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ABSTRACT

Measuring transient functional connectivity is an important challenge in
electroencephalogram (EEG) research. Here, the rich potential for insightful, discriminative
information of brain activity offered by high-temporal resolution is confounded by the inherent
noise of the medium and the spurious nature of correlations computed over short temporal
windows. We propose a methodology to overcome these problems called filter average
short-term (FAST) functional connectivity. First, a long-term, stable, functional connectivity is
averaged across an entire study cohort for a given pair of visual short-term memory (VSTM)
tasks. The resulting average connectivity matrix, containing information on the strongest
general connections for the tasks, is used as a filter to analyze the transient high-temporal
resolution functional connectivity of individual subjects. In simulations, we show that this
method accurately discriminates differences in noisy event-related potentials (ERPs) between
two conditions where standard connectivity and other comparable methods fail. We then
apply this to analyze an activity related to visual short-term memory binding deficits in
two cohorts of familial and sporadic Alzheimer’s disease (AD)-related mild cognitive
impairment (MCI). Reproducible significant differences were found in the binding task with no
significant difference in the shape task in the P300 ERP range. This allows new sensitive
measurements of transient functional connectivity, which can be implemented to obtain
results of clinical significance.

AUTHOR SUMMARY

Filter average short-term (FAST) connectivity is an EEG analysis method that enhances
detection of dynamic functional connectivity changes during cognitive events like event-
related potentials, effectively handling EEG noise and maximizing temporal resolution. It
reduces the required trial numbers for reliable analysis, particularly beneficial for studying
tasks such as working memory. FAST connectivity complements traditional methods by
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focusing on temporal connectivity patterns, showing superior performance in simulations
compared with standard measures. Applied to Alzheimer’s datasets, it identifies significant
differences in brain activity during visual short-term memory tasks, highlighting its potential for
understanding neurological conditions.

INTRODUCTION

Network science approaches to the analysis of complex networks provide useful tools for the
analysis of connectivity between agents (Smith et al., 2017, 2019). The brain is an example of
a complex network where pairwise dependencies between brain regions are of value in the
detection of cognitive phenomena. It is found that it is neither the spatial nor temporal local-
ization of brain activity that underpins cognitive phenomena and the corresponding brain
function but, in fact, how the different areas of the brain are dynamically interconnected over
time (Britz et al., 2010; Sporns et al., 2005; Zhao et al., 2022). This has led to a boom in studies
of functional connectivity of brain activity across viable formats (Brookes et al., 2011;
Bullmore & Sporns, 2009; Stam, 2014)—mainly the BOLD signal in fMRI (Sanz-Arigita
et al., 2010) and electromagnetic recordings from EEG and Magnetoencephalogram (MEG).
Here, typically, signals from parcellated regions (in fMRI) or sensors (in EEG/MEG) are subject
to pairwise measures of connectivity, such as correlation coefficients, coherence measures, or
phase-based measures (Canolty & Knight, 2010; Fries, 2015). In particular, there has been a
clear increase in the study of functional connectivity changes related to Alzheimer’s disease
(AD) in the form of the study of the brain as a network using various graph-theoretic tools (De
Haan et al., 2009; Stam et al., 2007; Supekar et al., 2008).

The EEG contains important discriminating information relating to sequential brain pro-
cesses in response to various cognitive tasks (John et al., 1988; Leuchter et al., 1994; Thatcher
et al., 2005). Providing a very high-temporal resolution, scalp EEG allows for the direct record-
ing of electromagnetic activity of the brain in a noninvasive, relatively cheap way (Light et al.,
2010). Scalp EEG presents several notable limitations, however, with the most prominent
being the substantial noise levels inherent in the recorded signals. This noise poses a signifi-
cant challenge, especially when attempting to investigate the functional connectivity associ-
ated with transient cognitive processes occurring within brief time frames, typically spanning
mere tens of milliseconds. A pivotal issue within the realm of functional connectivity of EEG
signals pertains to the extraction of dependable connectivity estimates within these remarkably
short time intervals (Clark et al., 2022). This problem underscores the necessity for novel meth-
odologies to overcome noise-related hurdles and facilitate the precise examination of cogni-
tive processes unfolding at rapid temporal scales (Smith et al., 2019). Measuring dynamic
functional brain connectivity in short time windows is gaining increasing recognition in AD
research due to its potential to provide information for the early detection of the devastating
disease (Johnson et al., 2012; Niu et al., 2019; Paitel et al., 2021). An important reason for this
is the growing recognition that intricate changes in brain connectivity can occur before the
onset of clinical symptoms; this makes it a promising avenue for early biomarker development
and a better understanding of disease progression. AD is not a static condition but involves
dynamic changes in brain function; short-time based analysis with noninvasive brain imaging
techniques can provide important breakthroughs in AD early detection, especially in low-
income countries (Pietto et al., 2016).
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Despite the growing popularity of these studies, there has been limited methodological
work on the analysis of EEG dynamic functional connectivity (DFC). Previous work typically
focuses on the sliding window method (Mateo & Talavera, 2018; Savva et al., 2019; Šverko
et al., 2022); while this is fairly effective, the temporal resolution and susceptibility to noise is
largely determined by the window size. It has become a priority to simultaneously improve the
temporal resolution of DFC while being robust to spurious connections and noise. Methods
such as the short-term Fourier transform (Mateo & Talavera, 2018) and wavelet analysis (Li &
Chen, 2014) have been frequently applied in this domain, but once again, the dependency on
window size causes bottlenecks in regard to temporal resolution and noise robustness.

Graph signal processing (GSP) approaches have been employed frequently in the past to
perform spectral analysis of signals in the graph domain (Ortega et al., 2018). This is achieved
by computing the eigenvalue decomposition of a relevant graph-shift operator such as the
graph Laplacian or adjacency matrix followed by the graph Fourier transform. However, the
frequencies that emerge through the graph eigenvectors are still determined completely by
the graph topology and do not involve the signal itself (Smith et al., 2019).

Here, we propose a new method for extracting reliable estimates of short-term functional
connectivity. This is based on a graph-variate signal analysis (Smith et al., 2019), a more gen-
eral framework for graph signals. Specifically, it describes how to leverage graphs of long-term
reliable connectivity information to filter instantaneous bivariate node functions of multivariate
signals. In essence, this emphasizes important connections and minimizes spurious ones (a
well-known issue in EEG signals). This gives us a readily interpretable method to analyze
the transient changes in brain activity at a high-temporal resolution using pairwise connectivity
measures between EEG electrodes.

Graph-variate dynamic (GVD) connectivity (Smith et al., 2019) is when the long-term con-
nectivity estimate that is computed from the signal itself over the given epoch of interest so that
the graph signal is directly related to the underlying graph and measurements and, therefore,
solely relates to one connectivity function.

