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A B S T R A C T

This study systematically evaluated the predictive accuracy of common empirical models for pharmaceutical
powder compaction. A dataset of nine placebo and twelve active pharmaceutical ingredient (API) loaded blend
formulations (four APIs at three drug loadings) was fitted to the widely used empirical tablet compression
(Gurnham, Heckel, and Kawakita) and compaction (Ryshkewitch-Duckworth and Leuenberger) models. At low
API loadings (<20w/w%), all models achieved R2 above 90 % and RRMSE (relative root mean squared error)
below 0.1. However, as API loads increased, overall model performance decreased, notably in the Heckel model.
A parameter variability analysis identified multiple parameter pairs achieving acceptable fits. Consequently, a
novel global optimization approach was developed populating arithmetic, geometric, and harmonic mixture
rules for empirical tuning parameters. This method outperformed the traditional line of best fit approach. A cross
validation study revealed that this method is capable of predicting tuning parameters which achieve an
acceptable Goodness of Fit for new blends. Finally, with the restriction of maintaining consistent parameters for
the placebo blend, the proposed method could substantially reduce the experimental requirements and API
consumption for the exploration of new blends.

1. Introduction

Industrialists and researchers have explored computational tech-
niques in the development of new oral solid dosage forms (OSDFs)
aiming to minimise resource consumption by predicting quality attri-
butes for new formulations and moving away from the traditional trial-
and-error approach. Key attributes of focus in OSDFs development are:
tablet porosity, which affects disintegration and dissolution processes,
ultimately impacting the drug release profile; and tensile strength,
which is critical for ensuring robustness in downstream handling (e.g.
coating and packaging), transport and storage (Reynolds et al., 2017;
Yu, 2008; Yu et al., 2014).

There has been a large amount of research generated regarding the
application of predictive empirical methods to advance the under-
standing of powder compressibility and compactability. The compress-
ibility of a powder describes the ability of the system to reduce its
volume when under pressure, which is typically defined by a reduction
in the relative density or void space (i.e. porosity) (Athy, 1930; Cooper&

Eaton, 1962; Gurnham & Masson, 1946; Heckel, 1962; Kawakita &
Tsutsumi, 1965; Kawakita & Tsutsumi, 1966; Sonnergaard, 2001;
Walker, 1923; Zhao et al., 2006). The compactability of a powder de-
scribes the ability of the system to be compressed into a reduced volume
of specified strength (Duckworth, 1953; Leuenberger, 1982; Leuen-
berger & Rohera, 1986; Ryshkewitch, 1953; Wu et al., 2005).

Compressibility and compactability models were originally devel-
oped and applied to systems which considered a single inorganic or
fibrous compound (like ceramics, metals and food stuffs) which behave
very differently to – and hence may not be suitable for describing the
behaviours of – organic compounds, i.e. most pharmaceutical materials.
The performance of compression and compaction models have been
discussed for single, binary, or multi-component pharmaceutical pow-
der systems (Kuentz & Leuenberger, 1999; Rue & Rees, 1978; Sonner-
gaard, 1999; Vreeman & Sun, 2021). However, within these studies
there have been inconsistent conclusions regarding: the reliability of the
models; the estimations of model tuning parameters; and the interpre-
tation of results to inform or predict behaviours for physically similar
tablet formulations. For example, Sonnergaard (1999) highlighted the
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variety of in-die tuning parameters of the Heckel model for a micro-
crystalline cellulose (MCC) grade (Avicel® PH-101) and paracetamol.
This study reviewed estimates for the apparent yield pressure between
authors (calculated from the proportionality constant of Heckel’s
model) and found ranges for these assumed “material specific” values,
which were 48 – 104 MPa and 79 – 124 MPa respectively. They
concluded that these ranges exist due to the Heckel model parameters
being extremely sensitive to small errors in experimental values and
consequently questioned the Heckel model’s reproducibility. The
sensitivity of Heckel’s model was then further investigated by Kuentz
and Leuenberger (1999) and they concluded that the limitations of the
Heckel model were due to the authors assumption that pressure sus-
ceptibility was constant across the pressure range rather than changing
with the extent of compression. They also found that Heckel’s model was
unable to capture the behaviour of out-of-die measurements below the
point of mechanical rigidity of the compact and proposed a modified
model to address this limitation. A commonly cited inconsistency be-
tween these investigations into the Heckel model rests on the method-
ology being used for in- or out-of-die measurements. The impact that this
could have on results was recently evaluated in a study by Vreeman and
Sun (2021), where they compared Heckel’s in-die and out-of-die pa-
rameters to that of previous studies, macro-indentation equivalent
values, and the parameters for the model proposed by Kuentz and
Leuenberger (1999). Vreeman and Sun (2021) instead concluded that
Heckel’s in-die parameters were as reliable as their out-of-die counter-
parts and stated that Heckel’s model demonstrated acceptable accuracy
within a limited range of process conditions and material properties.
Rue and Rees (1978) concluded in their study that – due to the sensi-
tivity of Heckel’s model to certain material and process conditions (such

as particle size¸ contact time and die dimensions) – the use of the model
to characterise pharmaceutical material behaviours was unreliable;
however they state that Heckel’s model is an effective method to
compare the plastic deformation of different materials. The Heckel
model has been subjected to a greater deal of scrutiny in the literature
compared to other models (Gurnham, Kawakita, Ryshkewitch-
Duckworth, and Leuenberger), yet there is still notable variability in
the conclusions drawn regarding the tuning parameters and limitations
of these models.

