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Abstract
The notion of a k-11-representable graph was introduced by Jeff Remmel in 2017
and studied by Cheon et al. in 2019 as a natural extension of the extensively studied
notion of word-representable graphs, which are precisely 0-11-representable graphs.
A graph G is k-11-representable if it can be represented by a word w such that for any
edge (resp., non-edge) xy in G the subsequence of w formed by x and y contains at
most k (resp., at least k + 1) pairs of consecutive equal letters. A remarkable result of
Cheon at al. is that any graph is 2-11-representable, while it is unknown whether every
graph is 1-11-representable. Cheon et al. showed that the class of 1-11-representable
graphs is strictly larger than that of word-representable graphs, and they introduced
a useful toolbox to study 1-11-representable graphs. In this paper, we introduce new
tools for studying 1-11-representation of graphs. We apply them for establishing 1-
11-representation of Chvátal graph, Mycielski graph, split graphs, and graphs whose
vertices can be partitioned into a comparability graph and an independent set.

Keywords 1-11-representable graph · Word-representable graph · Chvátal graph ·
Split graph · Mycielski graph · Comparability graph

1 Introduction

Various ways to represent graphs have evolved into a field of study, interesting from
both mathematical and computer science perspectives [22]. Of more relevance to
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us is the theory of word-representable graphs [14], admitting a myriad of various
generalizations. The basic idea here is to encode a given graph by a word using
specified rules for defining edges/non-edges. For example, in the word-representable
graphs alternations of letters in words define edges/non-edges, whilst this idea has
been generalized by utilizing other patterns [10]. A given graph may, or may not admit
representation under a given set of rules, so the main concern in the area of interest
to us is whether a given graph is representable. Other research questions may include
studying algorithmic aspects of representations, its minimal lengths, connections to
other structures like graph orientations, applications, etc.

A particular way to represent graphs is k-11-representation introduced by Jeff Rem-
mel in 2017 and studied by Cheon et al. in [4]. This way to represent graphs, formally
defined in Sect. 2.2, is a natural way to generalize the notion of a word-representable
graph that are precisely 0-11-representable graphs. Remarkably, any graph is 2-11-
representable and the class of 1-11-representable graphs is strictly larger than that of
0-11-representable graphs (i.e. word-representable graphs); see [4]. It is still unknown
whether there exist graphs that are not 1-11-representable. Clearly, such graphs (if
they exist) must be non-word-representable. Hence, proving that various classes of
non-word-representable graphs are 1-11-representable is a worthwhile direction of
research.

1.1 Our Results and Organization of the Paper

In this paper, we observe the need of introducing new tools to study 1-11-representable
graphs as the known set of tools does not allow to establish 1-11-representation of
some known non-word-representable graphs. In particular, we introduce a new tool
for establishing 1-11-representation of the Chvátal graph and another tool for proving
that every split graph is 1-11-representable. We also generalize these tools to prove
1-11-representability for certain more general classes of graphs. Finally, we revisit the
proof in [4] that every graph on at most 7 vertices is 1-11-representable to fill in the gap
in the proof caused by usage of an incomplete list of small non-word-representable
graphs, where two graphs were missing.

The paper is organized as follows. In Sect. 2 we introduce all (classes of) graphs
considered in this paper highlighting in separate subsections more important word-
representable graphs and related to them semi-transitive orientations (Sect. 2.1) and
k-11-representable graphs (Sect. 2.2). Also, in Sect. 2.3 we provide a comprehensive
list of known results about 1-11-representable graphs that provide a powerful base to
study 1-11-representation of graphs. In Sect. 3 we introduce new tools to study 1-11-
representable graphs and discuss its applications for the Chvátal graph in Sect. 3.1 and
for split graphs and for graphs whose vertices can be partitioned into a comparability
graph and an independent set in Sect. 3.2. Also, we complete justification of the fact
that all graphs on at most 7 vertices are 1-11-representable in Sect. 3.3 and provide
concluding remarks in Sect. 4.
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Fig. 1 The graphs μ(C3), μ(C4), and μ(C5)

