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Abstract: This paper aims at exploring a new-type mode for autolanding control of fixed-wing unmanned aerial vehicles 

(UAVs). A discrete-time data-driven control scheme is tentatively proposed and developed with its pitch-only channel as a case 

study. Eventually, data-driven controllers inspired by attracting laws are introduced for a series of difference models. Numerical 

simulation for pitch-only dynamics is demonstrated to validate and compare performances of proposed DDC laws. Simulation 

results indicate that DDC laws can achieve the desired performance by altering data-driven models with different orders. 
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1 Introduction 

Fixed-wing unmanned aerial vehicles (UAVs) have numerous applications in fields including agriculture, traffic 

surveillance, industrial accident monitoring, crime prevention, assessment and restoration of nature reserve areas [1-5], etc. 

Compared with unmanned helicopters, multi-rotor aircraft, flapping-wing aircraft, and other aircraft, fixed-wing UAVs have 

advantages such as large payload, high speed, low energy consumption, long range, and high safety [6-7]. The increasing 

demand for tasks such as aerial reconnaissance, communication relays, resource exploration, and border surveillance, 

combined with the rapid advancements in technologies such as structural engineering, flight control algorithms, and power 

systems, are driving the development of fixed-wing UAVs toward greater autonomy and intelligence capabilities [8-9]. As the 

utilization of fixed-wing aircraft becomes more popular, there are more and more reported incidents of varying severities 

Autolanding is responsible for almost half of UAV accidents due to its vulnerability to destruction or damage during landing. 

This trend emphasizes developing more robust and adaptable control strategies to counteract modeling uncertainties and 

external disturbances that may arise during autolanding [10-11]. 

The autolanding trajectory traditionally consists of three phases: approach, glide, and flare [12-13]. An effective 

autolanding algorithm for fixed-wing UAVs should be capable of accurately and stably tracking the designated landing 

trajectory throughout all landing stages. Although linear model-based approaches are practical only within narrow ranges 

surrounding operation points, numerous studies have demonstrated the possibility of developing automatic landing algorithms 

for UAVs using decoupled longitudinal and lateral linear models [14-16]. The gain scheduling method is introduced to widen 

operational ranges by adjusting pre-designed control parameters for varying operation points to overcome this limitation. 

However, interpolated parameters generated by gain scheduling cannot always guarantee the stability of the closed-loop 

system [17]. Many nonlinear control techniques have also been studied in autolanding, but their effectiveness still depends 

significantly on the complexity and accuracy of dynamic models [18-19]. 

Data-driven control approaches, which do not rely on actual system dynamics, have gained interest due to the challenges 

faced by the above methods [21-26]. DDC methods aim to use only input/output (I/O) data to design control laws. In designing 

control laws for fixed-wing UAVs, uncertainties arising from model errors and environmental influences, such as wind 

disturbances and aerodynamic changes, cannot be neglected. DDC methods can adapt well to model uncertainties because 

they fully utilize historical data, including data from disturbed conditions. The concept of data-driven modeling originated 

from the characteristic modeling approach [24]. One significant difference is that the data-driven modeling method transforms 

nonlinear systems into linear systems with a single lumped, unmodeled term instead of various time-varying coefficients. 

Besides, DDC laws can be obtained from different data-driven models with similar structures, which means that few 

modifications are required to adapt controllers to new application scenarios, making the design process simpler and more 

convenient. 

This paper discusses the application of DDC methods in UAV autolanding. Motivated by attracting laws, DDC laws are 

derived with guaranteed stability and error bounds from models of different orders. The main contributions of this study 

include: 1) the longitudinal motion of fixed-wing UAVs is introduced and analyzed, and the data-driven modeling on 

pitch-only dynamics is derived; 2) DDC laws are designed for data-driven models with different orders; 3) a numerical 

simulation is performed to demonstrate the application of DDC laws for tracking desired trajectories. 
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2 Data-driven modeling for pitch-only dynamics of one fixed-wing UAV 

This section presents data-driven modeling for the pitch-only dynamics. The mathematical model of a fixed-wing aircraft 

comprises several coupled non-linear equations that can be found in published literature. These coupled terms can be 

sufficiently small when the fixed-wing UAV is in steady-state flight. As a result, the dynamic model of a fixed-wing can be 

decomposed into longitudinal and lateral motions. Our study focuses on the longitudinal dynamics of a fixed-wing UAV, 

specifically its pitch-only model, which describes vertical rotation during the autolanding procedure. Disturbances and 

uncertainties arising from unmodeled dynamics due to decoupling can be rejected using appropriate control strategies.  

The longitudinal autopilot for autolanding typically uses the throttle for airspeed and the elevator for pitch control. The 

inertial and body frames mentioned in this section are illustrated in Fig. 1, represented by IO and BO . When the airspeed 

reaches the desired value in a trimmed condition, the elevator e is utilized to adjust the pitch angle and pitch rate q . Thus, 

the pitch-only equation for longitudinal motion is expressed as follows:  
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where yyJ is the moment of inertia, and M is the pitch moment that is shown as follows: 
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are aerodynamic coefficients;  is the angle of attack; air is the air density; S is the planform area 

and c is the mean chord of the fixed-wing, respectively. By combining Eq.(1) and Eq.(2), the equation for pitch-only dynamics 

can be derived as follows: 

( )
0

2

2

2 2

2

q e

air a
e

yy a

air a

yy

V Sc c
C C

V

V S
C C

J

c

J






 





 

+ 
 

+ +

= M M

M M

 (3) 

 
Fig. 1. Illustration of frames and state variables 

To discretize the pitch-only dynamics, the following backward differences are utilized: 
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where k is the discrete time instance; h is the sampling period. The data-driven model for pitch-only dynamics can be 

expressed as 

( )
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where ,1f , ,2f and g are constant parameters; ( )k is the unmodeled term: 
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Consider first-order and second-order differences of the unmodeled term ( )k : 
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where ( )1

kt and ( )2

kt are derivatives lie within sampling points. Eq.(6) indicates that backward differences are bounded if 

respective derivatives are bounded. If the disturbance signal ( )k  is a polynomial function of time, its derivatives can be 

seen as signals that change slowly over time. For example, it is seen that 0 = , when  is a constant signal; 2 0 = , as 

  is a ramp signal. Therefore, higher-order data-driven models are widely utilized to effectively reject disturbances caused 

by unmodeled terms because it is easier to estimate slow-changing signals than fast-changing ones. Typical higher-order 

data-driven models, such as first-order and second-order models, can be derived by transforming Eq.(5) into difference 

equations: 
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3 Control design based on data-driven models 

This section presents a design methodology for DDC based on data-driven models. The pitch-only controller's primary 

objective is to accurately follow the desired pitch angle produced by the outer-loop controller, like the altitude autopilot. The 

tracking error ( )e k  is defined by 

( ) ( ) ( )de k k k = −  (8) 

where ( )d k represents the desired pitch signal. By applying the attracting law, the discrete-time dynamic of the tracking 

error defined by Eq.(8) can be designed as 

( 1) (1 ) ( )e k e k+ = −  (9) 
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where (0,1)  is a tunable parameter. According to Eq.(9), the relationship between ( 1)e k + and ( )e k  satisfies 

( 1) ( )e k e k+   , which indicates that the tracking error ( )e k decreases as time steps increase. Combining Eq.(5), Eq.(8) and 

Eq.(9), we have 
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The ideal data-driven control law ( )e k can be derived from Eq.(10): 
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However, the ideal control law Eq.(11) is not realizable because the disturbance ( )k  is unknown. A simple estimation 

ˆ ( )k  of the disturbance signal ( )k  is its time-delay signal ( 1)k −  which yields: 
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Thus, the practical data-driven control law ( )e k  is given as follows: 
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According to Eq.(6), if the first-order difference ( )k is bounded, the maximum norm of ( )k can be noted by 
max . 

The closed-loop system Eq.(5) governed by DDC law is stable, and the upper limit of tracking error is bounded: 

maxlim ( )
k
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For data-driven models Eq.(7) with higher-order differences, the 1-order DDC and 2-order DDC can be designed as: 
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and  
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where estimations for ( )k and 2 ( )k are given by: 
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4 Numerical Simulation 

This section presents the results from numerical simulation to demonstrate the properties and effectiveness of the 

data-driven controllers. For the scenario of UAV autolanding, consider the pitch-only dynamics Eq.(3) with following 

parameters： 

0

2 3

2 2

1 kg, 9.81 m/s , 1.29 kg/m

0.123 m , 0.1 m, 0.0092 m kg

0.0026, 0.0003, 0.0051
q e

airm g

S c J

C C C


= = =

= = = 

= = − = −M M M

 

The airspeed is set to 20 m/s , and the sampling time h  is chosen as 0.001 s . As a consequence, constant parameters given by 

Eq.(5) can be computed as follows: 

,1 ,21.999997, 0.999997, 0.008862f f g  = = − = −  

The desired pitch trajectory is set as a constant signal d( ) 0 1 a. 5 rd k = , while the disturbance ( )k is assumed to be a sine 

wave signal ( ) 0.05*si drn(20 ) atk k  = . The initial states and control input for numerical simulation are assumed as 

follows: 

2

2

(0) 0.1 rad, (0) (0) 0 rad,

(0) (0) (0) 0 rad,e e e
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  

=  =  =
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To achieve a clear comparison, the 0-order,1-order, and 2-order DDC laws use the same tunable parameter  , which is set to 

0.5. 

 
Fig. 2. Desired pitch angle ( )d k (black) and tracking trajectories ( )k by using 0-order (red), 1-order (green) 

and 2-order (blue) DDC laws 

5

Data-driven control design for UAV autolanding: a pitch-only case study

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

k* ~t sec 



  

 
Fig. 3. Tracking errors ( )e k by using 0-order (red),  

1-order (green) and 2-order (blue) DDC laws 

 
Fig. 4. Control inputs ( )e k  of 0-order (red solid), 1-order (green dashed) and 2-order (blue dash-dot) DDC laws 

According to numerical simulation results presented in Figs. 2-3, all tracking errors decrease rapidly within a short period of 

time. The 1-order DDC law yields better results than the 0-order DDC law while obtaining the similar performance as the 

2-order DDC law. The tracking error of the 0-order DDC law is significantly influenced by the maximum absolute value of 

( )k that can be approximated by 
max  . Recorded data from numerical simulation indicates that absolute values of 

unmodeled terms with different differences satisfy
max max max

2

      . It means that the upper limit of the tracking error 

gets smaller when a higher order data-driven model is chosen.  

5 Conclusions 

In this paper, a data-driven control (DDC) design method is tentatively proposed and developed for the autolanding of fixed-wing UAVs. 

The longitudinal pitch-only channel of UAV flights is concentrated on as a case study. Three DDC laws based on different difference 

models have been explored. Optimizing DDC laws can be achieved by selecting different models, while parameter tuning is 

simple with only one parameter. Numerical simulation shows that DDC laws can effectively govern pitch-only dynamics for 

closed-loop tracking with predictable error bounds. For practical implementation, it is suggested to use a lower order 

difference model that balances the performance of tracking error and system band. Further study is required to explore DDC 

schemes on UAV autolanding for lateral control loops and coupled systems. 
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