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Abstract—Measuring transient functional connectivity is an
important challenge in Electroencephalogram (EEG) research.
Here, the rich potential for insightful, discriminative informa-
tion of brain activity offered by high temporal resolution is
confounded by the inherent noise of the medium and the spurious
nature of correlations computed over short temporal windows.
We propose a novel methodology to overcome these problems
called Filter Average Short-Term (FAST) functional connectivity.
First, long-term, stable, functional connectivity is averaged across
an entire study cohort for a given pair of Visual Short Term
Memory (VSTM) tasks. The resulting average connectivity ma-
trix, containing information on the strongest general connections
for the tasks, is used as a filter to analyse the transient high-
temporal resolution functional connectivity of individual subjects.
In simulations, we show that this method accurately discriminates
differences in noisy Event-Related Potentials (ERPs) between two
conditions where standard connectivity and other comparable
methods fail. We then apply this to analyse activity related
to visual short-term memory binding deficits in two cohorts
of familial and sporadic Alzheimer’s disease. Reproducible sig-
nificant differences were found in the binding task with no
significant difference in the shape task in the P300 ERP range.
This allows new sensitive measurements of transient functional
connectivity, which can be implemented to obtain results of
clinical significance.

I. INTRODUCTION

Network Science approaches to the analysis of complex
networks provide useful tools for the analysis of connectivity
between agents [1], [2] . The brain is an example of a complex
network where pair-wise dependencies between brain regions
are of value in the detection of cognitive phenomena. It is
found that it is neither spatial nor temporal localization of
brain activity that underpins cognitive phenomena and the
corresponding brain function but in fact, how the different
areas of the brain are dynamically interconnected over time
[3], [4]. This has led to a boom in studies of functional
connectivity of brain activity across viable formats— mainly
the blood oxygenation level-dependent signal in MRI and
electromagnetic recordings from EEG and MEG. Here, typi-
cally, signals from parcellated regions (in fMRI) or sensors (in
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EEG/MEG) are subject to pairwise measures of connectivity,
such as correlation coefficients, coherence measures, or phase-
based measures.

The electroencephalogram (EEG) contains important dis-
criminating information relating to sequential brain processes
in response to various cognitive tasks. Providing a very
high temporal resolution, scalp EEG allows for the direct
recording of electromagnetic activity of the brain in a non-
invasive, relatively cheap way [5]. Scalp EEG presents several
notable limitations however, with the most prominent being
the substantial noise levels inherent in the recorded signals.
This noise poses a significant challenge, especially when
attempting to investigate the functional connectivity associated
with transient cognitive processes occurring within brief time-
frames, typically spanning mere tens of milliseconds. A pivotal
issue within the realm of functional connectivity of EEG
signals pertains to the extraction of dependable connectivity
estimates within these remarkably short time intervals [6]. This
problem underscores the necessity for novel methodologies
to overcome noise-related hurdles and facilitate the precise
examination of cognitive processes unfolding at rapid temporal
scales [1]. Measuring dynamic functional brain connectivity in
short time windows is gaining increasing recognition in AD
research due to its potential to provide information for the
early detection of the devastating disease [7], [8]. An impor-
tant reason for this is the growing recognition that intricate
changes in brain connectivity can occur before the onset of
clinical symptoms; this makes it a promising avenue for early
biomarker development and a better understanding of disease
progression. AD is not a static condition but involves dynamic
changes in brain function, short-time based analysis with
non-invasive brain imaging techniques can provide important
breakthroughs in AD early detection, especially in low-income
countries [9].

Despite the growing popularity of these studies, there has
been limited methodological work on the analysis of EEG dy-
namic functional connectivity (DFC). Previous work typically
focuses on the sliding window method [10], [11], [12], while
this is fairly effective, the temporal resolution and susceptibil-
ity to noise is largely determined by the window size [27]. It
has become a priority to simultaneously improve the temporal
resolution of DFC while being robust to spurious connections
and noise. Methods such as the Short-Term Fourier Transform
[11] and Wavelet Analysis [13] have been frequently applied
in this domain, but once again, the dependency on window
size causes bottlenecks in regard to temporal resolution and
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noise robustness.

Graph Signal Processing (GSP) approaches have been em-
ployed frequently in the past to perform spectral analysis
of signals in the graph domain, as opposed to the temporal
domain [14]. This is achieved by computing the eigenvalue
decomposition of a relevant Graph-Shift operator such as the
Graph Laplacian or Adjacency matrix followed by the Graph
Fourier Transform. However, the frequencies that emerge
through the graph eigenvectors are still determined completely
by the graph topology and do not involve the signal [1].