2 Preliminaries

We begin with defining (classes of) graphs appearing in this paper under various
contexts. Throughout this paper, we denote by G \ v the graph obtained from a graph
G by deleting a vertex v ∈ V (G) and all edges adjacent to it. Also, for any A ⊆ V
and v ∈ V let NA(v) := {u ∈ A | uv ∈ E}, that is, NA(v) is the set of neighbours of
v in A. If A = V we write simply N (v). We use the notation G[A] for the subgraph
of G induced by the subset A.

A circle graph is the intersection graph of a set of chords of a circle, i.e. it is an
undirected graph whose vertices can be associated with chords of a circle such that
two vertices are adjacent if and only if the corresponding chords cross each other [21].
An interval graph has one vertex for each interval in a family of intervals on a line,
and an edge between every pair of vertices corresponds to intervals that intersect [19].
A split graph is a graph in which the vertices can be partitioned into a clique and an
independent set [8, 12]. For an arbitrary graph G = (V , E) with V = {v1, . . . , vn},
define the Mycielski graph μ(G) = (V ∪U ∪ {x}, E ∪ E ′) whereU = {u1, . . . , un}
and

E ′ = ∪n
i=1({xui } ∪ {yui for all y ∈ NV (vi )}).

In other words,μ(G) containsG itself as a subgraph, the independent set consisting of
a copy of each its vertex, and a vertex x adjacent to all these copies. For example, the
graphs μ(C3), μ(C4), and μ(C5) are in Fig. 1. The importance of Mycielski graphs
follows from the well-known fact [20] that this construction allows to increase the
chromatic number of a triangle-free graph without adding new triangles (i.e if G is a
triangle-free k-chromatic graph thenμ(G) is a triangle-free (k+1)-chromatic graph).
The Chvátal graph is presented to the left in Fig. 2.

An orientation of a graph is transitive, if the presence of the edges u → v and v → z
implies the presence of the edge u → z. An undirected graph G is a comparability
graph if G admits a transitive orientation.
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Fig. 2 The Chvátal graph (to the left) and a semi-transitive orientation of the Chvátal graph extended by
the edges 31 and 42 (to the right)

2.1 Word-Representable Graphs and Semi-transitive Orientations

Two letters x and y alternate in a wordw if after deleting inw all letters but the copies
of x and ywe either obtain aword xyxy · · · or aword yxyx · · · (of even or odd length).
A graph G = (V , E) is word-representable if and only if there exists a word w over
the alphabet V such that letters x and y, x �= y, alternate in w if and only if xy ∈ E .
The unique minimum (by the number of vertices) non-word-representable graph on
6 vertices is the wheel graph W5, while there are 25 non-word-representable graphs
on 7 vertices. We note that the original list of 25 non-word-representable graphs on 7
vertices presented, for example, in [14] contains two incorrect graphs, so we refer to
[18] for the corrected catalog of the 25 graphs.

A graph is permutationally representable if it can be represented by concatenation
of permutations of (all) vertices. Thus, the class of permutationally representable
graphs is a subclass of word-representable graphs. The following theorem classifies
these graphs.

Theorem 1 ([14]) A graph is permutationally representable if and only if it is a
comparability graph.

An orientation of a graph is semi-transitive if it is acyclic, and for any directed path
v0 → v1 → · · · → vk either there is no arc from v0 to vk , or vi → v j is an arc for all
0 ≤ i < j ≤ k. An induced subgraph on at least four vertices {v0, v1, . . . , vk} of an
oriented graph is a shortcut if it is acyclic, non-transitive, and contains both the directed
path v0 → v1 → · · · → vk and the arc v0 → vk , that is called the shortcutting edge.
A semi-transitive orientation can then be alternatively defined as an acyclic shortcut-
free orientation. A fundamental result in the area of word-representable graphs is the
following theorem.

