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Abstract. Previous research has demonstrated how angled and directional lighting 

can enhance the detection of concrete cracks in low-light environments and 

outperform diffused lighting alternatives. This paper investigates the effect of 

different angles of incidence of directional lighting for concrete crack pixel-level 

segmentation. Five directional lighting datasets of cracked concrete slabs were 

captured, each using an angle of incidence of 10, 20, 30, 40, and 50 degrees, 

respectively. A directional lighting crack segmentation algorithm was applied to each 

lighting angle dataset. Algorithm output comparisons with ground truths revealed that 

the directional lighting method performed best on the 50-degree lighting dataset, 

obtaining a recall, precision, and F1 score of 68%, 81%, and 74%, respectively. 

However, qualitative analysis of the segmentation outputs on a sub-image scale 

revealed that towards the edges of the images, the segmentation performance of 30-

degree lighting was significantly better, with results closely matching those of the 

ground truth. This research highlights that the lighting angle of incidence can increase 

the performance of directional lighting concrete crack segmentation depending on 

defect position. The results from this work have the potential to improve low-light 

environment concrete crack detection and monitoring. 

 

Keywords: Image processing, directional lighting, automated inspections, defect 

detection, binary classification. 

Introduction  

The majority of concrete structures in Europe, the US, and Asia are now approaching the end 

of their 50-year lifespan [1]. Early crack identification is crucial to extend the operational 

lifespan of concrete assets and ensure their safety [2]. However, current manual visual 

inspection methods are inconsistent, labour-intensive, and pose risks to human physical and 

mental health [3]. Remote visual inspections using cameras mounted to unmanned vehicles 

allow safe data acquisition, but manual review of data remains time-consuming and suffers 

from similar inconsistency issues [4]. In response to these limitations, automated image 

defect recognition has emerged through transparent image processing methods (white-box 

techniques) and neural network approaches (black-box techniques) [5]. External lighting is 
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required in low-light environments to illuminate the image scene and make defects visible 

for white- and black-box methods.  

 

Recent research has shown how projecting angled and directional lighting can provide scene 

illumination and enhance the detection of concrete cracks in inspection images. Recent 

studies have also demonstrated how white- and black-box crack detection approaches can 

provide more accurate and precise crack classification and segmentation results when using 

directional lighting compared to regular diffused lighting [6], [7]. However, all previous 

studies have overlooked the effects of the angle of incidence of the projected directional 

lighting. This paper quantitatively and qualitatively compares the results of a directional 

lighting pixel-level segmentation white-box method with lighting projected from angles of 

incidence of 10, 20, 30, 40, and 50 degrees. 

1. Directional Lighting Algorithm  

A detailed description of the white-box directional lighting algorithm used in this paper is 

outlined in [6], [7]. A brief explanation is provided below (see Figure 1 for illustration). The 

algorithm’s output shows the extremities of the crack in all lighting directions.  

 

I. Image acquisition: four images of the concrete surface are captured, each 

illuminated with angled lighting projected from the Above (A), Below (B), Right (R), 

and Left (L) directions. An additional Diffuse lighting (D) image is also captured.  

II. Crack detection: A 3 × 3 Laplacian kernel is individually applied to each directional 

lighting image to extract the edges (cracks) using the pre- and post-processing 

methods outlined by Dorafshan et al. [8].  

III. Image combination & de-noising: The edge images are combined using a bitwise 

OR operation, where a resulting pixel is labelled as positive if that pixel is positive in 

any of the input images. Finally, the skele-marker noise removal method (outlined in 

[9]) is applied to remove false positive pixels. 

  

 
Figure 1. Illustration of directional lighting algorithm used in this paper. A full summary is provided in [6], 

[7]. The thick crack slab in this figure is indicative and for reader viewing only; it is not used in the analysis. 
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2. Methodology  

2.1 Dataset Formation  

Twelve concrete slabs were cast, each featuring varying textures, colours, and imperfections 

to simulate real-world conditions (see Figure 2a-e). The slabs were fractured with hairline 

cracks by placing a metal bar behind the slab and applying force to either side. All twelve 

slabs exhibited crack widths between 0.07 mm and 0.3 mm, well within the 0.4 mm 

maximum tolerable width for reinforced concrete structures outlined in  Eurocode 2 [10].  

 

Each slab was imaged under directional lighting conditions using an iteration of a novel 

directional lighting apparatus, Adaptive Lighting for the Inspection of Concrete Structures 

(ALICS). The exact hardware specifications of the device (e.g. camera, working distance, 

lighting) are outlined in [6]. 

 

Five datasets were formed for this study, each using a directional lighting angle of incidence 

of 10, 20, 30, 40 or 50 degrees, respectively (see Figure 2. a) – e) ample of right lighting with 

varying angles of incidence.). For each slab in the dataset, five images were captured, 

matching the A, B, L, R, and D requirements of the directional lighting algorithm. Figure 1 

illustrates the different lighting directions subjected to one imaged slab. A total of 300 images 

were captured for this study, formed from five datasets, each with 12 slabs and five images 

per slab. 

 

Figure 2 shows an imaged concrete slab from the dataset illuminated with right lighting 

across all five angled lighting datasets (10, 20, 30, 40 and 50 degrees). 
 

 
a) 50-degree 

 
b) 40-degree 

 
c) 30-degree 

 
d) 20-degree 
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e) 10-degree 

 
f) Cross-section of different acquisition 

angles. 

Figure 2. a) – e) ample of right lighting with varying angles of incidence. f) cross-sectional view of lighting 

apparatus and angles used in this study. 

2.2 Ground Truth Definition  

Ground truths were defined by manually outlining the crack in image editing software. The 

width of the tracing tool was adjusted to match the crack width. One ground truth was defined 

for each slab. As the camera position was fixed during image acquisition, each slab’s ground 

truth was suitable for all five lighting angle datasets. 