Here, we propose a new method for extracting reliable esti-
mates of short-term functional connectivity. This is based on
Graph Variate Signal Analysis [1], a more general framework
for graph signals. Specifically, it describes how to leverage
graphs of long-term reliable connectivity information to filter
instantaneous bivariate node functions of multivariate signals.
In essence, this emphasizes important connections and mini-
mizes spurious ones (a well-known issue in EEG signals). This
gives us a readily interpretable method to analyse the transient
changes in brain activity at a high temporal resolution using
pairwise connectivity measures (i.e. correlation) between EEG
electrodes. Graph-variate dynamic connectivity [1] is when the
long-term connectivity estimate is computed from the signal
itself over the given epoch of interest so that the graph signal is
directly related to the underlying graph and measurements and,
therefore, solely relates to one connectivity function. Here,
we develop and employ a novel methodology based on GVD
connectivity which we call Filter Average Short-Term (FAST)
connectivity. Essentially, FAST connectivity uses the average
long-term connectivity matrix over the whole study cohort as a
filter of transient functional connectivity at the individual level.
Essentially, we are deriving the most consistent connections
across all participants and then asking if the temporal activity
associated with those connections shows differences between,
for example, patients and control. As we shall see, the high
temporal resolution of brain activity provided by the Elec-
troencephalogram(EEG) [5] can now be exploited to detect
more sensitive and specific cognitive changes in very short
time frames.

We demonstrate the power of our novel FAST Connectivity
methodology in simulations for picking out the true activity of
ERPs in the presence of different levels of noise and different
numbers of trials. We then apply this to the dataset containing
EEG signals from the participants in the Visual Short Term
Memory (VSTM) tasks [15]. Following this we perform rig-
orous statistical testing on temporal windows resulting from
the multi-layer graph-variate tensor. This uncovers a potential
biomarker for the early detection of AD as well as a potential
indicator of disease progression from the EEG signals. This
is a first in the formal application of GVD connectivity [1] to
EEG signals.

II. METHODS
A. Background

The novel method proposed is a form of graph-variate signal
analysis [1]. Graph-variate signal analysis is defined formally
as:
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Where the formula defines the bi-variate analysis of the
multivariate signal X filtered by the corresponding static
matrix W of the graph-variate signal. J ;) denotes the 'th n x
n matrix of J and o is the Hadamard product. Each timestep
of J is defined by a n x n matrix computed using the pairwise
bi-variate connectivity values between signal pairs. The form
of dynamic Connectivity is determined by the node function
Fy . In our analysis, we used the squared difference inspired
by the reformulation of the graph Dirichlet Energy [2] and
also the instantaneous Pearson Correlation values as readily
interpretable forms of connectivity.
Graph-Variate Dynamic (GVD) connectivity is defined as
a graph variate signal analysis in which W = C is a
static adjacency matrix constructed from the long-term stable
dependencies of the multi-variate signal itself. Defining our
tensor for analysis from [1] as:
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The multi-layer network 6 is constructed using different
relevant combinations of node-functions and long-term stable
connectivity pairs.

Each c;; used to construct C is constructed using relevant
connectivity measures that give a reliable estimate for long-
term term connectivity. A standard approach is the Pearson
correlation coefficient computed over the whole epoch of
interest:
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combining this with the squared difference or instantaneous
correlation as the node function, GVD connectivity is defined

as:
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using the squared difference node function, and
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using the Instantaneous correlation node function.

This can be considered as a representation of the amplitude
and, thus, an analysis in this domain.

While we can average over a subset of nodes for a modular
comparison between regions of the brain, we are more focused
on a Global analysis in this paper.

B. FAST Connectivity

We now present FAST Connectivity, a novel form of Graph
Variate Signal Analysis. We propose a singular filter for all
participants in time-locked cognitive task-based experiments.
The filter takes the long-term connectivity estimates of all
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participants in the experiments and averages over them to cre-
ate a single FAST filter for all participants that automatically
emphasizes important connections and suppresses spurious
ones in the general time-locked cognitive task of interest (in
this case the VSTM binding and shape tasks). We define the
FAST filter as:
Definition 1 FAST Filter

Where C is the matrix of the absolute values of the indi-
vidual long-term correlation estimates, with c;; representing
Each entry in the matrix. For P =1,2... N, where P is each
participant and N is the total number of participants. We define
our FAST filter as:
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We have defined our long-term connectivity estimate as the
modulus of the Pearson Correlation Coefficient, this captures
the long-term stable magnitude of the correlation of all par-
ticipants in the task. Following Definition 1 we define FAST
Connectivity as:

Definition 2. FAST Connectivity

For each P =1... N where N is the total number of par-
ticipants the same FAST filter is applied to each participant.
The squared difference is our node function of choice.
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FAST connectivity proposes the same filter for all partic-
ipants P. This filter is constructed using the magnitude of
the stable long-term correlation averaged over all participants.
Essentially FAST connectivity can be defined as a Graph-
Variate Signal Analysis where the long-term stable matrix is
the FAST Filter and the node function is the squared difference
inspired by the Dirichlet Energy.

The squared difference between signal pair values can be
considered as a localized measure of the variation between
signal pair values. This captures the local variation of the
signal. A higher value would indicate higher variation in
the signal pair region, whereas if it was small, the signal
pair values are fairly constant or change smoothly in the
localized region. It is important to stress that due to the nature
of the squared difference node function, it emphasises anti-
correlative information as higher squared difference values
(that usually indicate a strong anti-correlative interaction be-
tween signal pairs) in the instantaneous connectivity profiles
contribute most to the value of the mean network metrics.

On the other hand, Filtering the instantaneous correla-
tion values with the long-term correlation coefficient of all
participants gives more weight to regions where the local
variation aligns with the long-term correlation patterns across
participants allowing for a selective emphasis on specific

features that are both locally and globally consistent. Overall,
The FAST connectivity analysis is sensitive to both fine-
scale variations within individual EEG signals and broader
patterns shared across participants. By combining a global
measure with local information, the method is effective in
identifying regions that not only vary locally but also exhibit
synchronized variations across participants. This should reflect
meaningful functional connectivity patterns while reducing
noise and spurious connectivity.

Using the absolute value of the long-term correlation coef-
ficient for the global filter avoids cancelling out information
from important connections in network averages.

This approach can enhance the detection of relevant ERPs,
especially in cases where the direction of changes may vary
or fluctuate between negative and positive values, providing
a robust and direction-agnostic measure for identifying mean-
ingful features in small temporal windows.

Overall, it is useful to think of the FAST filter as a
‘rating’ mechanism, essentially telling us which nodes are of
particular interest when analyzing individual dynamic func-
tional connectivity. This, combined with the squared difference
node function, allows us to determine areas of high variation
between ‘important’ graph signal pairs.

As mentioned before, similar to the Modular Dirichlet
Energy (MDE) [2] a prototype of GVD Connectivity, FAST
connectivity analyzes the temporal brain networks from a
unique angle compared to other approaches such as time series
analysis of network metrics. Essentially, one stable network
of long-term connectivity is computed over the whole epoch,
which is used as a support for localized analysis of very small
temporal windows, allowing us to maximize the high temporal
resolution of EEG signals. The activity is, in fact, encoded
in the graph signal itself rather than the time-varying edge
weights. This allows for analysis of smaller temporal windows
of activity and also analysis of the overall long-term activity.

However, one clear limitation of this approach is that
we lose out on potentially important short-term connectivity
between otherwise unimportant long-term connections. We
do not assume that such information is not important, but
rather the problem of spurious correlations over short-temporal
windows far overshadows it. The success of the method
demonstrated in simulations and real data backs this argument.

C. Network analysis of FAST connectivity

FAST connectivity can be computed over arbitrarily selected
windows resulting in a connectivity matrix for each window.
We can then straightforwardly compute network analysis on
these connectivity matrices. Here we use the Mean Edge
Weights as well as an average Local Weighted Clustering
Coefficient of FAST functional connectivity. The mean edge
weight is computed as:

n n
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We computed the average local Weighted Clustering coef-
ficient for each temporal window as:
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The clustering coefficient quantifies the number of con-
nected triangles in a network and, thus, the tendency of
nodes to cluster together. This weighted version multiplies
the triangle weights together, with larger values where all
triangle weights are large. The average value for each temporal
window emphasises the strongly clustered components in the
signal. The computation is fairly straightforward with the sum
of the main diagonal of the cube of the tensor divided by
the number of nodes (EEG electrodes). We can make two
interesting observations here, taking into account the Law
of Large numbers stating that as the number of independent
samples increases the empirical mean converges to the true
mean we can conclude that increasing the number of electrodes
and thus nodes (and thus independent samples) will give
us a more stable and reliable estimate of the mean for a
given time-step allowing for a greater temporal resolution,
this has been implicated in previous studies, where there is
strong evidence showing that as a result of reducing electrode
density networks tended to get skewed [16], this effect was
most prominent below 64 electrodes. Also, the Central Limit
Theorem tells us that the estimate will converge to a normal
distribution as the number of independent samples increases,
suggesting that increasing the number of electrodes would
allow the network metric estimates to follow a more Gaussian
distribution, providing better estimates of the mean to allow
for more robust statistical testing.

D. Simulations

We utilized open-source MATLAB functions provided by
Yeung et al.[17], [18] to generate the simulated EEG data.
The simulated data consists of two key components: noise
and signal. The noise component is generated to mimic the
power spectrum of a typical human EEG recording. The signal
component is parameterized to describe the position of the
centre of the peak, its frequency, and its amplitude. These
parameters enable us to create sample ERPs, which serve as
the basis for testing the effectiveness of our method. The EEG
simulation functions provide a setup with 31 electrodes, each
sampled at a frequency of 200Hz, with an epoch duration of
0.8 seconds. To generate independent samples, we averaged
the random signals over varying numbers of trials, resulting
in single 31x200-dimensional samples that closely resemble
real EEG data.