Theorem 2 ([11]) A graph is word-representable if and only if it admits a semi-
transitive orientation.
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For instance, it follows from Theorem 2 that each 3-colorable graph is word-
representable (just direct each edge from a lesser color to a larger one).

2.2 k-11-Representable Graphs

A factor in a word w1w2 . . . wn is a word wiwi+1 . . . w j for 1 ≤ i ≤ j ≤ n. For
any word w, let π(w) be the initial permutation of w obtained by reading w from left
to right and recording the leftmost occurrences of the letters in w. Denote by r(w)

the reverse of w, that is, w written in the reverse order. Finally, for a pair of letters
x and y in a word w, let w|{x,y} be the subword induced by the letters x and y. For
example, if w = 42535214421 then π(w) = 42531, r(w) = 12441253524, and
w|{4,5} = 45544.

Let k ≥ 0. A graph G = (V , E) is k-11-representable if there exists a word w

over the alphabet V such that the word w|{x,y} contains in total at most k occur-
rences of the factors in {xx, yy} if and only if xy is an edge in E . Such a word w is
called G’s k-11-representant. Note that 0-11-representable graphs are precisely word-
representable graphs, and that 0-11-representants are precisely word-representants. A
graph G = (V , E) is permutationally k-11-representable if it has a k-11-representant
that is a concatenation of permutations of V . The “11” in “k-11-representable” refers
to counting occurrences of the consecutive pattern 11 in the word induced by a pair
of letters {x, y}, which is exactly the total number of occurrences of the factors in
{xx, yy}.

A uniform (resp., t-uniform) representant of a graph G is a word, satisfying the
required properties, in which each letter occurs the same (resp., t) number of times. It
is known that each word-representable graph has a uniform representant [15], the class
of 2-uniformly representable graphs is exactly the class of circle graphs [14], while
the class of 2-uniformly 1-11-representable graphs is the class of interval graphs [4].
Interestingly, 2-uniformly representable graphs appear in the literature under the name
of “alternance graph”, and other names, in [1, 2, 6–8] well before the introduction of
word-representable graphs; see [2] for a discussion and more references on alternance
graphs. The main result in [4] is the following theorem.

Theorem 3 ([4]) Every graph G is permutationally 2-11-representable.

So, when understanding whether each graph is k-11-representable for a fixed k, the
only open case to study is k = 1.

2.3 KnownTools to Study 1-11-Representable Graphs

Clearly, each word-representable graph is 1-11-representable. Indeed, if w is a word-
representant ofG then, for instance,ww or r(π(w))w are its 1-11-representants. There
are three types of tools for finding 1-11-representable graphs suggested in [4]:

• Modifying known 1-11-representable graphs;
• Removing edges from word-representable graphs;
• Adding vertices to certain classes of graphs.
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Below we unify all known tools from [4] into three statements according to their
type.

Lemma 1 ([4])

(a) Let G1 and G2 be 1-11-representable graphs. Then their disjoint union, glueing
them in a vertex or connecting them by an edge results in a 1-11-representable
graph.

(b) If G is 1-11-representable then for any edge xy adding a new vertex adjacent to
x and y only, gives a 1-11-representable graph.

Lemma 2 ([4]) Let G be a word-representable graph, A ⊆ V and v ∈ V . Then

(a) G \ {xy ∈ E(G) | x, y ∈ A} is a 1-11-representable graph;
(b) G \ {uv ∈ E(G) | u ∈ NA(v)} is a 1-11-representable graph.
Lemma 3 ([4]) Let G be a graph with a vertex v. G is 1-11-representable if at least
one of the following conditions holds:

(a) G \ v is a comparability graph;
(b) G \ v is a circle graph.

Note that the tool in Lemma 3(b) (that is a partial case of Theorem 2.7 in [4]
for k = 2) looks to be the strongest one. For instance, it allows to establish 1-11-
representability of such known non-word-representable graphs as odd wheels. In the
next statement we use it to prove a new result on 1-11-representability of μ(Cn). Note
that μ(Cn) is conjectured to be non-word-representable for all odd n ≥ 3, and it is
known that the conjecture is true for μ(C5) [16].

Proposition 1 The Mycielski graphs μ(Cn) are 1-11-representable for all n ≥ 3.

Proof By Lemma 3(b) it is sufficient to show that the graphμ(Cn)\x is a circle graph,
i.e. that it is 2-uniformly representable. It is easy to check that the following 2-uniform
word represents μ(Cn) \ x :

v2u1u2v1v3u2u3v2v4 . . . vi ui−1uivi−1vi+1uiui+1vi . . . vnun−1unvn−1v1unu1vn .

Indeed, it is easy to see that the 2-uniform word v2v1v3v2 . . . vnvn−1v1vn represents
the cycleCn . The u’s are inserted into this word in such a way that between two copies
of ui one finds only vi−1 and vi+1 for every i (including the cyclical shifts of the word
with the indices 0 = n and n + 1 = 1). So, N (ui ) = {vi−1, vi+1} = NCn (vi ), as
required. 
�

3 New Tools to Study 1-11-Representation of Graphs and Their
Applications

Our first tool (Theorem 4 below) is a far-reaching generalization of Lemma 2. We
begin with the following easy observation.
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Proposition 2 Let �1, �2, �3 be three permutations over [n] = {1, . . . , n}. Then the
wordw = �1�2�3 permutationally 1-11-represents the graph with the vertex set [n]
in which x and y are not connected by an edge if and only if in �1 and �3, x and y
are in the same relative order, while in �2 they are in the opposite order.

Proof We may assume that x < y in �1. Then the word w|{x,y} is either one of
xyxyxy, xyxyyx, xyyxyx (then xy is an edge) or xyyxxy (then x and y are not
adjacent). 
�

In the proof of the next theorem, and in other places in the rest of the paper,
for convenience, we slightly abuse the notation by denoting a set A and a certain
permutation of elements in A by the same letter. This will not cause any confusion.

Theorem 4 Let V1, . . . , Vk be pairwise disjoint subsets of [n], the set of vertices of a
word-representable graph G. We denote by E(Vi ) the set of all edges of G having both
end-points in Vi . Then, the graph H = G\(∪1≤i≤k E(Vi )), obtained by removing all
edges belonging to E(Vi ) for all 1 ≤ i ≤ k, is 1-11-representable.

Proof Letw be aword representingG and recall thatπ(w) denotes the initial permuta-
tion ofw. By [15], we can assume thatw is uniform.Also, we let R := [n]\(∪1≤i≤kVi )
and we define the permutation �1 := V1V2 . . . Vk R, where all letters in each subset
follow the same order as they have in π(w). Let �2 := r(V1)r(V2) . . . r(Vk)R. We
will next prove that the word W = �1�2π(w)ww 1-11-represents1 the graph H .

Note that the word π(w)ww 1-11-represents G and since w is uniform, each edge
of G is represented in w by strict alternation of letters (avoiding occurrences of the
pattern 11). Clearly, all non-edges in G remain non-edges in H .

If xy is an edge in G that belongs to E(Vi ) for some i , then by Proposition 2,
(�1�2π(w))|{x,y} contains at least two occurrences of the patterns 11, and hence x
and y are not connected by an edge in H .

Suppose that xy is an edge in both G and H . Hence, x and y cannot belong to any
Vi . But then in the permutations �1 and �2 the letters x and y are in the same order.
By Proposition 2, the word (�1�2π(w))|{x,y} contains at most one occurrence of the
pattern 11. As it was shown above, the word (π(w)ww)|{x,y} has no such occurrences.
So, W |{x,y} has at most one occurrence of the pattern 11, which is consistent with xy
being an edge in H . 
�

A particular case of Theorem 4, when each Vi is of size 2, is useful from an
applications point of view and hence is stated as a separate result.