 

2.3 Testing Procedure  

The directional lighting crack segmentation algorithm was applied to every slab in each 

lighting angle dataset. This resulted in 12 outputs per lighting angle; each output was 

compared to their respective ground truth to find the true positives (TP), false negatives (FN), 

false positives (FP) and true negatives (TN). These values were summed for each dataset, 

resulting in TP, FN, FP and TN values for every lighting angle. The metrics in Table 1 were 

calculated to evaluate the performance of each lighting angle. 

 
Table 1. Performance metrics for a classifier. 

Name Description Equation 

True positive rate (recall) (TPR) 
The estimated probability that an 

actual positive will test positive. 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Positive predictive value 

(precisions) (PPV) 

The estimated probability that a 

positive prediction is a true 

positive. 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1 score (F1) 
The weighted average of recall 

and precision. 
𝐹1 =  2 ×

𝑇𝑃𝑅 × 𝑃𝑃𝑉

𝑇𝑃𝑅 + 𝑃𝑃𝑉
 

3. Results  

3.1 Quantitative Results 

Table 2 presents the algorithm’s results on each angled lighting dataset, showing TN, TP, 

FN, and TP compared to the ground truths. Figure 3 shows the algorithm’s performance 

metrics (outlined in Table 1) for each lighting angle of incidence.  
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Table 2. TN, TP, FN, and TP results of the directional lighting method for each angle of incidence dataset.  

Angle (degrees) TN FP FN TP 

50 180,384,252 33,858 68,669 146,821 

40 180,325,062 42,547 134,069 131,922 

30 180,297,628 81,638 168,835 85,499 

20 180,248,259 158,653 187,951 38,737 

10 180,039,737 380,458 193,261 20,144 

 

 
Figure 3. TPR, F1, and PPV values of the directional lighting method for each lighting angle of incidence 

dataset. Acronyms are described in Table 1. 

The directional lighting algorithm achieved the best performance results on the 50-degree 

lighting dataset, obtaining a recall, precision, and F1 score of 68%, 81%, and 74%, 

respectively. The 30- and 40-degree lighting datasets had a significant drop in recall when 

compared to 50-degree lighting. With the exception of 10-degree lighting, all datasets had a 

higher precision than recall, indicating minimal noise. The performance of 20- and 10-degree 

lighting was very poor, with all metrics measuring under 20%. 

 

The 50-degree lighting F1 score of 68% is lower than the measured value of 78% from the 

previous study in [7], likely attributed to noise induced by the real-world simulated dataset. 

However, the measured F1 value in this study is still greater than the F1 score of 11% from 

a similar Laplacian-based segmentation method using diffused lighting data tested by 

Dorafshan et al. [8]. 

3.2 Qualitative Results  

The metrics from the analysis in section 3.1 indicate that 50-degree lighting performs better 

overall than 30-degree lighting. However, a qualitative analysis provides further insights. 

Figure 4 shows the algorithm output of one slab using the 50-degree lighting dataset, and 

Figure 5 shows equivalent output from the 30-degree lighting dataset. Ground truths for both 

sections are shown in Figure 6. 
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Figure 4. a) output of directional lighting algorithm using 50 degrees lighting, b) inset of an area at the top of 

the image, c) inset of an area at the middle of the image. 

 
Figure 5. a) output of directional lighting algorithm using 30 degrees lighting, b) inset of an area at the top of 

the image, c) inset of an area at the middle of the image. 

 

 

Figure 6. a) Ground truth of dataset samples shown in Figure 4 and Figure 5, b) inset of an area at the top of 

the image, c) inset of an area at the middle of the image. 
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Figure 4b and Figure 5b shows the segmentation results for a portion of the slab (towards the 

edge of the image) for lighting projected from 50 and 30 degrees, respectively. In this sub-

image, 30-degree lighting showed better segmentation of the crack when compared to 50-

degree lighting, with results closely matching those of the ground truth in Figure 6b. 

 

Figure 4c and Figure 5c illustrates the segmentation results of a sub-image located near the 

centre of the slab for 50- and 30-degree lighting. In this sub-image, 50-degree lighting has 

better segmented the crack in comparison to 30-degree lighting, demonstrating a close match 

to the ground truth in Figure 6c. 

4. Conclusion  

This paper compared the performance of a directional lighting concrete crack pixel-level 

segmentation algorithm under different lighting angles of incidence. The tested directional 

lighting algorithm (proposed in a previous publication) applies crack detection image 

processing techniques to multiple images of a concrete surface, each illuminated from a 

different direction. The results from all lighting directions are combined using a bitwise OR 

operation and de-noised using the skele-marker method. This research compared the 

performance of the algorithm under 10-, 20-, 30-, 40- and 50-degree angle of incidence 

lighting on a dataset of 12 cracked concrete slabs. Quantitative analysis showed that 50-

degree lighting performed the strongest, obtaining a recall, precision, and F1 score of 68%, 

81%, and 74%, respectively. However, qualitative analysis revealed that on a sub-image 

scale, 50-degree lighting was outperformed by 30-degree lighting towards the edges of the 

images. In these areas, 30-degree correctly segmented cracks that 50-degree lighting missed 

entirely. The opposite was true for cracks at the centre of the image, with 50-degree lighting 

yielding better results than 30-degree. This study has demonstrated that directional lighting 

crack segmentation results are sensitive to the lighting angle of incidence and defect position. 

Future studies should investigate combining the segmentation results of different lighting 

directions: utilising lower-degree angles of lighting at the edges of the images and higher-

degree angles of lighting at the centre of the images. Future research should also explore why 

30 degrees performs better at the image edges and consider lighting angles above 50 degrees. 
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