For our experimental setup, we aimed to replicate con-
ditions akin to typical comparisons between participants in
time-locked Visual Short-Term Memory (VSTM) tasks. We
created 20 independent samples consisting solely of EEG
noise, aligning with the EEG power spectrum of a typical
human. In parallel, we generated 20 independent samples with
specific ERPs, including the N100 and P300 components.
The N100 component was parameterized with an amplitude
of -5 (typically negative) and a frequency of 5 Hz, with a

centre position at 25 frames (around 100ms) considering the
0.8-second epoch. The P300 component was parameterized
with an amplitude of 5 (positive and larger than N100) and
a frequency of 5 Hz, with a centre position at 75 frames
(around 300ms) within the 0.8-second epoch. To introduce
realistic variability, the functions incorporate temporal jitter at
the onset of the ERPs, mirroring the kind of activity observed
in actual EEG ERP data. We then added random Gaussian
white noise to the samples containing the simulated ERPs
to test the robustness of our FAST Filtering method in the
presence of variable levels of external noise. This approach
allows us to rigorously test the performance of our method
in distinguishing between the presence and absence of these
specific ERP components in simulated EEG signals.

E. Visual short-term memory data

We use the data from Pietto et al. [9] with 10 patients having
Alzheimer’s due to a familial gene, which is a younger age
group with Mild Cognitive Impairment (MCI) compared to
10 age and education-matched Control patients. This is a 64-
electrode setup with a sampling frequency of 500Hz over a
one-second epoch of binding or shape tasks. We have a second
data set of Sporadic AD patients with 13 Patients with MCI
due to AD due to no specific genetic cause and 17 age and
education-matched controls. This is a 128-electrode setup with
a sampling frequency of 255Hz with the same VSTM tasks
over a one-second epoch. For full details of these data sets the
reader is referred to [9]. Both datasets consist of MCI patients
at risk of AD and Controls performing a visual short-term
memory task that assesses, via two conditions, memory for
shapes and for shape-colour binding.

In the assessment of visual short-term memory (VSTM),
two distinct tasks are employed [15]: a shape-only change
detection task and a binding task. In the shape-only task,
participants are presented with arrays featuring three different
black shapes, while in the binding task, the arrays consist
of three distinct shapes, each with a unique colour. Each
trial in both tasks comprises three phases: an initial encoding
period (lasting 500 ms) during which participants view a
study array on the screen, followed by a short delay of 900
ms, and concluding with the test period. In the test period,
a test array is displayed, and participants are tasked with
determining whether the objects in the two arrays are identical
or different. To prevent reliance on spatial cues, the positions
of objects are randomized. Shapes and colours are randomly
selected for each trial from sets of eight options. Notably, in
50 percent of the trials, both arrays feature identical objects.
In the remaining 50 percent, changes occur: in the shape task,
two shapes are substituted with new ones, while in the binding
task, the colours of two shapes are interchanged. Participants
commence with a practice session and subsequently complete
100 trials for each task. Importantly, the order in which
they engage in the binding and shape tasks is systematically
counterbalanced across participants, ensuring a comprehensive
exploration of VSTM dynamics [9], [15].

Signal pre-processing was performed to get signals band-
passed into Delta (0.01-4Hz), Theta (4-8Hz), Alpha (8-12Hz),
Beta (12-30Hz) and Gamma (>30Hz) frequencies.
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The network analysis was done using FAST Connectiv-
ity. We first computed the long-term connectivity over the
whole epoch for each patient and control in each task using
Pearson’s correlation coefficient. We then applied Definition
1 to create our FAST filter of overall general VSTM task
activity. A separate filter was created for the familial AD
dataset and for the Sporadic AD dataset due to them being
different experiments with different numbers and positioning
of electrodes and different sampling frequencies. We then
split the FAST Connectivity tensors into 10 0.1 second, non-
overlapping temporal windows by averaging over smaller time
windows to give us 10 matrices of FAST connectivity for each
participant with a high temporal resolution.

FE. Statistical Methods

We designate as a result of clinical interest as a given tem-
poral window where there is a significant difference between
patients and controls in the binding task and no significant
difference in the shape task as this points to a specific binding
deficit in AD. Non-parametric Wilcoxon rank-sum test are
performed to assess for statistical significance between patients
and controls. These are computed at each 0.1s temporal
window between the vectors of mean network metrics for
patients and controls at each temporal window. This is repeated
for the mean edge weights and the mean weighted clustering
coefficient values.The direction and size of the differences are
calculated using Cohen’s d effect size. In our experiments, a
negative value would indicate a greater connectivity in the AD
patients for the given VSTM task.

In order to account for the multiple comparisons we applied
the Benjamini-Hochberg False Discovery Rate (FDR) correc-
tion to account for multiple temporal significance testing. This
was done at the 10 and 5 percent level. While 5 percent is
often held as the strict standard, the 10 percent level allows
us to look for sensitivity pointing towards reproducibility
across datasets— i.e. where one dataset passed FDR at a given
timepoint at 5 percent and the other at 10 percent.

ITI. RESULTS
A. FAST Connectivity Simulation

While there is a theoretical rationale to support our novel
methodology, it is not a given that this follows through
meaningfully in practice. Therefore, a simulation in a general
case scenario is implemented to show the effectiveness of our
method at picking up relevant Event-Related Potentials. This is
tested across varying noise levels and the number of task trials.
We performed a three-way comparison between the unfiltered
node-function, individual GVD filters and our FAST filter.

The ERPs we chose to replicate are the N100 and P300.
The N100 is characterized as a negative deflection in the
EEG signal that occurs around 100 milliseconds after cogni-
tive stimuli onset. The N100 typically peaks at around 100
milliseconds after onset and is usually attributed to early
sensory processing in response to various stimuli. The N100
has been previously implicated in various neurological dis-
orders such as Schizophrenia, Attention Deficit Hyperactivity
Disorder (ADHD) and even Alzheimer’s Disease. The P300 is

characterized by a positive deflection in the EEG signal and
usually occurs around 300 milliseconds post the presentation
of stimuli. The P300 can be influenced by the given task
the participant is involved in and is associated with the
evaluation of the relevance of stimuli. The P300 has been
heavily researched in AD [19], [20] and is associated with
decision-making and working memory. We simulate these
characteristics using the EEG model of Yeung et al.[17], [18].

Our aim is to evaluate the effectiveness of our methodology
in detecting these simulated ERPs compared to a ‘control’
group where the ERPs are not present. We first use a Matrix of
1’s, the same dimensions as our graph-variate signal, with 0’s
on the main diagonal to represent the unfiltered node function.
We used the squared difference as our node function. Table 1
shows the log of the Wilcoxon rank-sum test p-values between
the two groups of simulated participants at the time steps at
1000 trials with a very high level of external noise. Benjamini-
Hochberg FDR correction is applied to account for multiple
comparisons.

TABLE I: P-values over High External Noise Levels and 1000
Trials

Network Metric FAST Filtered Unfiltered
Clustering Coefficient 2.96 x 1076 0.6344
Edge Weight 1.699 x 107 1

The goal of filtration with long-term stable connectivity in
Graph Variate Signal Analysis is to improve the ability to
detect important changes in activity in the presence of large
amounts of noise. In order to show the benefit of the FAST
filter compared to the unfiltered node function we added large
amounts of white noise to the participants with the ERPs,
essentially ‘covering up’ the ERPs to reach the point at which
the unweighted node function can no longer efficiently pick
out the simulated P300 and N100 ERPs but the FAST Filter
can. Random Gaussian white noise is added randomly to each
of the electrodes equally in the simulated setup (Note, we are
adding random white noise which is distinct from the signal
generated by the MATLAB functions that resemble the power
spectrum of a typical human EEG recording). Figure 1 shows
the p-values detected by the unfiltered modulus of the squared
difference at the pre-determined P300 timestep. It is clear that
it is unable to pick up any significant changes at this time point
due to the external noise. The FAST filter however, picks up
the significant differences at the time step with both the mean
edge weights and clustering coefficient.

It is now evident that the unfiltered node function is failing
to pick up the ERPs above a certain noise level limit. When
we compared using individual filters for each participant, we
found °‘significant differences’; however, on further inspection,
Figure 2 shows that the external noise results in the filters
failing and every time-step is ’significantly different’, whereas
the global filter maintains the non-different and different time
steps between both signal groups. Essentially the underlying
stable support matrix is influencing the dynamic connectivity
too much and thus detecting ’significant differences’ in tem-
poral windows when there are none simply due to differences
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in the filters. The unbiased nature of the global filter in FAST
connectivity helps overcome this issue.
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Fig. 1: Individual filters (Top) vs FAST Filters (Bottom), Blue
for Clustering Coefficient,Green for Edge Weights

We found that, with the FAST filter, while sometimes
a network metric might not pick out a significant result,
in our experiments it never picked out spurious results as
significant. I.e the false positive rate also appears to be very
low. We have shown that the FAST filter outperforms the
individual filters and the unweighted node function in a general
simulated experimental setup similar to time-locked VSTM
task comparisons.

We decided to test this more rigorously by varying levels
of added Gaussian noise at different numbers of trials for
each simulated participant EEG. The figure below shows
the results of this as a heat-map matrix. We extracted the
FDR corrected p-values at the P300 ERP time steps of
interest (pre-determined to exist at these times-steps) thus we
could compare the ability of the unfiltered and FAST filtered
methods to pick out significant differences at these points.
Lighter colours indicate more significant p-values while black
represents a non-significant result. We tried trials ranging from
50-300 corresponding to typical real-life experiments where
EEG signals are recorded.

We can see the FAST filter’s robustness to increasing levels
of noise with the edge weights picking up significant results
at the correct time steps in almost all cases in the 100-300
trial range. At 50 trials, it still performs relatively well but
there is a decreasing performance as more noise is added.
The trend shows that as the number of trials increases the
detection ability improves while increasing noise decreases
this detection ability. The mean edge weights in the unfiltered
case fail to detect these simulated ERPs in almost all levels
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Fig. 2: The p-values at a pre-determined time-step of the
simulated P300 at increasing levels of trial size and external
Gaussian noise. FAST Filtered (Bottom) vs Unfiltered (Top).

of noise and trial sizes. Overall, the simulations are promising
showing the clear benefit of the FAST filter compared to the
unfiltered case and its evident robustness to noise.

Another important consideration in analyzing Dynamic
functional connectivity in small temporal windows is the
temporal resolution we can achieve while still maintaining
robustness to noise. Previous methods depended heavily on the
length of the sliding window in finding a trade-off between
temporal resolution and robustness to noise. We decided to
test the window length dependency of FAST connectivity by
setting the number of windows equal to the sampling rate, i.e.
maximum temporal resolution. Figure 3 shows the results of
this at varying noise levels and trial sizes.
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Fig. 3: Performance at maximum temporal resolution of FAST
Filtered simulated EEG functional connectivity

The findings exhibit promise, revealing that despite a slight
reduction in performance when utilizing maximum temporal
resolution with 200 windows in contrast to 10 temporal
windows, the decline is minimal and potentially insignificant,
particularly with an optimal number of trials. This observation
underscores the robustness of FAST connectivity in variance
to window length variations, highlighting its comparative
advantage over existing methodologies in capturing dynamic
functional connectivity changes. Notably, at 200 trials, FAST
connectivity demonstrates consistent detection across all
noise levels. We note that at 50 trials, FAST connectivity
can detect meaningful changes in functional connectivity;
working memory tasks often require participants to engage
in sustained cognitive effort, leading to potential cognitive
fatigue, especially in prolonged experimental sessions. FAST
connectivity shows potential to address this challenge by
exploring the feasibility of achieving accurate ERP detection
with a lower number of trials. Additionally, we should
take into account economic considerations prevalent in low-
income countries, where optimizing experimental protocols
can significantly reduce costs associated with data acquisition
and analysis.

B. Application to visual short-term memory binding in
Alzheimer’s disease

EEG micro-states are transient patterns of the electroen-
cephalogram that occur in very small temporal windows and
are considered to be related to the most basic of human
neurological processes. They have been previously shown to
be able to distinguish between neurological disorders such as
schizophrenia based on these tiny temporal window differ-
ences where the overall functional connectivity of the brain
may be very similar [21]. Recently, there has been significant
interest in these EEG micro-states in neurological disorder
diagnosis. Chu et al.[22] showed that combining graph metrics
based on dynamic functional connectivity in small tempo-
ral windows with typical classification algorithms showed
significantly improve performance in the early detection of

Parkinson’s Disease (PD), showing the discriminating ability
of these EEG micro-states.

As mentioned earlier, we have a large number of options
for the choice of bi-variate node function and long-term stable
connectivity filter, but it is essential to prevent data dredging.
From our simulations, we found that the FAST Correlation
filter with the pairwise squared difference as the node-function
to be the most effective combination at detecting relevant
ERP’s. Thus this will be the basis of our main results in our
FAST Connectivity Analysis.

We used FAST connectivity matrices computed from partic-
ipants in both VSTM tasks (shape and binding) to filter mean
matrices of patients and controls in the binding VSTM task
in both data sets. The temporal heat-maps of the theta band
in the familial (top) and sporadic (bottom) dataset comparing
controls (left) and patients (right) are shown below in Figure

4.

Control Clustering Coefficients Over Time Patient Clustering Coefficients Over Time.
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Fig. 4: Clustering Coefficient Heatmaps of mean FAST filtered
control (left) and patient (right) matrices in the binding VSTM
task in the familial and sporadic AD group in the theta band

It is interesting to note that in the FAST filtered mean
matrix of patients against controls we see patches of increased
clustering coefficient values in patients consistently across
both datasets. Given the nature of the squared difference this
could indicate points of increase in anti-correlative information
or variation between signal pairs.

While the mean FAST filtered matrices do contain valuable
information we do lose some transient information. We thus
ran experiments for the Familial AD and Sporadic AD datasets
separately with a single FAST filter computed from partici-
pants in both the shape and binding tasks for each frequency
band. As mentioned in our statistical methods section we
computed the mean clustering coefficient and edge weights of
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each participant at ten disjoint temporal windows of the total
one second epoch of interest and undertook non-parametric
statistical testing between controls and patients to look for
temporal windows where there is concurrently a significant
difference between controls and patients in the binding task
and no significant difference in the shape task. This exploits
the proposed binding deficit established in [9]. Figure 5 shows
the plots of the log of the p-values of the patients versus
controls in shape and binding tasks for the familial AD dataset
with values below the black dotted line indicating a significant
difference. The scale is provided for the delta plot.
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Fig. 5: FAST Connectivity Shape vs Binding task in
delta(top),theta(middle) and alpha(bottom) bands for the Fa-
milial Group

The first thing we notice is that the behaviour of the delta
and theta band in the binding task is nearly identical with
significant results found at 0.3-0.4 seconds by the mean edge
weights and 0.4-0.5 by the mean weighted clustering coeffi-
cient. We can see how having two different network metrics
can aid the detection of clinically significant results. We see the
shape tasks for these time steps are not significantly different

thus these can be considered results of clinical interest as
the specificity of binding deficits observed behaviorally are
replicated here at a neural level. The binding task in the
alpha band seems to show some behaviour similar to the theta
and delta bands with a clinically interesting result at 0.4-0.5
seconds, however this would not pass FDR correction. The
beta band seems to follow the same pattern in the 0.3-0.6
range with a dip towards the significance line in the binding
task and movement away from it in the shape task. In light
of volume conduction effects, the Gamma band was found
to yield spurious significant results, consequently warranting
its exclusion from our analysis. Overall, we notice a trend of
clinically significant results in the 0.3-0.6 second range in the
familial AD data-set, mainly in the lower frequency bands.