Here, we develop and employ a novel methodology based on GVD connectivity that we
call filter average short-term (FAST) connectivity. Essentially, FAST connectivity uses the aver-
age long-term connectivity matrix over the whole study cohort as a filter of transient functional
connectivity at the individual level. Essentially, we are deriving the most consistent connec-
tions across all participants and then asking if the temporal activity associated with those con-
nections shows differences between, for example, patients and control.

Traditional functional connectivity methods typically employ measures such as the ampli-
tude envelope correlation (AEC) or phase locking value (PLV) combined with source recon-
struction methods to assess pairwise functional coupling (Hatlestad-Hall et al., 2023).
However, the inherent noise in EEG recordings undermines the efficacy of using Pearson
correlation coefficients between channel time series as a reliable measure. The FAST filter,
which provides a noise-robust matrix representing consistent long-term correlations as a stable
support for instantaneous connectivity rather than being the conclusive object of analysis,
offers a more appropriate use of this metric for analyzing temporally evolving instantaneous
connectivity. This enhances the reliability of coupling measures in the presence of EEG noise.

EEG recordings are further complicated by individual variability, heterogeneous artifacts,
volume conduction effects, and low spatial resolution, which pose significant challenges for
spatial filtering approaches such as source reconstruction methods. These methods struggle to
accurately solve the inverse problem of mapping a scalp-recorded activity to specific brain

Dynamic functional connectivity
(DFC):
The study of how functional
connections in the brain change over
short periods, often using methods
like sliding windows to capture these
variations.

Graph signal processing (GSP):
A framework for analyzing signals
that reside on the vertices of a graph,
leveraging the graph structure to
perform a spectral analysis.

Graph-variate signal analysis:
A general framework for the analysis
of multivariate time series on
temporally evolving graphs against a
stable support.

FAST connectivity:
A method using a global filter
computed over all participants as a
stable support for the analysis of
individual instantaneous EEG
connectivity profiles.

Pearson correlation coefficient:
A measure of the linear correlation
between two variables, used here to
calculate long-term connectivity.

Network Neuroscience 3

FAST functional connectivity applied to Alzheimer’s disease



regions, especially given the unknown number of sources at any given time. FAST connectivity
does not operate in this more traditional domain of analysis and is not intended to replace
spatial methods for identifying precise brain regions of activity. Instead, it generalizes consis-
tent statistical dependencies across broader brain regions and serves as a temporal filtering
technique. This makes it a valuable complement to spatial filtering approaches, enhancing
the overall analysis of brain connectivity.

As we shall see, the high-temporal resolution of brain activity provided by the EEG (Light
et al., 2010) can now be exploited to detect more sensitive and specific cognitive changes in
very short time frames.

We demonstrate the power of FAST connectivity in simulations for picking out the true
activity of event-related potentials (ERPs) in the presence of different levels of noise and dif-
ferent numbers of trials. We then apply this to the dataset containing EEG signals from the
participants in the visual short-term memory (VSTM) tasks (Smith et al., 2022). Following this,
we perform rigorous statistical testing on temporal windows resulting from the multilayer
graph-variate tensor. This uncovers a potential biomarker for the early detection of AD.

METHODS

Background

The method proposed is inspired from the modular Dirichlet energy (Smith et al., 2017) and
the graph-variate signal analysis (Smith et al., 2019) methods. We thus briefly introduce these
concepts.

The Dirichlet energy of a graph signal x is defined as follows:

xT Lx ¼
Xn
i;j¼1

wij xi − xj
� �2

(1)

(Smith et al., 2017).

Essentially, this allows us to contrast pairwise graph signal smoothness or variability with a
measure wij.

The squared difference between signal pair values can be considered as a localized mea-
sure of the variation between signal pair values. This captures the local variation of the sig-
nal. A higher value would indicate higher variation in the signal pair region, whereas if it
was small, the signal pair values are fairly constant or change smoothly in the localized
region. The Dirichlet energy captures the sum of the local variations over the graph. The
term local Dirichlet energy will be used from now to refer to pairwise or modular squared
differences.

Graph-variate signal analysis is defined formally as follows:

W ∘
�
J
tð Þ

� �
ij

¼ wijFV xi tð Þ; xj tð Þ� �
; if i ≠ j

0; if i ¼ j

�
(2)

where the formula defines the bivariate analysis of the multivariate signal X filtered by the
corresponding static matrix W of the graph-variate signal.

�
J tð Þ denotes the t’th n × n matrix

of
�
J, and ∘ is the Hadamard product. Each timestep of

�
J is defined by a n × n matrix computed

Event-related potentials (ERPs):
Brain responses that are the direct
result of a specific sensory, cognitive,
or motor event.

Modular Dirichlet energy (MDE):
A measure previously used to
analyze brain connectivity, similar to
the approach in FAST connectivity.

Local Dirichlet energy:
A measure used in FAST connectivity
to analyze the variability within
localized regions of brain activity.
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using the pairwise bivariate connectivity values between signal pairs. The form of dynamic
connectivity is determined by the node function FV.

GVD connectivity is defined as a graph-variate signal analysis in which W = C is a static
adjacency matrix constructed from the long-term stable dependencies of the multivariate sig-
nal itself. We define our tensor for analysis from Smith et al. (2019) as follows:

θ xi ; xj ; t
� � ¼ cijFv xi tð Þ; xj tð Þ

� �
; if i ≠ j

0; if i ¼ j

�
(3)

The multilayer network θ is constructed using different relevant combinations of node func-
tions and long-term stable connectivity pairs.

Each cij used to construct C is constructed using relevant connectivity measures that give a
reliable estimate for long-term term connectivity. A standard approach is the Pearson correla-
tion coefficient computed over the whole epoch of interest:

cij ¼
X

t2T xi tð Þ − �xið Þ xj tð Þ − �xj
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t2T xi tð Þ − �xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t2T xj tð Þ − �xj
� �2q ; (4)

(Smith et al., 2019)

where T is the epoch of interest and �xi is the mean of the values over time of the node i
and where T is the epoch of interest and �xi is the mean of the values over time of the
node i; combining this with the squared difference, GVD connectivity can be defined as
follows:

θ xi ; xj ; t
� � ¼ cij exi tð Þ − exj tð Þ� �2

; (5)

where exi tð Þ is the normalized signal over the node space:

exi tð Þ ¼ xi tð Þ − �x tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn

k¼1
xk tð Þ − �x tð Þð Þ2

q ; (6)

and �x tð Þ is the mean over nodes of the signal at time t:

�x tð Þ ¼ 1
n

Xn
k¼1

xk tð Þ: (7)

It is clear now that the reformulated Dirichlet energy is a special case of a graph-variate
signal analysis.