This variability can be attributed to the use of varying model
parameter estimation procedures and isolated datasets that consider
varying materials and process attributes (Yu et al., 2014). Yet, knowing
this, a detailed comparison of compression models based on a singular,
large and consistent dataset has not been completed since Kawakita and
Tsutsumi (1965). In addition, this comparative study investigated
powdered metals, ferrites, and food stuffs and did not consider the
Gurnham and Heckel models, which have become popular in pharma-
ceutical applications. The focus of these studies was to evaluate the
Goodness of Fit (GoF) with regards to the model structures and as-
sumptions behind the models. Several studies have investigated the
impact of process parameters and material attributes on the GoF, but,
due to the blend specificity of these parameters, coupled with the
vastness of the design space, it is challenging to wholly investigate the
response of these models for every instance of formulation change
(Adams & Mckeown, 1996; Frenning et al., 2009; Mazel et al., 2011;
Nordström et al., 2008; Sonnergaard, 2001).

A proposed solution to reduce the experimentation required is to
estimate the tuning parameters of the individual components that make
up the blend. This approach allows the estimation of a material’s

Nomenclature

Abbreviation
GoF Goodness of Fit(− )
RoI Region of Interest(− )
RMSE Root Mean Squared Error
RRMSE Relative Root Mean Squared Error(− )

Variable
ε Tablet porosity(− )
ε0 Initial tablet porosity(− )
γ Compression susceptibility(MPa− 1)
φ Volume Fraction(− )
σ Tablet tensile strength(MPa)
σ0 Tablet tensile strength at zero porosity(MPa)
Ai and Bi Example tuning parameters(− )
Amix and Bmix Example mixture tuning parameters(− )

b A tuning parameter which is hypothesized to reflect the
resistant and cohesive forces of the particles(MPa− 1)

B Grouped tuning parameter(MPa− 1)
C A constant(− )
kb The bonding capacity(− )
KG Compression resistance (Gurnham)(MPa− 1)
KH Compression resistance (Heckel)(MPa− 1)
KK Compression resistance (Kawakita)(MPa− 1)
P Compression Pressure(MPa)
P0 Pressure required to reach a tablet of zero porosity(MPa)
R2 Coefficient of Determination(− )
V0 Initial apparent volume of powder bed (m3)
V∞ Net volume of powder(m3)
yi Dependent variable(− )
ŷi Model prediction of dependent variable(− )
y Mean dependent variable(− )

Fig. 1. An illustration showing a binary mixture of compressible (Material X) and incompressible (Material Y) particles at increasing levels of compression (left to
right) to demonstrate the idea of component contributions to blend behaviour as a function of volume fraction, φi (Reynolds et al., 2017). This is an idealised
demonstration where the uniformly distributed particles do not interact with each other and are of the same shape and size.
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contribution to the compaction behaviour of a blend by using a weighted
average of the materials on a volume fraction basis, φi, named ‘mixture
rules’ (Fig. 1) (Jolliffe et al., 2022; Reynolds et al., 2017). A useful
mixture rule strikes a balance between the complexity and the cost of
computation. The complexity of a model increases with a larger number
of parameters, higher order polynomials, or the inclusion of interaction
terms in order to capture the non-linearity of a relationship. Simple
averaging methods – arithmetic, geometric, or harmonic means – have
been studied in the field of pharmaceutical formulation to estimate the
mixture rules for tuning parameters while avoiding extensive compu-
tational cost. Jolliffe et al. (2022) investigated which combination of
arithmetic and geometric means achieved the best GoF. This method
proposed extrapolation as a way to estimate pure API parameters for the
Gurnham and Ryshkewitch-Duckworth models. It was found that the
Gurnham model favoured the arithmetic mean and Ryshkewitch-
Duckworth model favoured the geometric mean to estimate mixture
parameters. This paper further considers these simple mixture rules,
with the addition of the harmonic mean, and assumes no interaction
terms are required to reduce computational cost in estimating and
evaluating mixture tuning parameters. Eqs. (1)–(3) exemplify the
calculation of a mixture’s tuning parameter, θmix, in the context of N
materials. Each material, denoted by the tuning parameter θi and vol-
ume fraction φi for material i, contributes to the mixture’s tuning
parameter that is used in the compression or compaction model for the
formulation.

Arithmetic

θmix =
∑N

i=1
φiθi (1)

Geometric

(
∏N

i=1
θiφi
)1
/∑N

i=1
φi

(2)

Harmonic
∑N

i=1φi
∑N

i=1
φi
θi

(3)

A majority of studies into these empirical models, particularly those
which consider mixture rules, have focussed on excipient (placebo)
blends as they behave more ideally than their drug-loaded counterparts
(Busignies et al., 2006; Frenning et al., 2009; Mazel et al., 2011;
Nordström et al., 2008; Sonnergaard, 2001; Sonnergaard, 2022; Wu
et al., 2005, 2006; Zhao et al., 2006). These studies have provided a
general understanding of pharmaceutical powder compaction, however,

the impact of drug loading has not been as extensively explored (Jolliffe
et al., 2022; Jolliffe et al., 2019; Kuentz & Leuenberger, 2000a, 2000b;
Wünsch et al., 2019). Active Pharmaceutical Ingredients (APIs) are
notoriously non-compactable materials and their presence has been
shown to significantly impact the manufacturability of blends and the
final quality attributes of products (Wenzel et al., 2017). It is crucial to
investigate the impact of drug loading on different aspects of predictive
compaction modelling such as the estimation of, and confidence in,
model tuning parameters and quality of fit (model accuracy) to ensure
industrial relevance of such methods. Although the application of
empirical compressibility and compactability mixture rules can signifi-
cantly reduce experimentation, there are key challenges posed to this
theory: 1) limited ability to collect compression data for pure non-
compactable materials means that some tuning parameters in this
space are unattainable, a crucial barrier for applying this to API loaded
blends; and 2) until the reasoning behind the variation in the cited
tuning parameters has been defined and addressed for the available
models, this method cannot be confidently applied to industry despite
the cited successes for applications to placebo blends (Busignies et al.,
2006; Frenning et al., 2009; Mazel et al., 2011; Reynolds et al., 2017).

This paper demonstrates a new approach for, and an increased un-
derstanding of, populating compressibility and compactability mixture
rules of drug-loaded formulations to address the cited inconsistencies in
the reliability of common empirical models and the variability of their
tuning parameters. This study consists of three main sections: (i) a sta-
tistical comparison of the ability for common empirical models –
Gurnham, Heckel, and Kawakita models for porosity and Ryshkewitch-
Duckworth and Leuenberger for tensile strength – to consistently
describe the compaction behaviours of four pharmaceutical powder
blends of varying drug loadings; (ii) a parameter variability analysis
using placebo data to evaluate how inconsistencies in data collection
and parameter estimation can impact the GoF and reproducibility for
these models, and (iii) the development of a new, global optimisation
approach to populate mixture rules for compression and compaction
model tuning parameters for loaded blends.

2. Materials and methods

2.1. Materials

The APIs considered were ibuprofen 50 (BASF, UK), powdered and
granular grades of paracetamol (pAPAP and gAPAP, Mallinckrodt, UK),
and mefenamic acid (Sigma, UK). The excipients were lactose mono-
hydrate (Fast Flo 316, Kerry, UK), microcrystalline cellulose (Avicel PH-
102, DuPont, UK), croscarmellose sodium (Solutab, Roquette, UK) and
magnesium stearate (Ligamed MF-2 V, Peter Greven, Netherlands).

2.2. Blending and characterisation of formulations

This study sourced data from Jolliffe et al. (2022). Four APIs were
used at three levels of drug loading and in each loaded instance, the ratio
of API to filler was varied (Table 1). Note that the inconsistent ranges in
API loading was due to flowability causing tablet weight variability. In
addition, nine placebo blends were created to explore the trends of
tuning parameters with changes to the ratio of filler-to-compression aid
(Table 2). The blends were created using a 1 L bin blender (Multiblend
MB015, Pharmatech, UK) set at 24 rpm for 20 min before adding the
lubricant for a further 3 min at 17 rpm. The true densities of the raw
materials were measured using a gas pycnometer (Micro Ultrapyc
1200e, Quantachrome, Austria). The true density of the blends, ρt,mix,
were calculated using the harmonic mean of N raw materials true den-
sities, ρt,i, based on their weight fraction, ci, Eq. (4):

ρt,mix =

(
∑N

i

ci
ρt,i

)− 1

(4)

Table 1
Formulation information for the API loaded blends. Percentages are given by
weight/weight ratios.

Functional
Material

Material Low API
(%)

Mid API
(%)

High API
(%)

API Ibuprofen 50 5 20 40
Paracetamol
(powdered)

5 10 15

Paracetamol
(granular)

10 20 40

Mefenamic acid 5 20 35
Filler Lactose

monohydrate
Remainder Remainder Remainder

Compression
Aid

Microcrystalline
cellulose

20 20 20

Disintegrant Croscarmellose
sodium

3.5 3.5 3.5

Lubricant Magnesium
stearate

1 1 1

T. Tait et al.
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2.3. Tablet manufacture

The powders were compacted into 9 mm round flat-faced (B-tooling,
i-Holland, UK) tablets of 200 mg by a single punch tablet press (XP 1
Tablet Press, Korsch, Germany). Proprietary software was used to collect
data for the compaction profiles (punch force, displacement, and ejec-
tion force) for six-to-eight compression pressures, each setting being
replicated for ten tablets to achieve a sample average. The number of
compression points was selected depending on the ability for the blend
to form a compact within the considered pressure range.

2.4. Tablet testing

The placebo tablets created were allowed to rest for an hour before
any measurements were taken. A mass balance (Sartorius Quintix 125D-
1S, Sartorus, Germany), and manual hardness tester (HC 6.2, Kraemer
Electronik GmbH, Darmstadt, Germany, fitted with a Mitutoyo micro-
meter) were used to measure tablet characteristics such as mass, tablet
breaking force and thickness.

2.5. Tablet porosity and tensile strength

The mass, dimensions and breaking force of the tablets were used to
estimate the tablet porosity and tensile strength. The compression
pressure, P, was estimated from the force of compression, F, which was
taken from the tablet press software, and the tablet cross sectional area,
Eq. (5). The tablet mass, mtablet, the true density of the blends, ρtrue, and
the tablet volume, Vtablet, was then used to estimate the relative density,
ρelative, and further, the porosity of the tablets, ε, Eq. (6). The offline
analytical data for the breaking force,H, thickness, h, and diameter, d, of
the produced tablets was then used to calculate the tensile strength, σ,
Eq. (7).

P =
4F
πd2 (5)

Table 2
Formulation information for the placebo blends to be used in the parameter variabilty analysis. Percentages are given by weight/weight ratios.

Material Mass Percentage (%)
Lactose monohydrate 95.5 85.5 80.5 75.5 47.75 20.5 15.5 10.5 0

Microcrystalline cellulose 0 10 15 20 47.75 75 80 85 95.5
Croscarmellose sodium 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Magnesium stearate 1 1 1 1 1 1 1 1 1

Fig. 2. Workflow showing the structure for the global optimisation of compressibility and compactability mixture models.

Table 3
Parameter pair constraints for the global optimisation of the mixture rules.

Model Initial Parameters Parameter Constraints

Gurnham 1 1 • 10− 6 ≤ θ ≤ 2.5 • 103

Heckel 0.25 1 • 10− 6 ≤ θ ≤ 2
Kawakita 0.5 1 • 10− 6 ≤ θ ≤ 2

0.5 − 2 ≤ θ ≤ 2
Ryshkewitch-Duckworth 1 1 • 10− 6 ≤ θ ≤ 1 • 104

1 − 50 ≤ θ ≤ 1 • 104

T. Tait et al.
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ε = 1 − ρrelative = 1 −
mtablet

ρtrueVtablet
(6)

σ =
2H
πdh (7)

2.6. Statistical analysis methods

The data points for each individual blend were fitted to the models,
and their respective tuning parameters were optimised using weighted
regression methods. The weights were defined by the standard deviation
of the dependent variable across the ten tablet samples. The GoF was
defined by the squared-correlation coefficient, R2, and the relative root-
mean squared error, RRMSE, to assess the prediction performance of the

Fig. 3. The averaged Goodness of Fit metrics (a) R2, and (b) RRMSE for the different modelling approaches as for bins of 10% in blend drug loading.

Fig. 4. Success rates showing the fraction of blend data which meets the acceptance criteria (ε± 0.02, and σ± 0.25 MPa) for (a) the entire compression pressure range
and (b) the RoI.

T. Tait et al.
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models. The coefficient of determination, R2, describes how well a
model fits a dataset by evaluating the proportion of variance in the
predicted, ŷi, and observed, yi, dependent variable, Eq. (8). This metric

can have a value between 0 and 1, with the latter reflecting a model
whose predictions match the data exactly. The Relative Root Mean
Squared Error (RRMSE) was used to normalise the metric by scaling the

Fig. 5. The relative residual errors for the modelling approaches (a) Gurnham, (b) Heckel, (c) Kawakita, (d) Ryshkewitch-Duckworth, and (e) Leuenberger as a
function of compression pressure and API concentration. The highlighted data points show points that fall within the RoI. The size of the data points correspond to the
drug loading of the blends.

Fig. 6. A box plot (whisker scale = 1.5 IQR) showing the standard deviations of the tuning parameters relative to their predicted values of the fitting of loaded
datasets (Table 1) for the common empirical models.

T. Tait et al.
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individual residuals against its data value, allowing the comparison of
different measurements: compression and compaction. This metric
represents the error of a model by its average magnitude with regards to
the measured data, Eq. (9), where n is the number of data points.

R2 = 1 −

∑
(yi − ŷi)2

∑
(yi − y)2 (8)

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1(yi − ŷi)2

∑n
i=1(ŷi)

2

√

(9)

The validity of the models was analysed using the relative residual errors
to eliminate the problem of different magnitudes of data and model
parameters when comparing models. The general impact of API con-
centration on models’ prediction performance was investigated by
splitting the results into bins of 10 % intervals of drug loading across all
APIs and averaging the GoF metrics within these.

To evaluate the practical accuracy of these models in pharmaceutical
applications, a Region of Interest (RoI) was defined to highlight the
graphed data points and ranges which have industrial relevance:
compression pressures between 75 and 250 MPa; and tablet porosities of
10 to 35 %.

Acceptance criteria were then defined to assess whether a model can
be deemed acceptable for use in industry by estimating if the residual
errors were within appropriate limits for the quality attribute: ε± 0.02,
and σ± 0.25 MPa (Nassar et al., 2021). The residuals for the loaded
dataset (Table 1) were evaluated for this acceptance criteria and their
success rate was estimated for each blend. The success rate was defined
as the fraction of data points in each dataset which met the acceptance
criteria and visualised as a heat map. This was repeated to consider the

Fig. 7. The relative residuals for quality attribute predictions for the placebo (20% MCC) using (a) Gurnham, (b) Heckel, (c) Kawakita, and (d) Ryshkewitch-
Duckworth. The colour of the data point represents the number of tablets used for the sampling. The shaded area in each plot represents the Region of Interest,
which are the data points which are of relevance for industrial application. Due to the different magnitudes of accuracy between (a) and (b), and (c) and (d) the y-axes
are of different ranges to better display the data for each individual model.

Table 4
Estimated tuning parameter ranges for the sample weighted regression analysis
of the placebo blend (20% MCC). Values rounded to three significant figures.

Model Tuning
Parameter

Minimum
Value

Maximum
Value

Gurnham KGurnham 8.38 9.11
P0 503 638

Heckel KHeckel 0.00563 0.00829
cHeckel 0.806 0.958

Kawakita ε0 0.570 0.617
B 0.0203 0.0247

Ryshkewitch-
Duckworth

σ0 10.6 11.8

kb 8.38 14.0

T. Tait et al.
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data within the RoI as defined above, to consider how this acceptance
criteria may change when at expected operation conditions.

A box plot, with whisker scaling equivalent to 1.5 times the inter-
quartile range (IQR), was used to show the distribution of tuning
parameter standard deviations relative to the estimated parameter
values. This method was used to investigate the confidence achieved in
parameter estimations for the initial model fitting.

2.7. Parameter variability analysis

To consider the impact of variable tuning parameter estimations in
literature, an analyses into the fitting method and tuning parameters
were conducted. This was divided into two parts: (i) an investigation of
weighted linear regression methods to determine the impact of incon-
sistent accuracy in data collection on reproducibility of tuning param-
eters; (ii) an investigation into the impact of the variability of tuning
parameters on GoF. These analyses were performed using the data from
the placebo blend which best matched the loaded data, 20 % MCC in
Table 2.

(i) Weighted Regression Analysis: In weighted linear regression, the
standard deviations of the dependent variables define the weighting
allocation used in the fitting procedure, i.e. a smaller standard deviation
results in a larger weight for the data point. Through randomly sampling
the placebo dataset, the measured averaged values and their standard
deviations (or weights) used in the weighted regression can be varied
around the value used in the initial fitting and their impact on GoF and
estimated parameters compared.

For each sample size (one to nine tablets), a sample dataset was
randomly generated. Tablet measurements were averaged, and standard
deviations estimated. This sampling process was repeated five times to
reduce the impact of randomness on the averaging, whilst avoiding the
evaluation of every potential scenario which would have produced a
constant result for each case. Note that only nine tablets were used as the
maximum of this study rather than the expected ten due to not all
compression points in the placebo dataset having ten tablets worth of
data due to human error. The outputs of the sampling were then fitted to
the models and the GoF metrics and tuning parameters were analysed to
understand whether the cited variations in model tuning parameters
between authors could be attributed to data consistency.

(ii) Tuning Parameter Variation Evaluation: To assess how tuning

parameter variations may impact the GoF for a particular blend, and
iterative trial of tuning parameters was conducted. The performance of
different parameter combinations for the 20 % MCC placebo blend were
evaluated. For this, new parameters were generated within a ± 75 %
range with 1.5 % step size in relation to the initial curve fitting estimates
to explore the parameter space. The RRMSE was evaluated for each
parameter pair, displayed using contour plots to provide a gradient of
prediction accuracy across the parameter space. The RRMSE was
selected with a upper limit of 0.25 for the colour axes as this offered a
clearer demonstration for the conclusions reached compared to the al-
ternatives (Figs. S1–S4).

2.8. Global optimisation of mixture rules

An optimisation process (Fig. 2) was developed with the aim to es-
timate placebo and pure API parameters for the empirical compression
and compaction mixture models which minimised the total RMSE be-
tween the model predictions and observed data for the unique API
datasets, i.e. all data, including the placebo data, for each loading of said
API was considered. This algorithm estimates one unique pair of tuning
parameters θ, Eq. (10) shows the objective function for this.

f(θ,Φ) =
∑J

j

∑K

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
K

(
yk,j − ŷk,j(fmix(θ,ϕ)

)2
√

(10)

min
θ
f(θ,Φ) (11)

with θ being the placebo and pure API estimates for the parameter pairs
(Gurnham: θG = {KG, P0}; Heckel: θH = {KH, cH}; Kawakita: θK =

{ε0, B}; Ryshkewitch-Duckworth: θRD = {σ0, kb}). For all j to J repre-
sents the number of unique APIs. For all k to K represents the number of
unique data points in the compression or compaction datasets. The
porosity or tensile strength data is represented by yk,j with ŷk,j repre-
senting the value as estimated by the mixture model fitting. The mixture
parameter pair θmix is calculated using one of the three mixture rules,
denoted in a general form as fmix(θ, ϕ), where ϕ contains the list of
volume fractions of the N materials in the formulation.

Initial values and constraints were set for the parameters based on
the results from the model comparison analysis, Table 3. The optimi-
sation for the Kawakita and Ryshkewitch-Duckworth models were

Fig. 8. Estimated tuning parameters and their standard errors for the placebo blends with respect to the brittle filler (lactose monoydrate) concentration for (a)
Gurnham, (b) Heckel, (c) Kawakita, and (d) Ryshkewitch-Duckworth.

T. Tait et al.
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constrained by the lower bounds which required these to be expanded
into the negative, which was deemed reasonable as these parameters
were no longer assumed to reflect physical attributes of a material;
however, the geometric mean can only handle positive data. The minima
for RMSE was found to cover a significant area in the parameter space.
The tolerance for termination of the optimisation (scipy.opti-
mise_minimise using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm with Python 3.10.11.) should be set appropriately to provide a
stricter success constraint for this procedure; for this investigation, the
tolerance of termination was set to 10-10. The optimisation method was
conducted for different combinations of mixture rules, fmix(θ,ϕ) of
weighted arithmetic, geometric, and harmonic means.

This optimisation approach was compared to the results for the
alternative methods. Results for the total RMSE of the optimisation
which returned the lowest total RMSE were compared to the total RMSE
of individually estimating parameter pairs using curve fitting, and also
the traditional method of mixture rule. The traditional method (that
which was not optimised) was determined by estimating the line of best
fit for the tuning parameters of the individual formulations. The placebo
and pure API parameters were extrapolated and used as the parameters
in the objective function. In contrast to the new optimisation approach,

there was not a unique (across all formulations) placebo tuning
parameter pair identified using the traditional mixture rule approach.

2.9. Cross validation

To test the optimisation’s ability to predict tuning parameters across
new blends, a cross-validation was conducted. Each dataset consisted of
four distinct groups: placebo, low drug load, mid drug load, and high
drug load. To calibrate the optimisation model, the datasets were split to
include only the placebo group and one of the API-loaded blends (either
low, mid or high). Following the calibration, the models performance
was evaluated using the remaining two API-loaded blends as validation
datasets. The RMSE of Prediction (RMSEP) was used to quantify the
performance of the model for each case. This provided a measure of the
predictive accuracy of the models for the validation datasets by
describing the deviation of predicted quality attribute values from their
observed values. This ‘fit-for-purpose’ method was applied, primarily
due to the small size of the dataset (four tuning parameter points, one for
each distinct group in the model) but also to investigate the significance
of drug loading on the calibration of the model.

Fig. 9. Contour plots showing how variations of tuning parameters (relative to those estimated by the curve fitting) for the (a) Gurnham, (b) Heckel, (c) Kawakita
and (d) Ryshkewitch-Duckworth models impacts the Relative Root Mean Square Error of quality attribute predictions for the placebo (20% MCC) blend. Highlighted
on each of these plots are points A and B, which are the tuning parameter pairs used to construct Fig. 10.
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2.10. Compressibility and compactability models

The five models used in this paper have been categorised into two
groups: compressibility models (results identified throughout paper
with a green colouration) and compactability (results identifiable
throughout paper with a blue colouration) models. The models consid-
ered were those most commonly cited in the literature. The selected
compressibility models were established by Gurnham and Masson
(1946), Heckel (1962) and Kawakita et al. (1965) as described in Eqs.
(12)–(14), respectively.

ε(P) = −
1
KG

ln
(
P
P0

)

(12)

ε(P) = e− (KHP+C) (13)

ε(P) = ε0

1 +

(
V∞
V0

)

bP
=

ε0

1 + BP
(14)

where ε is the porosity of the compact and P is the compression pressure.
Denoting the model tuning parameters, for Gurnham model, KG explains
the resistance to compression and P0 is the pressure required to reach
zero porosity; for Heckel, KH is the proportionality constant, and C is a
constant; for Kawakita, ε0 is the initial powder bed porosity, V∞ is the
net volume of powder, V0 is the initial apparent volume of powder, and b
is a tuning parameter which is hypothesised to reflect the resistant and
cohesive forces of the particles (Adams & Mckeown, 1996). To reduce
the number of parameters in Kawakita model and simplify the fitting
process, the ratio of volumes V∞

V0
and the constant bwere grouped into the

single tuning parameter.
The selected compactability models were those created by Ryshke-

witch (1953) and Leuenberger and Rohera (1986), following Eqs. (15)
and (16) respectively.

σ(P) = σ0e− kbε (15)

σ(P, ε) = σ0
(
1 − e− γP(1− ε) ) (16)

where σ represents the strength of the tablet and σ0 is the strength at
zero porosity, kb represents the material’s bonding capacity, and for
Leuenberger model, γ denotes the compression susceptibility as it indi-
rectly described by the volume reduction.

3. Results

3.1. Individual datasets

3.1.1. Goodness of fit
For the fitting of loaded datasets (Table 1), each model achieved an

R2 of above 0.90 and an RRMSE of close to zero in the instances of low
drug loading (Fig. 3). This confirms that the models can offer acceptable
accuracy in predicting the compression and compaction profiles,
although it is observed that an increase in drug loading resulted in a
reduction in the GoF metrics for each model. Kawakita and
Ryshkewitch-Duckworth perform consistently well below 40 % API
concentration, at which a significant reduction in GoF is observed. The
Gurnham and Heckel models present a stronger reduction in GoF metrics
with higher drug loadings in this instance.

Fig. 10. Compression and compaction curves showing highlighted tuning parameter combinations, A and B from Fig. 9 compared to that of the fitted data (cor-
responds to (0,0) in Fig. 9) for (a) Gurnham, (b) Heckel, (c) Kawakita, and (d) Ryshkewitch-Duckworth models. These lines were fitted to averaged tablet data,
however the individual tablet data has also been included to better visualise underlying variability of the data.
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To verify whether the models were acceptable, the success rate for
the model predictions that met the defined acceptance criteria (ε± 0.02,
and σ± 0.25 MPa) was estimated for each of the individual blends. This
was completed for the whole compression pressure range (Fig. 4 (a)) and
the RoI (Fig. 4 (b)).

Fig. 4 shows that the Kawakita and Ryshkewitch-Duckworth models
had the highest success rate for each API, with Gurnham performing
well but less consistently so. Heckel and Leuenberger had the lowest
success rates and also the largest range in results. When considering only
the data within the RoI, it was found that the success rates mostly
increased with the Gurnham, Kawakita and Ryshkewitch-Duckworth
models performing at 100 % acceptability except in the instance
where Gurnham was unable to capture any acceptable predictions for
the 20 % ibuprofen blend. Note that the 40 % ibuprofen data contained
no points which rested within the RoI. The RoI success rates for the
Heckel and Leuenberger models showed inconsistent improvements,
and conversely some datasets showing 0 % success rates, verifying that

these models are not appropriate for modelling these datasets. Note, that
the success rate only defines whether the results are within certain ex-
pected bounds and does not capture the magnitude of the residuals. The
causes of the differences in the RRMSE and success rates were better
demonstrated by analysing the relative residual errors for each model
(Fig. 5). A well-fitted model would show a scattering of data points
around zero across the pressure range. Any trends in the data would
imply that the model does not fully capture the information within the
data. A visualisation for the extreme cases of GoF for the Heckel model
can be found in Fig. S5 in the Supporting Information for clarity on re-
sidual errors in relation to the compression curve. It was found that each
model offers a trend in the relative residual errors, localised to the lower-
and upper-most limits of the pressure; this is most prominent for the
Heckel and Leuenberger models. It was observed that the most promi-
nent deviations are located outside of the RoI, represented by the
lightened plot points. This supports both the conclusions from Kuentz
and Leuenberger (1999) regarding Heckel’s limitations, and Vreeman

Fig. 11. Total RMSE estimations for the different combinations of arithmetic (Arith.), geometric (Geo.), and harmonic (Harm.) mixture rules for the optimisation of
parameter pairs of the (a) Kawakita, and (b) Ryshkewitch-Duckworth models. The lowest estimation of total RMSE is outlined in red.

Fig. 12. Stacked bar plots showing the contributions for the loaded blends and 20% MCC placebo to the total RMSE for (a) Kawakita, and (b) Ryshkewitch-
Duckworth models. Three methods of tuning parameter estimation were compared: individually fitting the datasets; calculating a line of best fit for the esti-
mated tuning parameters and interpolating the results; and the proposed global optimisation method. The contributions were separated by colour to show the in-
dividual contributions of each API, with this including three blends worth of compression or compaction data.
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and Sun (2021) who discussed Heckel’s reliability under certain process
conditions. The convergence of data points in the RoI provides visual
evidence supporting the increased success rates discussed.

When considering whether these models could be used to achieve
reproducible results for industrial application, the predictability should
be considered along with the confidence and consistency in the esti-
mated tuning parameters. By considering the standard deviations of
tuning parameters relative to themselves (Fig. 6), it can be seen that
Leuenberger’s tuning parameters demonstrated the most variability and
offered standard deviations in its parameters which were a magnitude of
ten greater than themselves. The remaining models also demonstrate a
skewed median, inconsistent whisker lengths and extreme values which
are characteristic of an asymmetric or skewed distribution of parameters
(Fig. S6 in the Supporting Information). This was expected due to this
plot reflecting a dataset of different materials and blends, for which the
drug loading has already been shown to impact predictability; however,
these errors are more acceptable as they remain within a satisfactory 20
% error margin. The variability of Leuenberger’s tuning parameters may
be due to overfitting with the inclusion of two independent variables,
pressure and porosity (Eq. (16)). Due to the magnitude of this variation,
Leuenberger has not been considered further in this work.

3.1.2. Parameter variability analysis on fitting procedure
The quality of predictions can be impacted through the data collec-

tion methods (i.e. the experimental error), the model structure (i.e

model limitation to accurately predict the response parameter), and the
fitting procedure (i.e. optimisation procedure to minimise the error
between model prediction and experimental data). With the inconsis-
tency of tuning parameters in the literature, and with the use of
weighted linear regression to process data, the response of these models
to variations in experimental errors (or weighting factors) was priori-
tised. This investigation considered the impact experimental error
variability had on the quality of fit (Fig. 7) and the estimated ranges of
tuning parameters (Table 4).

The general trends in relative residuals observed in Fig. 7 resemble
those displayed previously in Fig. 5, with Gurnham and Heckel showing
residuals greater than those achieved by Kawakita for compression
prediction. The residuals of different sample sizes did result in variations
in each case. These variations were more prominent in the upper half of
the compression axis for Gurnham and Heckel. The Kawakita and
Ryshkewitch-Duckworth models showed less variation and a better
quality of fit in comparison. Ryshkewitch-Duckworth displayed a
consistent amount of, and trend in, scattering across the compression
pressure axis; Kawakita performed well with little variation between
samples. Considering the estimated parameter ranges shown in Table 4,
the parameter estimates also showed variation across the samples, with
this being most evident with Gurnham’s P0 and Ryskewitch-Duckworths
kb. These results reveal that a lack of consistency in the data collection
can have (and may have had in the literature) an impact on the esti-
mation of parameters, although the extent of this is challenging to
quantify.

3.1.3. Parameter variability analysis on Goodness of fit
The tuning parameters for the Gurnham, Heckel, Kawakita and

Ryshkewitch-Duckworth models were evaluated across the placebo
space, Table 2 (Fig. 8). From the literature, it was expected that the
compression and compaction parameters would follow a linear and non-
linear trend, respectively (Jolliffe et al., 2022). This can be best observed
in the Kawakita and Ryshkewitch-Duckworth parameters, although both
show a degree of scattering around this trend and Ryshkewitch-Duck-
worth’s kb seems to represent a sinusoidal relationship rather than the
expected logarithmic trend. For Gurnham and Heckel, there is a larger
degree of scattering which would not be adequately captured by either a
linear or non-linear correlation. This scattering was expected for Heckel
based on the discussion of parameter variability by Sonnergaard (1999),
however there was no evidence found to support the scattering of
Gurnham’s parameters. It was of interest to determine how deviations
from the fitted tuning parameters may impact the GoF before continuing
to develop a mixture model methodology.

The contours of RRMSE for different parameter iterations (for the
20% MCC placebo blend) demonstrate that there is, in fact, a large re-
gion of acceptable GoF, highlighted by the darker blue-purple areas
(Fig. 9). Due to this valley-like space around the minima, there are
numerous parameter pairs which can acceptably capture the
compressibility and compactability profiles. This contrasts the prior
belief that there are only singular (material specific) parameters of best
fit, and provides reasoning behind the inconsistent estimates for yield
pressure using Heckel’s proportionality constant (Sonnergaard, 2022).
The sensitivity of the parameters can also be observed here, with small
changes to Ryshkewitch-Duckworths kb having a greater impact on the
RRMSE compared to σ0. The influence this has was better demonstrated
in Fig. 10, where the highlighted parameter pairs A and B (selected for
their low RRMSE and large deviation from the fitted tuning parameters
at (0,0) to capture the flexibility of these models) for each model have
been compared to the compression or compaction curves as estimated by
the original curve fitting. For the Kawakita and Ryshkewitch-Duckworth
models, it was shown that a change in parameters can still adequately
predict the data, with the deviations localised to the lower range of the
independent variable. The Gurnham and Heckel models show less con-
sistency in the apparent deviations, as the models seem inadequate at
capturing the required rate of change of the dataset, with the deviations

Fig. 13. Success rates for the individual fitting, and the traditional and opti-
mised approaches to mixture rule population for the Kawakita and
Ryshkewitch-Duckworth models showing the fractions of data which meets the
acceptance criteria across the whole range of compression data for the loaded
dataset, Table 1.

T. Tait et al.



International Journal of Pharmaceutics 662 (2024) 124475

13

reflecting the residual errors demonstrated in Fig. 5.
With the ambiguity of the parameters from these results, interpreting

physical meaning to the tuning parameters of these models – for
example, defining a blends apparent yield pressure via Heckel’s pro-
portionality constant – is difficult and unnecessary. