 𝛥𝑃 𝑡
load

}

(16)

Then, the prevailing regulating power margin of the slack generator
s obtained as:

𝑃imb3 = 𝑃𝑏 − 𝑃 npp
𝑏 (17)

where 𝛥𝑃imb3 is the power deviation from the neutral power point of
the slack generator, 𝑃𝑏 is its actual power point, and 𝑃 npp

𝑏 is its neutral
power point.

Finally, the system power imbalance 𝛥𝑃imb can be determined,
expressed as:

𝛥𝑃imb = 𝛥𝑃imb1 + 𝛥𝑃imb2 + 𝛥𝑃imb3 (18)

3.5. GES generator power ramping and switching module

To realize the functionality of the above modules, this module
drives synchronous generators (SGs) to adjust in proportion with their
respective connectivity degrees as given in (19) derived from (12)–
(18). With extremely large RES proportions in the system, to avoid
RES curtailments as much as possible, GES mandates that all the SGs
are required to decrease their power output to their respective lower
limits. The specific adjustment method of generator active power can
be expressed as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝛥𝑃𝑔,𝑖 = 𝑟𝑎𝑡𝑖𝑜
(

𝛥𝑃max
𝑔,𝑖 − 𝛥𝑃min

𝑔,𝑖

) 𝑫𝑔,𝑖

𝑫
+ 𝛥𝑃min

𝑔,𝑖

𝑟𝑎𝑡𝑖𝑜 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛥𝑃imb−𝛥𝑃max
r,𝑡+1

)

−𝛥𝑃min
T,𝑡+1

𝛥𝑃max
T,𝑡+1−𝛥𝑃

min
T,𝑡+1

, 𝑃d ≤ 𝛥𝑃imb
(

𝛥𝑃imb−𝛥𝑃min
T,𝑡+1

)

−𝛥𝑃min
r,𝑡+1

𝛥𝑃max
r,𝑡+1−𝛥𝑃

min
r,𝑡+1

, 𝑃d > 𝛥𝑃imb

max min

(19)
⎩

𝑃𝑑 = 𝛥𝑃r,𝑡+1 + 𝛥𝑃T,𝑡+1
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Fig. 2. IEEE 39-node system model establishment via graph theory.
where 𝑫 denotes the average value of 𝑫.
Even after these modules, the system may still have unresolved

imbalances due to limitations in its balancing capacity. To maintain
the largest margin of the slack node and reduce/eliminate the demand
for primary frequency response services, this paper employs pure SGs
switching actions to tackle the system remaining power imbalance 𝑃s
as follows:

𝑃s =

{

𝛥𝑃imb −
∑

𝑖∈𝐺 𝑈G
𝑖 𝛥𝑃

max
𝑔,𝑖 , 𝛥𝑃imb > 0

𝛥𝑃imb −
∑

𝑖∈𝐺 𝑈G
𝑖 𝛥𝑃

min
𝑔,𝑖 , 𝛥𝑃imb < 0

(20)

𝑈G
𝑖 =

⎧

⎪

⎨

⎪

⎩

1, 𝑆𝑖 = 1 ∩ min ||
|

𝑃s − 𝛥𝑃 s
𝑔,𝑖
|

|

|

, ∀𝑖 ∈ 𝑮c

0, 𝐶𝑖 = 1 ∩ min ||
|

𝑃s − 𝛥𝑃min
𝑔,𝑖

|

|

|

, ∀𝑖 ∈ 𝑮o

(21)

where 𝑈G
𝑖 is 1 or 0 indicates startup or shutdown of generator 𝑖.

Overall, the GES is summarized in Algorithm 1, where 𝑇 = 288 de-
notes one episode of 24 h with a time resolution of 5 min and a total of
288 time steps, and 𝐿 is the total number of branches within the entire
system. The specific steps of the GES are as follows: (1) Updating the
grid model using (12) in Section 3.1. (2) optimizing the grid overload
using (13)–(14) in Section 3.2. (3) Averaging branch loading ratio using
(15) in Section 3.3. (4) Quantifying power imbalance using (16)–(18)
in Section 3.4. (5) Optimizing SGs power ramping and switching using
(19)–(21) in Section 3.5. (6) Integrating actions to generate a dispatch
solution 𝛥𝑃𝑔,𝑖, 𝑈G

𝑖 .

Algorithm 1 Grid Expert Strategy

Input: 𝑷G,𝑹, 𝛥𝑷max
𝐺,𝑡+1, 𝛥𝑷

min
𝐺,𝑡+1,𝑻 c,𝑷max

𝑟,𝑡+1, 𝛥𝑃
𝑡+1
load ,𝑼G , and 𝑼L

Output: 𝛥𝑃𝑔,𝑖 and 𝑈G
𝑖

1: for t=1 to T do
2: for l=1 to L do
3: Process (12) to update the grid model
4: end for
5: Process (13)–(14) to optimize grid loading
6: Process (15) to average branch loading ratio
7: Process (16)–(18) to quantify power imbalance
8: Process (19)–(21) to optimize SGs power ramping and switching
9: end for

10: return 𝛥𝑃𝑔,𝑖, 𝑈G
𝑖

4. GESIL training and implementation

As introduced in Section 1, to improve the computational efficiency
and generalization capability of the GESIL-based dispatch, in this paper,
GES is used as the expert strategy, and IL is employed for offline–online
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learning. This section includes the specific design of IL agent as well as
the GESIL application in a practical power system.

4.1. IL agent design principle for GESIL

4.1.1. The state-space and action-space of proposed IL agent
The state space of IL agent for the proposed GESIL is designed to

identify the key information influencing dispatch decisions. Aimed at
the grid’s state information utilized by GES in (12)–(21), the state space
𝑺 of IL can be established as:

𝑺 =
[

𝑷𝐺 ,𝑹, 𝛥𝑷max
𝐺,𝑡+1, 𝛥𝑷

min
𝐺,𝑡+1,𝑻 𝑐 ,𝑷max

𝑟,𝑡+1,

𝛥𝑃 𝑡+1
load ,𝑼𝐺 ,𝑼𝐿, 𝑡

] (22)

Based on (2)–(6), the action space 𝑨 of the IL agent satisfying the
grid operation constraints can be constructed as:

𝑨 =
[

𝑈G
1 𝛥𝑃𝑔1, 𝑈

G
2 𝛥𝑃𝑔2,… , 𝑈G

𝑖 𝛥𝑃𝑔,𝑖
]

(23)

4.1.2. The loss function of proposed IL agent
Using the state 𝒔 corresponding to the state space 𝑺 as the input data

and the action 𝒂 corresponding the action space 𝑨 as the label data,
the IL agent training can be formulated as a regression problem. The
policy trajectory 𝜋(𝑠) of the IL agent can be trained by the first-order
optimization method of stochastic gradient descent [38]. Compared to
the modules of graph theory-based grid modeling, contingency analysis
and optimization, branch loading ratio averaging, power balancing
control, and generator power ramping, which can be addressed by a
conventional loss function, to embed the generator switching module as
proposed in Section 3.5, a specific loss function 𝐿(𝜃), with an additional
penalty factor added in the second term of a traditional loss function,
is designed to process (23) and (24), expressed as:

𝐿(𝜃) = 1
𝐽

𝐽
∑

𝑗=1

‖

‖

‖

𝜋
(

𝒔𝑗
)

− 𝒂𝑗
‖

‖

‖

2

2
+

𝜆
𝐽

𝐽
∑

𝑗=1

‖

‖

‖

‖

(

𝜇𝑗 − 𝑼G
𝑗

)

(

𝜋
(

𝒔𝑗
)

− 𝒂𝑗
)‖

‖

‖

‖

2

2
+

𝛽
2
‖𝜃‖22

(24)

where 𝜃 denotes the neural network parameters of the IL agent to
be trained, the first term of the loss function captures the deviations
between the GES and IL agent, with 𝜋(𝒔𝑗 ) as the IL dispatch policy
trajectory, 𝒂𝑗 as the GES dispatch policy, 𝐽 as the IL training batch size,
and ‖ ⋅ ‖2 as the square of the euclidean parametrization; the second
term of the loss function caters for the system power balancing, with 𝜆
as the penalty factor and 𝜇𝑗 as an array of values 1 at the same length
of 𝑼G

𝑗 ; the third term of the loss function is a regular term to prevent
the IL agent from being overfitted during training, with 𝛽 as a constant
value (generally greater than 0 and is recommended as 0.02 in this
paper).
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Fig. 3. IL model of GESIL.
4.1.3. The structure of proposed IL agent
Fig. 3 shows the structure of the proposed IL agent. The grid opera-

tion states are firstly classified by convolutional neural network (CNN),
and the states after a flattening process are then input to multi-layer
perceptron (MLP) for the IL agent to generate the dispatch decisions.
The activation functions of rectified linear unit (ReLU) and hyperbolic
tangent (Tanh) [39], are used in the MLP’s hidden layer and the output
layer, respectively.

4.2. GESIL training and its power system application

As introduced in Section 1, the proposed GESIL, which is essentially
a trained IL agent by the five GES modules as proposed in Sections 3.1–
3.5, are illustrated in the flow chart of Fig. 4. The specific training steps
of the GESIL are as follows: (1) GES interacts with the grid environment
to collect expert experiences via (12)–(21), which are stored in the
expert replay buffer as 𝑫𝑚; (2) IL agent offline training using BC
algorithm via (24); (3) IL agent interacts with the grid environment
to generate 𝜋(𝒔𝑚), and returns to the grid environment for 𝒔𝑚+1 as in
(22)–(23); (4) GES processes 𝒔𝑚+1, generates 𝒂𝑚+1, and updates 𝑫𝑚+1

in real-time to realize the online demonstration and correction via
(12)–(21); (5) IL agent online training using 𝑫𝑚+1 and the DAgger
algorithm as in (24). These steps (3)–(5) are repeated until the required
number of iterations is met. Such an offline–online training process can
significantly reduce the training time and improve the generalization
capability of the proposed GESIL.

5. Case study

To validate the proposed GESIL scheme, case studies are conducted
using the IEEE 118-node test system [40] as shown in Fig. 5, which
represents a portion of American Electric Power Company containing
54 generators, 186 branches, and 99 load nodes, and it can be divided
into three regions by enveloping curves. To model a high proportion
of RES generation, as shown in Fig. 5, the SGs at nodes 1, 10, 12,
25, 26, 46, 80, and 100 are replaced by individual PV plants, whereas
the SGs at nodes 4, 6, 15, 18, 19, 27, 31, 32, 73, 99 and 116 are
replaced by individual wind farms, with the rated capacities of the
7

individual RES generators 1.4 times of the original SGs, achieving
37.4% RES generation of the total system installed generation capacity.
All the SG ramp rate as introduced in (4) is set as 𝑟𝑔,𝑖 = 0.05𝑃max

𝑔,𝑖
per step of 5 min [41], and their minimum shutdown time steps to
fulfill unit commitment as introduced in (6) are simulated as 𝑇c = 40
(200 min in total). The adopted power profiles of RES generations and
loads are publicly available in [42] for specific dates to be selected
in the following case studies. The PYPOWER [43], a Python version
of the widely used MATPOWER [44], is employed in this section as a
simulator for grid environment modeling.

The GESIL training parameters is set up as: 𝜃 = −10, 𝑎1 = 1,
𝑎2 = 2, and 𝑎3 = 1 as introduced in (11), 𝑛 = 2 as introduced in (12),
𝜆 = 2 and 𝛽 = 0.02 as introduced in (24), respectively. The remaining
parameters are presented in Appendix A.1. The dynamic curves of the
loss function in the training phase utilizing both the BC algorithm and
the DAgger algorithm are depicted in Figs. A.1 and A.2 in Appendix A.2.
The specific SAC parameters are set out in Appendix A.3.

The following case studies will compare the proposed GESIL with
the traditional grid expert strategy (TGES) [5] and the SAC-based grid
dispatch method [21] in terms of algorithm performance and effective-
ness in grid operation optimization and power balancing control.

5.1. Algorithm performance

Algorithm performance is primarily evaluated by their training
convergence and generalization capability.

5.1.1. Training convergence
To train GESIL agent, for one dispatch day, the power profiles of

RES generations and loads, with 5 min intervals, are selected from
25 randomly-selected dispatch days from each month of March, June,
September, and December 2021. The GESIL and SAC use the same state
space as in (22) and action space as in (23) to train.

Firstly, the GESIL is trained offline for 600 iterations using the BC
algorithm and the loss function in (24). Secondly, the GESIL is further
trained online using the DAgger algorithm and also the loss function
in (24). As GESIL is trained offline during the BC algorithm training
process and cannot provide real-time feedback on reward values, this
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Fig. 4. Flow chart of GESIL in real-time grid dispatch.
Fig. 5. Modified IEEE 118-node system model.
subsection focuses on the convergence comparisons of GESIL during the
DAgger-based online training and SAC.

To demonstrate the stability of the GESIL during the training pro-
cess, it is trained for the same extended duration as the SAC, which
undergoes trainings for 5 × 105 episodes. Each episode consists of 288
steps and is run on a randomly-selected dispatch day, as shown in
Fig. 6. Each reward value shown in the figure represent the average
reward for one episode. GESIL, which is pre-trained using the BC
algorithm, initially achieved a high reward value of 1.6, and gradually
improves the reward value to 1.72 via the subsequent DAgger-based
training within 4000 episodes as per the training procedures designed
8

in Section 4.2 and Fig. 4. In contrast, the SAC-based training resulted in
an average reward of 1.32, significantly lower than GESIL in the entire
training results of long 5 × 105 episodes.

In terms of training time, GESIL takes 3.2 h to reach a stable
convergence (approximately 4000 episodes), whereas SAC takes 46.5 h
to complete the training, 14.5 times slower than GESIL.

5.1.2. Generalization capability
To compare GESIL’s generalization capability with those of the

SAC and TGES schemes, ten dispatch days are selected, and a dif-
ferent randomly occurring event is designed for each dispatch day,
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Fig. 6. Comparison of training convergence.

Fig. 7. Comparison of generalization capability on a dispatch day of 5 Mar. 2021.

Table 2
Generalization capability comparisons in 10 dispatch days.

GESIL TGES SAC

Days with power flow convergence 10 days 8 days 7 days
Average reward 1.73 1.56 1.26
RUR 99.98% 99.96% 92.37%

respectively. These ten events included: circuit disconnections of the
branches 43, 44, 113, 114, and 118 lasting for 80 mins, a 15% steep
rise in total RES generation, a 15% steep fall in total RES generation, a
10% step increase in total system load, the disconnection of generator
5 occupying 11.3% of the total generation power output, and the
disconnection of generator 16 occupying 2% of the total generation.

Under these dispatch days with various grid disturbance events,
the grid simulator solves power flows based on different dispatch
decisions returned by the three aforementioned schemes, respectively.
Fig. 7 shows the detailed renewable utilization rates (RUR) and aver-
age rewards under the three schemes for the dispatch day of 5 Mar.
2021, embodying GESIL’s superior generalization capability compared
to TGES and SAC. The results of the three schemes, in terms of power
flow convergence, average reward, and RUR in the corresponding ten
dispatch days, are detailed in Table 2. The convergences of SAC, TGES
and GESIL are 7, 8 and 10, respectively, with GESIL being successfully
convergent in all the ten dispatch days. The average reward values of
TGES, SAC and GESIL are 1.56, 1.26 and 1.73, respectively, with GESIL
having the highest average reward. Both GESIL and TGES achieve a
relatively high RUR of 99.98% and 99.96%, respectively, whereas the
value of SAC only reaches 92.37%.

5.1.3. Single-step decision time
To evaluate algorithm operating efficiency, this subsection first

analyzes and compares the computational complexities of the three
9

Fig. 8. System operating data on 9 Jun. 2021.

Fig. 9. Comparison of loading ratio averaging. (a) Average branch Loading ratios. (b)
Branch loading ratio variances.

aforementioned schemes using the big O notation. The CC of GESIL
is 𝑂

(

𝑛2
)

, TGES is 𝑂 (2𝑛𝑛 log 𝑛) [45], and SAC is 𝑂
(

𝑛2
)

. Subsequently,
the elapsed time of single-step decision-making is compared under the
three aforementioned schemes. The computing server consists of a 12-
core CPU at 2.50 GHz and 8 GB memory. As a result, TGES has an
average single-step decision time of 2.2 s, whereas GESIL and SAC
take 0.13 s and 0.15 s, respectively. This indicates GESIL outperforms
TGES by approximately 17 times. Although GESIL and SAC have similar
decision times, as concluded in Sections 5.1.1 and 5.1.2, the GESIL
algorithm generally has a superior performance in terms of training
efficiency and generalization capability over SAC.

5.2. Grid operation optimization

This subsection evaluates the grid operation optimization perfor-
mance of the studied three schemes in averaging grid loading ratios,
handling grid overloading scenarios, and slack generation regulation
margin optimization. The historical energy scenario on 5 Mar. 2021 is
adopted as shown in Fig. 8.

5.2.1. Grid real-time loading ratio averaging
Fig. 9(a) shows the average loading ratio values across all 186

branches in the 118-node system during a dispatch day. GESIL effi-
ciently diverts power flows to the branches with larger transmission
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Fig. 10. Grid overloading in 06:00–12:00. (a) Branch 106 loading ratios. (b) Branch 109 loading ratios. (c) Branch 107 loading ratios. (d) Branch 100 loading ratios. (e) G70
active power. (f) G24 active power.
capacity via (19), resulting in a significantly lower loading ratio com-
pared to TGES and SAC. Fig. 9(b) shows the branch loading ratio
variances, that the lower the loading ratio variance the more evenly
the power loadings are distributed among all the branches. As can be
seen, GESIL achieves a significantly lower branch load ratio variance
than TGES and SAC.

5.2.2. Grid overloading optimization
To compare the grid overloading handling capability, branch 106 is

disconnected at 08:20 and restored at 09:40, As shown in Fig. 10(a),
the loading ratios of branch 106 are all decreased immediately to zero
at 08:20 with GESIL, TGES, and SAC.

As shown in Fig. 10, GESIL is capable of maintaining the average
grid branch load ratio overall at a low level via (19) at the pre-
contingency phase, preventing potential branch overloading due to the
contingency. However, at 09:15 when the branch 106 is not restored in
operation yet, the branch 109 becomes cascadedly overloading under
the sharp rise in loading, as depicted in Fig. 10(b). During the contin-
gency, the proposed GESIL uses the grid model based on graph theory
to obtain G70 downstream, G24 and G72 upstream of branch 109 via
(12), and adjusts generators’ outputs with the highest sensitivities on
the overloading branch, the active power of G70 increased from 0
MW to 5 MW, G24 decreased from 38.2 MW to 31.2 MW, and G72
decreased from 99.3 MW to 94.3 MW, as shown in Fig. 10(e) and (f)
(due to spatial limitations, G72 are not presented in Fig. 10). As a result,
GESIL eliminates the overloading of branch 109 at 09:20 and avoids the
cascaded circuit trips.

Fig. 10(c) and (d) show the loading ratios of branches 107 and 100
(the other branches 108, 26, 30, and 35 exhibit similar performance as
discussed later). As can be seen, SAC and TGES schemes apply with no
effect in optimizing the grid loading ratio; as a result, the overloading
of branch 107 at 117% is observed immediately after the fault in branch
106. At 08:40, branch 107 is disconnected, aggravating overloadings in
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the branches 100 and 108 at 116% and 105%, respectively. At 09:00,
branches 100 and 108 are cascadedly disconnected, further causing
the overloadings of the branches 26, 30, and 35, eventually leading to
their disconnection at 09:20 (due to spatial limitations, detailed results
are not presented in Fig. 10). Finally, at 09:25, the chain of these
disconnections occurs in the overall grid, resulting, in an N -14 fault
and the non-convergence of power flow (physically a power blackout).

5.2.3. Slack generation regulation margin optimization
Fig. 11 illustrates the active power outputs from the slack generator

located at node 69, which operates within the active power range
of 0 to 805 MW. As observed, the active power output from the
slack generator under TGES has the largest deviation from the neutral
point of 402.5 MW. Under SAC, the active power output from the
slack generator experiences dramatic fluctuation. In particular, there
is a sharp active power drop of 300 MW at 08:00 (attributed to the
instability of the trained SAC agent), implying a high risk of system
power imbalance. In comparison, the proposed GESIL maintains the
active power output from the slack generator continuously around the
neutral point of 402.5 MW, effectively maximizing its upper and lower
reserve margins via (16)–(21) for governing the grid overall power
balance.

5.3. Discussion

This paper verifies the superiority of GESIL in terms of algorithm
performance and grid operation optimization based on the IEEE 118
system in Sections 4.1 and 4.2. GESIL is also capable of handling in-
creasing grid size and complexity without significantly raising compu-
tational demands. It demonstrates strong generality and applicability,
with its core formulas (12)–(24) incorporating a graph theory-based
power grid model, model-driven pure rule-based GES, and GESIL-based

implementation scheme, all of which are not constrained by the size
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Fig. 11. Comparison of slack generation regulation margin optimization.

of the power grid or the number of nodes. In the future, methods
like transfer learning [46] can be utilized to further enhance the
applicability of GESIL to larger-scale power systems.

6. Conclusion

This paper presents a novel real-time power system dispatch scheme
using grid expert strategy-based imitation learning (GESIL), which has
the following features: (1) GESIL constructs a grid model through
graph theory, which enables the real-time acquisition of correlation
information for grid nodes, generators, and branches; (2) GESIL designs
a grid expert strategy (GES) based on this model, effectively optimizing
grid operation and facilitating power balance control; (3) GESIL effec-
tively fuses imitation learning with the GES, finalizing an essentially
model-data-driven real-time dispatch scheme.

By comparing the performances of GESIL with those of a model-
driven Traditional Grid Expert strategy (TGES) and a data-driven Soft
Actor–Critic (SAC), the results verify that GESIL can effectively re-
duce grid loading ratio, average power flow distributions amongst all
the regulated circuits, and balance system power imbalance in real-
time, which are not achieved by TGES. Additionally, GESIL exhibits
a computational efficiency enhancement of approximately 17 times
compared to TGES. Also, GESIL can perform online learning based
on GES, improving the efficiency of agent action space exploration
and enhancing generalization capability, which are not completely
addressed by SAC. Moreover, GESIL’s training speed is improved by
14.5 times compared to SAC. In future, the proposed GESIL can act a
real-time power dispatch solution to secure the system operations under
high penetration of renewable energy. This dispatching method will be
further researched for making efficient decisions in the face of cyber
attacks.
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Table 3
Description of GESIL training parameters.

GESIL

Encoder output 128 with 10 encoders
Implicit layer 2048,2048,2048,1024,1024,512,512,256,256
Output dimension 53
Learning rate in BC 1e−4
Batch size in BC 256
Learning rate in DAgger 5e−5
Batch size in DAgger 64

Table 4
Hyperparameters setting of the SAC algorithm.

SAC

Actor network structure 1280,2048,2048,1024,512,256
Critic network structure 1333,2048,1024,256
Discount factor 𝛾 0.98
Whether to use PER Yes
Explore noise benchmark values 0.2
Reward scale 0.2
Batch size 64

Fig. A.1. Loss function value in BC algorithm training stage.

Fig. A.2. Loss function value in DAgger algorithm training stage.

Appendix

A.1. GESIL training parameters

See Table 3.

A.2. GESIL’s loss function values in the training phase

See Figs. A.1 and A.2.
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A.3. SAC hyperparameters

See Table 4.
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