FAST Connectivity

We now present FAST connectivity. A single filter is proposed for all participants in time-locked
cognitive task-based experiments. The filter takes the long-term connectivity estimates of all
participants in the experiments and averages over them to create a single FAST filter for all
participants that automatically emphasizes important connections and suppresses spurious

Time-locked cognitive task:
An experimental design where
participants perform tasks that are
synchronized to specific time points
to measure brain activity.
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ones in the general time-locked cognitive task of interest (in this case, the VSTM binding and
shape tasks). We define the FAST filter as follows:

Definition 1. FAST Filter

Where C is the matrix of the absolute values of the individual long-term correlation estimates,
with cij representing each entry in the matrix. For P = 1,2 … N, where P is each participant and
N is the total number of participants. We define our FAST filter as follows:

cFASTij ¼
XN

P¼1
cPij

N
(8)

cij ¼
X

t2T xi tð Þ − �xið Þ xj tð Þ − �xj
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t2T xi tð Þ − �xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t2T xj tð Þ − �xj
� �2q

�������
�������; (9)

We have defined our long-term connectivity estimate as the modulus of the Pearson
correlation coefficient; this captures the long-term stable magnitude of the correlation of all
participants in the task. Following Definition 1, we define FAST connectivity as follows:

Definition 2. FAST Connectivity

For each P = 1 … N where N is the total number of participants, the same FAST filter is applied
to each participant. Fast connectivity is the analysis of the network tensor of the form.

θFAST xPi ; x
P
j ; t

� 	
¼ cFASTij exP

i tð Þ − exPj tð Þ
� 	2

; if i ≠ j

0; if i ¼ j
: (10)

FAST connectivity proposes the same filter for all participants P. This filter is constructed
using the magnitude of the stable long-term correlation averaged over all participants.

Setting wij as the relevant entry of the FAST filter matrix allows us to weigh corresponding
instantaneous variability by long-term stable connections. In layman’s terms, we first deter-
mine which brain regions are most consistently strongly connected in terms of statistical
dependencies over the whole cohort, we are then “focusing” on these regions and analyzing
the variability in these localized regions using the squared difference function.

Overall, the FAST connectivity analysis is sensitive to both fine-scale variations within indi-
vidual EEG signals and broader patterns shared across participants. By combining a global mea-
sure with local information, the method is effective in identifying regions that not only vary
locally but also exhibit strong synchronized connectivity across participants. This should reflect
meaningful functional connectivity patterns while reducing noise and spurious connectivity.

Using the absolute value of the long-term correlation coefficient for the global filter avoids
cancelling out information from important connections in network averages.

Similar to the modular Dirichlet energy (MDE; Smith et al., 2017), a prototype of GVD con-
nectivity, FASTconnectivity analyzes the temporal brain networks from a unique angle compared
with other approaches such as time series analysis of network metrics. Essentially, one stable net-
work of long-term connectivity is computed over the whole epoch and averaged over all partic-
ipants; this is used as a support for localized analysis of very small temporal windows, allowing us
to maximize the high-temporal resolution of EEG signals. The activity is, in fact, encoded in the
graph signal itself on the temporally evolving edge weights. This allows for the analysis of smaller
temporal windows of activity and also the analysis of the overall long-term activity.

Temporal brain networks:
Networks representing brain
connectivity that evolve over time,
analyzed in FAST connectivity.
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However, one clear limitation of this approach is that we lose out on potentially important
short-term connectivity between otherwise unimportant long-term connections. We do not
assume that such information is not important, but rather the problem of spurious correlations
over short-temporal windows far overshadows it. The success of the method demonstrated in
simulations and real data backs this argument.

Network Analysis of FAST Connectivity

FAST connectivity can be computed over arbitrarily selected windows, resulting in a connec-
tivity matrix for each window. We can then straightforwardly compute a network analysis on
these connectivity matrices. Here, we use the mean edge weights as well as an average local
weighted clustering coefficient of FAST functional connectivity. The mean edge weight is com-
puted as follows:

�W tð Þ ¼ 1
n2
Xn
i¼1

Xn
j¼1

Δij : (11)

We computed the average local weighted clustering coefficient for each temporal window
as follows:

Cavg tð Þ ¼ 1
n

Xn
i¼1

Xn
j;k¼1

ΔijtΔiktΔjkt ¼ 1
n

Xn
i¼1

Δ
�

3

tð Þ

� �
ii

(12)

(Smith et al., 2019).

We limited our choice to these two network metrics as we did not perform any binarization
on the connectivity profiles in order to maximize the information we can gain. Thus, we are
just analyzing changing edge weights of the completely connected graph; as a consequence of
this, the weighted clustering coefficient and the edge weights represented the general topolog-
ical distribution of the connectivity profile effectively and provided sufficient results.

Furthermore, at this initial stage of our methodological development, our goal is to identify
significant changes in global functional connectivity. To achieve this, we are not conducting a
node-by-node analysis. This approach is crucial for small sample-sized datasets, as nodal-level
testing greatly reduces statistical power due to multiple comparison corrections. Instead, we
are adopting a hypothesis-free approach regarding specific brain regions of interest.

The mean of the edge weights in this scenario essentially captures the Dirichlet energy of
the entire instantaneous filtered connectivity profile that provides a reliable measure of instan-
taneous connectivity as indicated in previous studies (Smith et al., 2017).

The clustering coefficient, on the other hand, quantifies the number of connected triangles
in a network and, thus, the tendency of nodes to cluster together. This weighted version mul-
tiplies the triangle weights together, with larger values where all triangle weights are large. The
average value for each temporal window emphasizes the strongly clustered components in the
signal. The computation is fairly straightforward with the sum of the main diagonal of the cube
of the tensor divided by the number of nodes (EEG electrodes).

We can make two interesting observations here, taking into account the law of large num-
bers stating that as the number of independent samples increases, the empirical mean con-
verges to the true mean; we can conclude that increasing the number of electrodes and, thus,
nodes (and thus independent samples) will give us a more stable and reliable estimate of the
mean for a given time step, allowing for a greater temporal resolution. This has been
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implicated in previous studies, where there is strong evidence showing that as a result of
reducing electrode density, networks tended to get skewed (Hatlestad-Hall et al., 2023); this
effect was most prominent below 64 electrodes. Also, the central limit theorem tells us that the
estimate will converge to a normal distribution as the number of independent samples
increases, suggesting that increasing the number of electrodes would allow the network metric
estimates to follow a more Gaussian distribution, allowing us to exploit the various statistical
approaches that assume Gaussianity.

Wavelet Power Spectra Analysis

The wavelet transform (Kumar et al., 2022) is a powerful tool for analyzing temporally varying
signal data. It allows for the decomposition of a signal into components localized in both time
and frequency domains. One of the commonly used wavelets for continuous wavelet trans-
form (CWT) is the Morlet wavelet, which is particularly useful for detecting oscillatory patterns
in the signal.