We now perform our FAST Connectivity Analysis on the
Sporadic AD data set. Recall this is a completely independent
dataset with a 128 electrode setup with 17 control and 13
(older) patients at high risk of Sporadic AD. The correspond-
ing plots of the p-values between patients and controls for
Shape and binding tasks over the one second epoch are given
below. Note there may be a slight discrepancy between interval
values due to the differing sampling rates, e.g. 0.3-0.4 seconds
is actually 0.29-0.39 seconds.
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Fig. 6: FAST Connectivity Shape vs Binding task in
delta(top),theta(middle) and alpha(bottom) bands for the Spo-
radic Group
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We notice similar patterns in the lower frequency bands
with the binding task in the delta and theta band following
similar patterns in the mean edge weights and the network
metrics picking up clinically interesting results in the theta
band at 0.4-0.5 and 0.5-0.6 seconds. This is an overlap in
the 0.3-0.6 second range with the familial AD data set. The
delta band has a clinically interesting result at 0.5-0.6 seconds
with the mean edge weights and a highly significant result at
0.8-0.9 seconds using the weighted clustering coefficient,this
could be related to the emotion related Late Positive Potential
(LPP). The LPP, characterized by a gradual positive shift
in activation, typically manifests approximately 400-1000 ms
following stimulus presentation. Its amplification has been
linked to memory encoding and retention mechanisms [9].
Furthermore, it has been correlated with post-retrieval phases,
such as decisional and evaluation processes which could be
affected by AD.Again the overlap with the delta band in the
familial AD group in the 0.3-0.6s range is seen. Moreover,the
alpha band has clinically interesting results at 0.1-0.2 seconds
with the weighted clustering coefficient and 0.2-0.3s and 0.5-
0.6s with the mean edge weights. It seems the similarity to
the theta band in the familial AD group is growing with the
behaviour in the 0.3-0.6s range being much more prominent
in the alpha band. The beta band has a significant result at the
0.4-0.5s time-step which is similar to the behaviour of the beta
band in the familial AD data-set (dip towards significance line
in binding task, movement away in the shape task). Overall,
there are consistent overlapping results of clinical interest in
the 0.3-0.6s temporal range.

We then applied FDR correction at the 10 percent and 5
percent level to account for multiple comparisons. Table 2
below shows the time intervals at which there is a significant
difference between controls and patients in the binding task
and not in the shape task.

TABLE II: FDR Corrected Data sets. The underlined text
represents the Binding p-value below 0.05. Bold font indicates
ranges in the first 300ms of the P300.

Freq. Range Binding p-value Binding  Effect
Band Size
Familial | 0.3-0.4, 0.4- | 0.028, 0.058 1.60, -1.12
Theta 0.5
Sporadic | 0.8-0.9 0.035 -0.55
Delta
Sporadic | 0.5-0.6 0.013 -1.19
Theta
Sporadic | 0.1-0.2, 0.09, 0.03, 0.03 -0.88, -1.17,
Alpha 0.2-0.3, -1.10
0.5-0.6

Table 2 shows results that are of clinical interest after
applying FDR correction at the 5 and 10 percent level. The
main results that survive FDR correction are 0.3-0.6 range
results in the lower frequency bands. There are overlapping
significant results in the 0.3-0.6s range in the familial and
sporadic AD data sets. The 0.3-0.6 results in the Sporadic
AD alpha band pass FDR correction, thus bringing evidence
of an ageing interplay between the alpha band frequency in

the older sporadic AD patient group mimicking the behaviour
of the Theta band in the younger familial AD patient group.
The binding task effect sizes are all consistently greater in
the patient group suggesting increased FAST connectivity
in Alzheimer’s patients during binding VSTM tasks. This
correlates to our time series plot of the FAST filtered mean
patient and control matrices. The 0.3-0.4 range in the familial
theta band shows greater squared difference values in controls
with a rapid switch to greater values in patients in the next time
step. We conjecture that this could be due to the oscillating
behaviour of Event Related Potentials.

IV. DISCUSSION

Our simulations showed the benefit of FAST Connectivity
compared to standard connectivity measures in picking up
ERPs between participants with and without the discriminating
ERP. We have provided a high temporal resolution method that
is robust to noise in small temporal windows while being very
invariant to the window length. Thus we achieve a better trade-
off of noise robustness and temporal resolution compared to
existing methods[10].