Corollary 1 Let the graph G be obtained from a graph H by adding a matching (that
is, by adding new edges no pair of which shares a vertex). If G is word-representable
then H is 1-11-representable.

1 In fact, the shorter word�1�2ww also represents the graph H , but we inserted π(w) for the convenience
of the reader, making it easier to follow our arguments.
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Fig. 3 The graph BW3 and a minimal non-word-representable split graph

3.1 The Chvátal Graph is 1-11-Representable

TheChvátal graph, given to the left in Fig. 2, is the smallest triangle-free 4-chromatic 4-
regular graph on 12 vertices [5]. This graph is non-word-representable [16]. Firstly, we
show that no known tool from [4] can be applied for proving its 1-11-representability.

Proposition 3 1-11-representability of the Chvátal graph does not follow from
Lemmas 1, 2, and 3.

Proof It is evident that Lemma 1 cannot be applied.
Assume that Lemma 2 can be applied, i.e. that there is a word-representable graph

G, its vertex subset A and a vertex v such that G \ E ′ is the Chvátal graph where
either E ′ = {xy ∈ E(G) | x, y ∈ A} or E ′ = {uv ∈ E(G) | v ∈ NA(v)}. Consider a
semi-transitively oriented copy ofG (that exists by Theorem 2) and remove from it the
edges in E ′. The obtained oriented graph must contain a shortcut S since the Chvátal
graph is not word-representable [16]. Since the Chvátal graph is triangle-free, S must
contain a directed path u1 → u2 → u3 → u4 with edges u1u3 and u2u4 missing.
However, none of the variants of E ′ can simultaneously contain the edges u1u3 and
u2u4 and miss the edges u1u2, u2u3, and u3u4. Hence, S must be a shortcut in G, a
contradiction.

Finally, let us show that Lemma 3 cannot be applied. Since the Chvátal graph
contains two non-intersecting cycles of length 5 induced by the sets {1, 2, 3, 7, 8} and
{5, 6, 10, 11, 12} (see the left graph in Fig. 2 for the notations), removing any vertex in
the graph cannot produce a comparability graph.Moreover, it is known [2] that a circle
graph cannot contain a graph BW3 (the left one in Fig. 3) as an induced subgraph. It
is straightforward to verify that each of the subsets V1 = {2, 3, 5, 6, 8, 9, 12}, V2 =
{3, 4, 6, 7, 8, 10, 11}, V3 = {1, 4, 5, 8, 9, 10, 12}, and V4 = {1, 2, 6, 7, 10, 11, 12}
induces a copy of BW3. Since V1 ∩ V2 ∩ V3 ∩ V4 = ∅, the Chvátal graph cannot be
turned into a circle graph by removing one vertex. 
�
Remark 1 Note that the same arguments as those in Proposition 3 for non-applicability
of Lemma 2 work not only for the Chvátal graph, but for any triangle-free graph.

However, the new tool from Theorem 4 works well for the Chvátal graph.

Theorem 5 The Chvátal graph is 1-11-representable.
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Proof Add to the Chvátal graph the edges 13 and 24 and consider the orientation of the
obtained graphG presented to the right in Fig. 2. It is easy to verify that this orientation
is acyclic. Assume that it has a shortcut. Note that a shortcut must contain a path of
length at least 3. There are exactly seven such paths in G, namely,

9 → 10 → 11 → 12, 6 → 10 → 11 → 12, 6 → 7 → 11 → 12,

6 → 7 → 8 → 12, 4 → 10 → 11 → 12, 4 → 3 → 11 → 12,

4 → 3 → 2 → 1.

First six of them are not shortcuts since the vertex 12 is not adjacent to 4, 6, or 9.
The last one is not a shortcut since the subgraph induced by the vertices 1, 2, 3, 4 is
transitive. So, the orientation of G is semi-transitive and by Corollary 1 the Chvátal
graph is 1-11-representable. 
�

3.2 1-11-Representability of Split Graphs and Their Generalizations

Our second tool is a new technique of finding permutational 1-11-representants for
certain graphs. We first present the technique for split graphs and then generalize it to
a class of graphs that can be partitioned into an independent set and a comparability
graph. However, we believe that the new technique could be applicable in proving
1-11-representability of other classes of graphs.

Studying word-representation of split graphs is a hard problem, and it has been
the subject of interest in [3, 9, 13, 17]. It is remarkable that each split graph is 1-11-
representable as is shown in the following theorem.

Theorem 6 Any split graph is permutationally 1-11-representable.

Proof Let A = {a1, . . . , ak} be a clique and B = {b1, . . . , b�} be an independent set
in a split graph S, so that A ∪ B is the set of all vertices in S. For a vertex ai ∈ A let
Ni = NB(ai ) (resp., Oi = B\Ni ) be the set of neighbours (resp., non-neighbours) of
ai in B. We put

w0 := a1a2 . . . akb1b2 . . . b� a1a2 . . . akb�b�−1 . . . b1 a1a2 . . . akb1b2 . . . b�

and define the permutations

�k := a1a2 . . . ak−1OkakNk;
� j := akak−1 . . . a j+1a1a2 . . . a j−1Oja j N j , for 0 < j < k;
�0 := akak−1 . . . a1b1b2 . . . b�.

Then the word w = w0�k�k−1 . . . �0 permutationally 1-11-represents the graph
S.

Indeed, the factor w0 of w ensures independence of the set B. Moreover, for each
pair ai , a j ∈ A where i < j in w|ai ,a j we have a subsequence aia j aia j . . . aia j to the
left of the permutation � j (including � j itself), and a subsequence a jaia j ai . . . a jai
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to the right of � j . So, there is exactly one occurrence of the pattern 11 in w|ai ,a j

ensuring that ai and a j are connected. Next, suppose that ai ∈ A and b ∈ B. If ai is
adjacent to b, then w|{ai ,b} = aibaib . . . aib, which has no pattern 11. Finally, if ai is
not adjacent to b then (w\�i )|{ai ,b} = aibaib . . . aib but �i |{ai ,b} = bai , so w|{ai ,b}
has two occurrences of the pattern 11 that is consistent with ai being not adjacent to
b.

Thus, w 1-11-represents G. Since w0 is a concatenation of three permutations, w
is also a concatenation of permutations. 
�

To illustrate the construction in the proof of Theorem 6, we give a permutational
1-11-representation of the split graph given in Fig. 3 to the right that is observed in
[13] to be minimal non-word-representable (removing any of its vertices results in a
word-representable graph). We have A = {1, 2, 3, 4}, B = {5, 6, 7, 8}, k = � = 4,
N1 = {5, 8}, O1 = {6, 7}, N2 = {5, 6, 7, 8}, O2 = ∅, N3 = {6, 7}, O3 = {5, 8},
N4 = {7, 8} and O4 = {5, 6}. Separating permutations by space for more convenient
visual representation, we have:

w0 = 12345678 12348765 12345678

�4 = 123O44N4 = 12356478

�3 = 412O33N3 = 41258367

�2 = 431O22N2 = 43125678

�1 = 432O11N1 = 43267158

�0 = 43215678

and so a permutational 1-11-representation of the graph to the right in Fig. 3 is

12345678 12348765 12345678 12356478 41258367 43125678 43267158 43215678.

The following theorem is a far-reaching generalization of Theorem 6. However, we
do keep Theorem 6 as a separate result as we need the construction in its proof in what
follows.

Theorem 7 Suppose that the vertices of a graph G can be partitioned into a compa-
rability graph formed by vertices in A = {a1, . . . , ak} and an independent set formed
by vertices in B = {b1, . . . , b�}. Then G is permutationally 1-11-representable.