The CWT of a signal x(t) using a mother wavelet ψ(t) is defined as follows:

Wx a; bð Þ ¼ 1ffiffiffi
a

p
Z ∞

−∞
x tð Þψ t − b

a

� �
dt ; (13)

where a is the scale parameter, which controls the dilation of the wavelet; b is the translation
parameter, which controls the translation of the wavelet; and ψ(t) is the complex conjugate of
the mother wavelet ψ (t).

The Morlet wavelet is defined as follows:

ψ tð Þ ¼ π−
1
4e jω0te

−t2
2 (14)

where ω0 is the central frequency of the wavelet.

The wavelet transform can be viewed as a convolution of the signal x(t) with a set of wave-
let functions. Each wavelet function is a scaled and shifted version of the mother wavelet ψ(t).
The wavelet coefficients Wx(a, b) represent the correlation between the signal and the wavelet
at different scales a and positions b.

To analyze the EEG signals, we split the data into 10 disjoint temporal windows. For each
window, we computed the power spectrum for each channel using the wavelet coefficients.
This allowed us to analyze the signal in the frequency-time domain. This process helps in
understanding how the power of different frequency components of the signal varies over
time. In this case, we used the Morlet wavelet as our mother wavelet of choice.

Simulations

We utilized open-source MATLAB functions provided by Yeung et al. (2004, 2007) to generate
the simulated EEG data. The simulated data consist of two key components: The signal com-
ponent is generated to mimic the power spectrum of a typical human EEG recording. The peak
component is parameterized to describe the position of the center of the peak or ERP, its fre-
quency, and its amplitude. These parameters enable us to create sample ERPs, which serve as
the basis for testing the effectiveness of our method. The EEG simulation functions provide a
setup with 31 electrodes, each sampled at a frequency of 200 Hz, with an epoch duration of
0.8 s. To generate independent samples, we averaged the random signals over varying numbers
of trials, resulting in single 31 × 200 dimensional samples that closely resemble real EEG data.
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For our experimental setup, we aimed to replicate conditions akin to typical comparisons
between participants in time-locked VSTM tasks. We created 20 independent samples consist-
ing solely of EEG time series, aligning with the EEG power spectrum of a typical human. In
parallel, we generated 20 independent samples with specific ERPs, including the N100 and
P300 components. The amplitude of the general EEG signal was set at 10.

The N100 component was parameterized with an amplitude of −5 (typically negative) and
a frequency of 15 Hz, with a center position at 25 frames (around 100 ms) considering the 0.8-s
epoch. The P300 component was parameterized with an amplitude of 5 (positive and larger than
N100) and a frequency of 5 Hz, with a center position at 75 frames (around 300 ms) within the
0.8-s epoch. To introduce a realistic variability, the functions incorporate temporal jitter at the
onset of the ERPs, mirroring the kind of activity observed in actual EEG ERP data. We then added
random Gaussian white noise to the samples containing the simulated ERPs to test the robustness
of our FAST filtering method in the presence of variable levels of external noise. This approach
allows us to rigorously test the performance of our method in distinguishing between the pres-
ence and absence of these specific ERP components in simulated EEG signals.

The N100 has been previously implicated in various neurological disorders such as schizo-
phrenia and attention-deficit/hyperactivity disorder (ADHD; Murias et al., 2007). The P300 is
characterized by a positive deflection in the EEG signal and usually occurs around 300 ms post
the presentation of stimuli. The P300 can be influenced by the given task the participant is
involved in and is associated with the evaluation of the relevance of stimuli. The P300 has
been heavily researched in AD (Paitel et al., 2021; Parra et al., 2012; Pedroso et al., 2012)
and is associated with decision-making and working memory.

VSTM Data

This study examines patients with mild cognitive impairment (MCI) due to AD, focusing on the
predementia stage. The MCI participants are categorized into familial (MCI-FAM) and sporadic
(MCI-SPO) groups. Familial AD participants exhibit AD symptoms but do not yet meet the
criteria for dementia, although they will inevitably progress to it. Sporadic AD participants,
representing the most common type, have an undetermined risk of developing dementia. Both
groups are compared with control participants without genetic mutations and free of psychi-
atric or neurological disorders.

All participants gave written informed consent following the Helsinki Declaration. The
Ethics Committees of the Institute of Cognitive Neurology (INECO) and the University of Anti-
oquia approved the study.

Sporadic MCI. Table 1 examines sporadic MCI (MCI-SPO) focusing on demographic and clin-
ical characteristics of the subjects.

We report on the Mini-Mental State Examination (MMSE), with a detailed clinical and neu-
ropsychological profile available in Pietto et al. (2016). Patients exhibited multiple-domain

Table 1. Demographic and clinical characteristics of subjects MCI-SPO

MCI patients (n = 13) Healthy controls (n = 19)
Age (years) 73.08 ± 9.01 67.21 ± 10.14

Education (years) 14.08 ± 4.44 16.50 ± 1.99

MMSE scores 26.46 ± 2.47 29.50 ± 0.52

Network Neuroscience 9

FAST functional connectivity applied to Alzheimer’s disease



amnestic MCI based on various tests. Nine patients were at high risk for AD conversion, while
three had nonamnestic MCI multidomain. The data include a 128-channel EEG activity
recorded at 512 Hz using a Biosemi Active Two System, filtered from 1 to 100 Hz, and
down-sampled to 256 Hz.

Familial AD dataset. The MCI-FAM group carries the E280A mutation of the presenilin-1 gene,
leading to guaranteed early-onset familial AD. Table 2 details the basic demographic and clin-
ical characteristics as with MCI-SPO.

The data consist of a 60-channel EEG activity recorded with a 64-channel EEG cap using
SynAmps 2.5 in Neuroscan at 500 Hz, band-pass filtered from 1 to 100 Hz with impedances
below 10 k. Four ocular channels were discarded after being used to factor out oculomotor
artifacts.

VSTM binding and shape task description and performance. In the assessment of VSTM, two dis-
tinct tasks are employed (Smith et al., 2022): a shape-only change detection task and a binding
task. In the shape-only task, participants are presented with arrays featuring three different
black shapes, while in the binding task, the arrays consist of three distinct shapes, each with
a unique color. Each trial in both tasks comprises three phases: an initial encoding period (last-
ing 500 ms), during which participants view a study array on the screen, followed by a short
delay of 900 ms, and concluding with the test period. In the test period, a test array is dis-
played, and participants are tasked with determining whether the objects in the two arrays
are identical or different. To prevent reliance on spatial cues, the positions of objects are ran-
domized. Shapes and colors are randomly selected for each trial from sets of eight options.
Notably, in 50% of the trials, both arrays feature identical objects. In the remaining 50%,
changes occur: In the shape task, two shapes are substituted with new ones, while in the bind-
ing task, the colors of two shapes are interchanged. Participants commence with a practice
session and subsequently complete 100 trials for each task. Importantly, the order in which
they engage in the binding and shape tasks is systematically counterbalanced across partici-
pants, ensuring a comprehensive exploration of VSTM dynamics (Pietto et al., 2016; Smith
et al., 2022).