After applying these results to our two independent spo-
radic AD and Familial AD data sets, we found consistent
overlapping clinically significant results in the 0.3-0.6 sec-
ond range. This corresponds to the P300 range previously
implicated in Alzheimer’s Disease [19]. Exploiting the binding
deficit proposed by Pietto et al.[9] we have found evidence
of an increase in anti-correlative activity or signal variation
in Alzheimer’s patients in the P300 range during binding
VSTM tasks and not in Shape VSTM tasks. This supports the
binding task deficit as a potential biomarker for AD. FAST
Connectivity performed well in negating spurious connections
and emphasizing the important ones in the P300 range. Theta
band irregularities have been well-researched to be linked to
MCI due to Alzheimer’s disease[23]. While the slowing of the
alpha band is an indicator of progressing AD [24]. The Alpha
and Theta band ’shifts’ could be of clinical significance as the
two independent datasets differ by age; thus the alpha band
in the older Sporadic AD data set mimicking the behaviour
of the Theta band in the younger Familial AD data set in
the P300 range could provide an indicator for the progression
of the disease from MCI to more severe full-on dementia.
Alternatively, this frequency shift may be signaling age-related
compensatory neural mechanisms which have been previously
reported during memory tasks performed in the fMRI scanner
[25].

Given our low sample size, we acknowledge the effective-
ness of FAST Connectivity at picking out clinically significant
results, especially given we have more controls in the sporadic
AD data set. After rigorously performing simulations showing
the effectiveness of our novel methodology, our application of
it to the two data sets has provided potential biomarkers for
the early detection of Alzheimer’s Disease and the progression
of MCI to Dementia. Given the non-invasive nature of EEG
signal Analysis combined with the low computational cost of
using GVD connectivity with a relatively small number of
patients, we see the potential for this method to be used in
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the diagnosis of Alzheimer’s disease for low-income individu-
als.We also see potential for accurate ERP detection at a lower
number of trials, which could address the cognitive fatigue of
participants in these working memory-based tasks. This could
also reduce the cost, especially in low-income countries such
as Latin America.

An obvious application of FAST connectivity or similar
methods would be in Brain Computer Interfaces (BCI).The
ability to exploit discriminating information in real time from
cheap, non-invasive EEG signals provides an avenue for an
realistic, widely accessible BCI. While we are still far away
from real-time detection, FAST connectivity, with its high
in-variance to window length changes and performance at
temporal resolution, shows potential for this one day being a
possibility. Given recent advances in network based BClIs [26]
and the proven importance of functional connectivity dynamics
in the performance of BCIs [27] this would be a worthwhile
avenue to explore.

Given the provision of more data, we could have drawn
more validity to our clinical results. However they are still
promising. Further work should focus on the optimization
of the bi-variate node function and the Long-term Stable
connectivity filter, focusing on interpretability and robustness
against noise. In particular, it would be beneficial to look into
the effect of certain node functions emphasizing specific signal
properties such as anti-correlative information seen with the
squared difference.The diagnosis of neurological disorders in
psychiatry is an area of uncertainty due to the overlap between
disorders. GVD Connectivity provides potential in the analysis
of EEG signals to provide a more quantitative judgement on
the nature of the neurological disorder. Machine Learning can
be implemented on the network metrics of GVD connectivity
due to the high temporal resolution of the metrics, this
could add important transient information to Machine learning
algorithms significantly improving performance akin to the
wavelet transform shown to increase classification accuracy
of neurological disorders by adding transient information[28].

While the results show the promise of this new method-
ology, it is worthwhile reflecting on where it may fail. We
have already mentioned that it would not be suitable for
picking up transient functional activity among connections
which are otherwise independent, and so having low long-
term connectivity. Additionally, since the FAST filter is based
on long-term connectivity, it should foremost be applied to
singular cognitive processes. This means that it may not be
suitable to apply to instances where there are expected changes
in the cognitive function of a task, for example.

V. CONCLUSION

We have introduced FAST connectivity, a novel algorithm
building on Graph Variate Dynamic (GVD) Connectivity that
leverages a single global filter computed from both groups
of participants in a given EEG paradigm. We have shown,
in controlled simulations on synthetic data, that the method
outperforms previous Graph-Variate methods in detecting sub-
tle differences in small temporal windows between groups
of participants with and without a simulated ERP in noisy

conditions. We have also shown the lower dependence on
window length of the method, providing an alternative to
existing sliding window methods. Of notable interest is the
fact there is still relatively good performance when the window
length is equal to the sampling rate allowing us to potentially
detect changes in temporal windows at a very granular level.
Applying FAST connectivity to two independent cohorts of
Sporadic and Familial Alzheimer’s Disease patients engaged in
VSTM tasks, we found significant differences between groups
in the 0.3-0.6 second range in the binding task but not in the
shape task, previous studies corresponds this to the P300 ERP
range . This was more prominent in the lower frequency bands,
in particular, the theta band. Corresponding with previous
studies on the binding deficit and the role of the theta band
in Alzheimer’s disease . Future work should aim to focus on
further studying the properties of the Global filter, such as the
Graph Laplacian eigenvalues in order to analytically under-
stand its noise reduction and important connection promotion
effects. Different node functions based on the structure of the
graph signal data should also be explored.
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