Proof Denote by G ′ the split graph obtained from G by substitution of A by a clique
A′. By Theorem 6 G ′ can be permutationally 1-11-represented by the word w =
w0�k�k−1 . . . �1�0. Moreover, for each ai , a j ∈ A′ the subword w|ai ,a j contains
exactly one occurrence of the pattern 11.

By Theorem 1, the subgraph G[A] is permutationally representable. So, let
Q1Q2 . . . Qt be its representation by permutations Qi over the set A. Let �′

i =
Qib1b2 . . . b� for all i ∈ {1, 2, . . . , t} and rename, if necessary, the vertices in A so
that Q1 = akak−1 . . . a1 (i.e. so that �′

1 = �0 in the word w). We put

W = w0�k�k−1 . . . �1�
′
1�

′
2 . . . �′

t
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Fig. 4 Non-word-representable Graph 12 (to the left) and Graph 17 (to the right)

and show that it permutationally 1-11-represents G.
Indeed, the factor w0�k�k−1 . . . �1�

′
1 of W defines the split graph with a clique

formed by the vertices in A and an independent set B. Also, any edge aib j of the split
graph remains an edge in G since the order of these vertices is aib j in all permutations
of W .

Let i < j and consider vertices ai , a j ∈ A. By construction, in the word w =
w0�k�k−1 . . . �1�

′
1 each edge aia j of the clique A′ is defined by the subsequence

aia j aia j . . . aia ja j aia j ai . . . a jai

containing exactly one occurrence of the pattern 11. If aia j is an edge of the compa-
rability graph G[A], then in all permutations �′

s vertices ai and a j are in the same
order a jai , and so �′

1�
′
2 . . . �′

t |{ai ,a j } avoids the pattern 11 and hence aia j remains
an edge in G. Finally, if aia j is not an edge of the comparability graph G[A], then
in �′

1�
′
2 . . . �′

t |{ai ,a j } we have at least one occurrence of the pattern 11, and hence
w|{ai ,a j } has at least two occurrences of the pattern 11, so in G ai and a j are not
connected by an edge. 
�

3.3 1-11-Representability of all Graphs on at most 7 Vertices

1-11-representation of all graphs on at most 7 vertices is established in [4]. However,
the arguments in [4] are based on the incorrect list of 25 non-word-representable graphs
published in several places in the literature, in particular, in [14]. The problemwith the
list was spotted in [18], and the two incorrect graphs, Graphs 12 and 17, were replaced
in [18] by the correct graphs given in Fig. 4. Hence, technically, 1-11-representation
of all graphs on at most 7 vertices, but Graph 12 and Graph 17, is known, and next we
complete the classification by confirming 1-11-representability of the graphs in Fig. 4.

Proposition 4 Graphs 12 and 17 are permutationally 1-11-representable.

Proof Note that removing the independent set {1, 5, 7} from Graph 12 results in a
triangle with a pending edge, that is a comparability graph. Similarly, removing
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the independent set {1, 7} from Graph 17 results in a 5-cycle with a chord, that
is also a comparability graph. So, by Theorem 7 both graphs are permutationally
1-11-representable. 
�

Note that there exist shorter non-permutational 1-11-representants for these graphs
found using software:

w12 = 4573275465142631256 w17 = 23474625731436251645.

4 Concluding Remarks

In this paper we introduce new tools to study 1-11-representable graphs, which allows
to confirm 1-11-representability of Chvátal graph, Mycielski graph, split graphs and
graphswhose vertices can be partitioned into a comparability graph and an independent
set. Finally, we confirm a claim in [4] that all graphs on at most 7 vertices are 1-11-
representable.

It is still an open problem whether each graph is 1-11-representable. Moreover, it is
still unknown whether each graph is permutationally 1-11-representable, and towards
constructing potential counterexamples, one should look for a graph for which none of
the known existing tools is applicable.Note that even if all graphs are (permutationally)
1-11-representable, the constructions of 1-11-representations presented in this paper
can still be useful for finding explicit representations of graphs, with an aim towards
potential applications.
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