The response accuracy to the two VSTM task conditions was similar for both controls
(Mann–Whitney U: 34, Z = 1.17, p = 0.24, d = 0.64) and MCI-FAD (Familial Alzheimer’s Dis-
ease) patients (Mann–Whitney U: 28, Z = 1.63, p = 0.10, d = 0.77). However, between-group
comparisons showed that controls had higher accuracy in the shape–color binding condition
(Mann–WhitneyU: 22.5, Z = −2.08, p < 0.05, d = 0.93), with no significant differences observed
in the shape-only condition (Mann–Whitney U: 25.0, Z = −1.89, p = 0.063, d = 1.02).

Within-group comparisons showed no significant differences in the response accuracy
between task conditions for controls (Mann–Whitney U: 66.5, Z = 1.42, p = 0.16, d = 0.60)
or MCI-SPO patients (Mann–Whitney U: 54, Z = 1.54, p = 0.12, d = 0.64). MCI-SPO patients

Table 2. Demographic and clinical characteristics of subjects MCI-FAM

Patients (n = 10) Healthy controls (n = 10)
Age (years) 44.4 ± 3.2 44.3 ± 5.6

Education (years) 7.3 ± 4.1 6.8 ± 2.9

MMSE scores 25.20 ± 4.50 29.10 ± 1.10
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performed significantly worse than controls in both the shape-only (Mann–Whitney U: 42.5,
Z = 2.33, p < 0.05, d = 0.91) and shape–color binding (Mann–Whitney U: 42.0, Z = 2.35, p <
0.05, d = 0.92) conditions.

Signal preprocessing was performed to get signals band-passed into delta (0.01–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (>30 Hz) frequencies with each
epoch lasting 1 s poststimuli exposure.

Statistical Methods

We designate as a result of clinical interest as a given temporal window where there is a sig-
nificant difference between patients and controls in the binding task and no significant differ-
ence in the shape task as this points to a specific binding deficit in AD.

The network analysis was done using FAST connectivity. We first applied Definition 1 to
create our FAST filter of overall general VSTM task activity. A separate filter was created for
the MCI-FAM dataset and for the MCI-SPO dataset due to them having different experimental
parameters (i.e., number of electrodes). We then split the FAST connectivity tensors into ten
0.1-s nonoverlapping temporal windows by averaging over smaller time windows to give us
10 matrices of FAST connectivity for each participant with a high-temporal resolution.

Nonparametric Wilcoxon rank-sum tests are performed to assess for statistical significance
between patients and controls. These are computed at each 0.1-s temporal window between
the vectors of mean network metrics for patients and controls at each temporal window. This is
repeated for the mean edge weights and the mean weighted clustering coefficient values. The
direction and size of the differences are calculated using Cohen’s d effect size. In our exper-
iments, a negative value would indicate a greater local Dirichlet energy in the AD patients for
the given VSTM task.

In order to account for the multiple comparisons, we applied the Benjamini-Hochberg false
discovery rate (FDR) correction to account for multiple temporal significance testing. This was
done at the 10% and 5% level. While 5% is often held as the strict standard, the 10% level
allows us to look for sensitivity pointing toward repeatability across datasets, that is, where one
dataset passed FDR at a given time point at 5% and the other at 10%.

RESULTS

FAST Connectivity Outperforms Wavelet Transform and Unfiltered Connectivity at Robust, Temporally

Precise ERP Detection

A simulation in a general case scenario is implemented to show the effectiveness of our
method at picking up relevant ERPs. This is tested across varying noise levels and the number
of task trials. First, we performed a three-way comparison between the unfiltered node func-
tion, individual GVD filters, and our FAST filter. Our aim is to evaluate the effectiveness of our
methodology in detecting these simulated ERPs compared with a “control” group where the
ERPs are not present.

Gaussian white noise is added randomly to each of the electrodes equally in the simulated
setup (note, we are adding a random white noise, which is distinct from the signal generated
by the MATLAB functions that resemble the power spectrum of a typical human EEG
recording).

Figure 1 shows visually the effect of the FAST filter on instantaneous EEG connectivity pro-
files. We used a time step consisting of a simulated ERP in the presence of a high level of
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Gaussian distributed noise. We can see that the FAST filter has first established the highly
important connections in terms of long-term stable connectivity and identified regions of lower
consistency where spurious connections are likely to be present. After the application of the
FAST filter, we can see that areas of importance have been emphasized (red patches) while
spurious connections and noise have been weighted down. Note that the FAST filter is task
selective and that only areas that are both instantaneously and globally consistent are empha-
sized; that is, if we had a very weak connection instantaneously but it was strong globally, it
would not be emphasized. This is a justification for us using both the shape and binding tasks
to compute our FAST filter as the FAST filter would activate binding-specific areas and shape-
specific areas dependent on the task being analyzed, while common strongly connected areas
in both tasks would be automatically emphasized. This allows us to utilize the stable connec-
tivity information of both tasks while making sure we do not obtain spurious results due to
differences in the tasks. While we can do this due to the similarity of the VSTM binding
and shape task and given that they are on the same timescale, highly differing tasks on different
timescales would likely not be suitable to construct a FAST filter on as the likelihood of spu-
rious results would increase.

Although Graph-Variate Signal Analysis (GVSA) is usually performed with distinct individ-
ual filters of long-term stable connectivity distinct for each participant, this would result in
individual variation and noise in the EEG signals to bias the instantaneous connectivity pro-
files resulting in false positives or Type 1 errors.

Figure 2 illustrates this; when we use individual filters, the noise in the medium is resulting
in a very high number of Type 1 errors, with a spurious significant difference being picked out
(all time steps are significant, with the mean clustering coefficient and edge weights overlap-
ping). FAST connectivity, as shown above, results in no false positives.

Common baseline EEG analyses revolve around the analysis of the power spectrum of the
frequency domain of EEG signals. Therefore, it is important to study the added benefits of our
approach for classification of EEG signals beyond the power spectral analysis. In this vein, we
compare FAST functional connectivity with the wavelet transform, a common approach to
analyzing temporally varying signal power spectra. The CWT produces wavelet coefficients,
which capture how the signal correlates with the wavelet at different scales (frequencies) and
translations (times). The wavelet coefficients obtained from the CWT are complex numbers.
The magnitude squared of these coefficients represents the power of the signal at different fre-
quencies and times.

We compute the overall power of the signal within each temporal window across all chan-
nels. We then computed this for all simulated participants or samples with and without a

Figure 1. A visual demonstration of the effect of the FAST filter on the EEG instantaneous connectivity profile. The left panel shows the raw
EEG connectivity profile, while the right panel displays the connectivity profile after applying the FAST filter, illustrating the filter’s ability to
enhance relevant connectivity patterns and reduce noise.
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simulated ERP and performed the rank-sum test for significance with FDR correction at varying
levels of trials and external noise levels.

We decided to test FAST connectivity’s robustness to noise more rigorously by varying
levels of added Gaussian noise at different numbers of trials for each simulated participant
EEG. We extracted the FDR-corrected p values at the P300 ERP time steps of interest (prede-
termined to exist at these time steps), enabling us to compare the ability of unfiltered dynamic
connectivity (the squared difference node function with a support of 1s with 0s on the main
diagonal as the “filter”) against the FAST filtered approach to pick out significant differences at
these points while also making a comparison with the more traditional wavelet power spectra
approach. We tried trials ranging from 50 to 300 corresponding to typical real-life experiments
where EEG signals are recorded.

Figures 3A, 3B, and 3D show the p values obtained using unfiltered functional connectivity,
FAST functional connectivity, and wavelet analysis, respectively. Our FAST functional connec-
tivity approach consistently and strongly outperforms the baseline methods in almost all cases.

Figure 2. The p value plots over time for the detection of the N100 and P300 ERP’s (individual
filters (A) vs. FAST filter (B)).
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The wavelet power spectra analysis, at first glance, performs adequately, being able to detect
the ERP at all trial sizes when no external noise is added. On further inspection looking at the
trend of p values, the lowest p value comes at 50 trials; this is an unexpected behavior, and the
expected pattern emerges at 100 trials and above. This is a strong indication of a Type 1 error
taking place due to the inherent noise in the EEG signal causing spurious “significant differ-
ences.” Upon the further observation of the p values of the wavelet transform at all time steps,
we noticed that while the ERP could be detected at an external noise level of 0, there was a
large number of false positives at other non-ERP time steps, reducing the power of our statis-
tical analysis greatly. Referring back to Figure 2, this is a similar behavior when the individual
filters of GVSA are used. Importantly, we noticed that FAST connectivity had a very low (almost
0) false positive rate, with significant differences only at the time steps of interest.

Another important consideration in analyzing DFC in small temporal windows is the tem-
poral resolution we can achieve while still maintaining robustness to noise. Previous methods
depended heavily on the length of the sliding window in finding a trade-off between temporal
resolution and robustness to noise (Savva et al., 2019). We decided to test the window length
dependency of FAST connectivity by setting the number of windows equal to the sampling
rate, that is, maximum temporal resolution and repeating our varying trials and external noise
level analysis.

Figure 3. The p values at a predetermined time step of the simulated P300 at increasing levels of trial size and external Gaussian noise. (A)
Unfiltered, (B) FAST filtered, (C) temporal precision after applying the FAST filter, and (D) wavelet spectral analysis.
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In Figure 3C, we can see the FAST filter’s robustness to increasing levels of noise, with the
edge weights picking up significant results at the correct time steps in almost all cases in the
100–250 trial range. At 50 trials, it still performs relatively well, but there is a decreasing per-
formance at very high levels of external noise. The trend shows that as the number of trials
increases, the detection ability improves while increasing noise decreases this detection abil-
ity. The mean edge weights in the unfiltered case fail to detect these simulated ERPs in all
levels of noise and trial sizes.

The findings when we set the number of windows to the sampling rate exhibit promise,
revealing that despite a reduction in performance when utilizing maximum temporal resolu-
tion with 200 windows in contrast to 10 temporal windows, as there is clear failure at higher
levels of noise at 50 trials (although the ERP is detected at 50 trials at no external noise; p =
0.04941), the decline is minimal particularly with an optimal number of trials. This observa-
tion underscores the robustness of FAST connectivity in variance to window length variations,
highlighting its comparative advantage over existing methodologies in capturing DFC
changes.

Application to VSTM Binding in AD

EEG microstates are transient patterns of the EEG that occur in very small temporal windows
and are considered to be related to the most basic of human neurological processes. They
have been previously shown to be able to distinguish between neurological disorders such
as schizophrenia based on these tiny temporal window differences where the overall func-
tional connectivity of the brain may be very similar (Koenig et al., 1999). Recently, there
has been a significant interest in these EEG microstates in neurological disorder diagnosis.

We ran experiments for the MCI-FAM and MCI-SPO datasets separately with a single FAST
filter computed from participants in both the shape and binding tasks for each frequency band.
As mentioned in our Statistical Methods section, we computed the mean clustering coefficient
and edge weights of each participant at 10 disjoint temporal windows of the total 1-s epoch of
interest and undertook nonparametric statistical testing between controls and patients to look
for temporal windows where there is concurrently a significant difference between controls
and patients in the binding task and no significant difference in the shape task. This exploits
the proposed binding deficit established in Pietto et al. (2016). Figure 4 shows the plots of the
log of the p values of the patients versus controls in shape and binding tasks for the MCI-FAM
dataset, with values below the red line indicating a significant difference.

The first thing we notice is that the behavior of the delta and theta bands in the binding task
is nearly identical, with significant results found at 0.3–0.4 s by the mean edge weights and
0.4–0.5 by the mean weighted clustering coefficient. We can see how having two different
network metrics can aid the detection of clinically significant results. We see that the shape
tasks for these time steps are not significantly different; thus, these can be considered results of
clinical interest as the specificity of binding deficits observed behaviorally is replicated here at
a neural level. The binding task in the alpha band seems to show some behavior similar to the
theta and delta bands, with a clinically interesting result at 0.4–0.5 s; however, this would not
pass FDR correction. The beta band seems to follow the same pattern in the 0.3–0.6 range,
with a dip toward the significance line in the binding task and movement away from it in the
shape task. In light of volume conduction effects, the gamma band was found to yield spurious
results, consequently warranting its exclusion from our analysis. Overall, we notice a trend of
clinically significant results in the 0.3- to 0.6-s range in the MCI-FAM dataset, mainly in the
lower frequency bands.

EEG microstates:
Transient patterns in the EEG that
reflect brief periods of quasistable
brain states, important for
understanding basic neural processes
and distinguishing between
neurological conditions.
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Figure 5 shows the plots for the log of the p values for patients versus controls in the shape
and binding VSTM task for the MCI-SPO dataset against the time intervals.

We notice similar patterns in the lower frequency bands, with the binding task in the delta
and theta bands following similar patterns in the mean edge weights and the network metrics
picking up clinically interesting results in the theta band at 0.4–0.5 and 0.5–0.6 s. This is an
overlap in the 0.3- to 0.6-s range with the MCI-FAM dataset. The delta band has a clinically
interesting result at 0.5–0.6 s, with the mean edge weights and a highly significant result at
0.8–0.9 s using the weighted clustering coefficient; this could be related to the emotion-related
late positive potential (LPP). The LPP, characterized by a gradual positive shift in activation,
typically manifests approximately 400–1,000 ms following stimulus presentation. Its amplifi-
cation has been linked to memory encoding and retention mechanisms (Pietto et al., 2016).
Furthermore, it has been correlated with postretrieval phases, such as decisional and evalua-
tion processes, which could be affected by AD. Again, the overlap with the delta band in the
MCI-FAM group in the 0.3- to 0.6-s range is seen. Moreover, the alpha band has clinically
interesting results at 0.1–0.2 s with the weighted clustering coefficient and 0.2–0.3 s and
0.5–0.6 s with the mean edge weights. It seems that the similarity to the theta band in the
MCI-FAM group is growing with the behavior in the 0.3–0.6 s range being much more prom-
inent in the alpha band. The beta band has a significant result at the 0.4- to 0.5-s time step,
which is similar to the behavior of the beta band in the MCI-FAM dataset (dip toward signif-
icance line in binding task, movement away in the shape task). Overall, there are consistent
overlapping results of clinical interest in the 0.3- to 0.6-s temporal range.

We then applied FDR correction at the 10% and 5% levels to account for multiple com-
parisons. Table 3 shows the time intervals at which there is a significant difference between
controls and patients in the binding task and not in the shape task after applying FDR correc-
tion at the 5% and 10% levels.

The main results that survive FDR correction are 0.3–0.6 range results in the lower fre-
quency bands. There are overlapping significant results in the 0.3- to 0.6-s range in the
MCI-FAM and MCI-SPO datasets. The 0.3–0.6 results in the MCI-SPO alpha band-pass FDR

Figure 4. The p value plot for controls versus patients using FAST connectivity in the shape and binding task in the delta (top), theta (middle),
and alpha (bottom) bands for MCI-FAM.
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correction, thus bringing evidence of an aging interplay between the alpha band frequency in
the older MCI-SPO patient group mimicking the behavior of the theta band in the younger
MCI-FAM patient group. The binding task effect sizes are all consistently greater in the patient
group, suggesting increased FAST connectivity in Alzheimer’s patients during binding VSTM
tasks. This correlates to our time series plot of the FAST filtered mean patient and control matri-
ces. The 0.3–0.4 range in the MCI-FAM theta band shows greater squared difference values in
controls with a rapid switch to greater values in patients in the next time step. We conjecture
that this could be due to a delay in the onset of the P300 in patients resulting in the increased
FAST connectivity to only appear after the onset of the P300 in the controls in the previous time
step.

Furthermore, we computed the average of the FAST filtered connectivity tensors for all par-
ticipants and controls in the binding task for both MCI-FAD and MCI-SPO. This gave us one
tensor for patients and one for control, representing the general activity in terms of functional
connectivity in the task.

We mapped the nodewise connectivity to specific electrodes and compared controls and
patients during a specific time step in the P300 range; in particular, we set the time step cor-
responding to around the 0.5-s mark in the theta band in both datasets as this was the

Figure 5. The p value plot for controls versus patients using FAST connectivity in the shape and binding task in the delta (top), theta (middle),
and alpha (bottom) bands for MCI-SPO.

Table 3. FDR corrected datasets (10% level).

Freq. band Range Binding p value Binding effect size
MCI-FAM theta 0.3–0.4, 0.4–0.5 0.028, 0.058 1.60, −1.12

MCI-SPO delta 0.8–0.9 0.035 −0.55

MCI-SPO theta 0.5–0.6 0.013 −1.19

MCI-SPO alpha 0.1–0.2, 0.2–0.3, 0.5–0.6 0.09, 0.03, 0.03 −0.88, −1.17, −1.10

The underlined texts represent the binding p value below 0.05. The bold font indicates ranges in the first 300 ms
of the P300.
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overlapping time step that was common to both datasets in the theta frequency band with
similar effect sizes.

We noted that only the top 1% of connections in the union of both mean matrices for the
binding task appeared in both controls and patients in MCI-FAD, while in MCI-SPO, there
were similarly strong connections up to the top 0.1% of connections. This is due to both
controls and patients in MCI-SPO having relatively large values for the instantaneous local
variation with patients having more connections. In MCI-FAM, on the other hand, patients
had typically greater local variation and more connections with a larger local Dirichlet
energy compared with controls.

Figure 6 thus shows the connectivity plots where we compute the top 1% and 0.1% of
strongest connections in the MCI-FAM and MCI-SPO mean matrices, respectively.

Interestingly, we notice an increase in instantaneous variability in patients in both MCI-FAD
and MCI-SPO compared with controls in the P300 response. In particular, we can empirically
observe the increased presence of strong potential “hubs” where multiple strongest connec-
tions start from the same node.

Figure 6. (A) Top 1% (MCI-FAM) and (B) top 0.1% (MCI-SPO) FAST connectivity topological scalp plots in the theta band (binding task) at
0.5 s poststimuli onset (intensity indicated on the color bar).
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In MCI-FAD, these hubs originate from the PO3 and PO6 electrodes and are strongly con-
nected to frontocentral regions. There is also a hub from FC3 to the parietal-occipital region. In
general, we notice increased local variation from the parietal-occipital to the frontocentral
region. In MCI-SPO, there is a clear major hub originating at C1 with large local variation,
with regions across the entire parietal area; D1 is similar to C1 yet slightly less prominent,
and smaller hubs also originate from across the parietal region. We notice that the difference
between MCI-SPO and MCI-FAD being the increased local Dirichlet energy is more wide-
spread across the parietal area.

These empirical results are fascinating but is not the focus of our study where we are more
focused on global connectivity changes. The thorough broad spatial origins of these functional
connectivity alterations, however, seem to be a promising avenue for future research.

DISCUSSION

Our simulations showed the benefit of FAST connectivity compared with standard connec-
tivity measures in picking up ERPs between participants with and without the discriminating
ERP. We have provided a high-temporal resolution method that is robust to noise in small
temporal windows while being very invariant to the window length. Thus, we achieve a bet-
ter trade-off of noise robustness and temporal resolution compared with existing methods
(Šverko et al., 2022).

After applying these results to our two independent MCI-SPO and MCI-FAM datasets, we
found consistent overlapping clinically significant results in the 0.3- to 0.6-s range. This cor-
responds to the P300 range previously implicated in AD (Paitel et al., 2021; Parra et al., 2012).
We also found evidence of altered functional connectivity related to increased localized signal
variation in AD patients in the P300 range at time steps specific to the binding task. This
supports the binding task deficit as a potential biomarker for AD. Theta and alpha band irreg-
ularities have been well researched to be linked to cognitive dysfunction and MCI due to AD
(Babiloni et al., 2018; Klimesch, 1999; Schmidt et al., 2013). While the slowing of the alpha
band is an indicator of progressing AD (Li et al., 2020). The alpha and theta band “shifts”
could be of clinical significance as the two independent datasets differ by age; this frequency
shift may be signaling age-related compensatory neural mechanisms, which have been previ-
ously reported during memory tasks performed in the fMRI scanner (Parra et al., 2013). More
importantly, we note that our results correspond to what is observed at clinical performance
level of the VSTM tasks, with binding task performance being significantly worse in patients
and controls in both MCI-SPO and MCI-FAD. We have thus confirmed at a neuronal level
what we see in practice.

It is of interest to note that the increased local Dirichlet energy from parietal to central–
frontal regions is consistent in both types of AD compared with controls, this suggests func-
tional connectivity changes could indicate AD progression before structural changes occur.
These hubs could indicate neuronal-level abnormalities of excitation and inhibition that are
shown to be associated with tau and amyloid beta in preclinical models of AD (Ranasinghe
et al., 2022).

It is promising that our simulations used a lower electrode density (where we employed 31
electrodes) and FAST connectivity was still able to reliably pick up simulated ERPs at a rela-
tively low number of trials. This brings further confidence to our AD data results that employ
64 and 128 electrodes for the MCI-FAM and MCI-SPO datasets, respectively. This indicates
that the electrode density had a fairly negligible influence on our results. Recent research
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(Hatlestad-Hall et al. (2023)) supports this suggesting performance on functional connectivity
measures is negligible above 60 electrodes.

Please verify the changes made here: While FAST connectivity is not in any way meant to
replace traditional power-based analysis of ERPs, it has significantly improved performance in
this specific time-locked task simulation. It shows that it can be a reliable tool to analyze DFC
changes related to ERPs at miniscule timescales.

The data we have utilized in this work are a small sample of two populations with different
risk levels (MCI) for AD (E280A-PSEN1 Familial AD, with 100% risk; Acosta-Baena et al.,
2011; Lopera et al., 1997) and sporadic MCI with an unknown risk. Previous work has shown
that EEG connectivity can distinguish mutation carriers from controls with accuracy near 90%
(Parra et al., 2017), a classification accuracy never reached via pure behavioral scores
(Parra et al., 2010). It has also been shown that the EEG features linked to VSTM binding
deficits of these patients across the two variants are indistinguishable (Parra et al., 2010).
We have shown that FAST connectivity can distinguish the subtle time-frequency changes
between MCI-SPO and MCI-FAM. Parra et al. (2024) also recently showed that a cost of
binding (drop in performance on the shape–color binding condition relative to memory for
shapes only) greater that 20% was associated to increased amyloid beta deposits in still
cognitively unimpaired older adults.

In light of this, our application of FAST connectivity to the MCI-SPO and MCI-FAM data-
sets have provided results of interest for understanding deficits of VSTM binding in AD.
With more data and further analysis (including at an individual, rather than just group
level), this could potentially also be useful as a diagnostic indicator for the early detection
of AD and the progression of MCI to dementia. Given the noninvasive nature of EEG signal
analysis combined with the low computational cost of using GVD connectivity with a rel-
atively small number of patients, we see the potential for this method to be used in the
diagnosis of AD for low-income individuals. Furthermore, the task has been recommended
by international consensus groups (Costa et al., 2017) as a promising preclinical test for
AD. Some have already introduced the task in their clinical practice. The task has now
been introduced in major international cohort studies such as PREVENT (Parra et al.,
2021) and RedLAT (Ibanez et al., 2021).

Working memory tasks often require participants to engage in sustained cognitive effort,
leading to potential cognitive fatigue, especially in prolonged experimental sessions. FAST
connectivity shows potential to address this challenge by exploring the feasibility of achieving
accurate ERP detection with a lower number of trials. Additionally, we should take into
account economic considerations prevalent in low-income countries, where optimizing
experimental protocols can significantly reduce costs associated with data acquisition and
analysis.

An obvious application of FAST connectivity or similar methods would be in brain computer
interfaces (BCIs; Daly et al., 2012). The ability to exploit discriminating information in real time
from cheap, noninvasive EEG signals provides an avenue for a realistic, widely accessible BCI.
While we are still far away from real-time detection, FAST connectivity, with its high invariance
to window-length changes and performance at temporal resolution, shows potential for this one
day being a possibility. Given recent advances in network-based BCIs (Gonzalez-Astudillo
et al., 2021) and the proven importance of functional connectivity dynamics in the performance
of BCIs (Daly et al., 2012), this would be a worthwhile avenue to explore.

Machine learning can be implemented on the network metrics of GVD connectivity due to
the high-temporal resolution of the metrics; this could add important transient information to
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machine learning algorithms significantly improving performance akin to the wavelet trans-
form shown to increase classification accuracy of neurological disorders by adding transient
information (Kumar et al., 2022). Chu et al. (2023) also showed that combining graph metrics
based on DFC in small temporal windows with typical classification algorithms showed sig-
nificantly improve performance in the early detection of Parkinson’s disease (PD), showing
the discriminating ability of these EEG micro-states.

The diagnosis of neurological disorders in psychiatry is an area of uncertainty due to the
overlap between disorders. FAST connectivity provides potential in the analysis of EEG signals
to provide a more quantitative judgment on the nature of the neurological disorder.

While the results show the promise of this new methodology, it is worthwhile reflecting on
where it may fail. We have already mentioned that it would not be suitable for picking up
transient functional activity among connections that are otherwise independent and so having
low long-term connectivity. Additionally, since the FAST filter is based on long-term connec-
tivity, it should foremost be applied to singular cognitive processes. This means that it may not
be suitable to apply to instances where there are expected changes in the cognitive function of
a task, for example.

CONCLUSION

We have introduced FAST connectivity, an algorithm that leverages a single global filter
computed from both groups of participants in a given EEG paradigm. We have shown, in
controlled simulations on synthetic data, that the method outperforms previous graph-variate
and traditional power spectra methods in detecting subtle differences in small temporal
windows between groups of participants with and without a simulated ERP in noisy condi-
tions. We have also shown the lower dependence on window length of the method, pro-
viding an alternative to existing sliding window methods. Of notable interest is the fact that
there is still relatively good performance when the window length is equal to the sampling
rate, allowing us to potentially detect changes in temporal windows at a very granular
timescale while also showing potential to reduce the required number of trials required
for an ERP analysis. Applying FAST connectivity to two independent cohorts of sporadic
and familial MCI patients engaged in VSTM tasks, we found significant differences between
groups for time steps in the 0.3- to 0.6-s range in the binding task but not in the shape task;
previous studies correspond this to the P300 ERP range. This was more prominent in the
lower frequency bands, in particular, the theta band, corresponding with previous studies on
the binding deficit and the role of the theta band in AD and general dysfunction in memory
and cognition. Future work should aim to focus on further studying the spectral properties of
the FAST filter, such as the spectral profile of the graph Laplacian in order to analytically
understand its noise reduction and important connection promotion effects. Different instan-
taneous node functions based on the structure of the graph signal data should also be
explored.
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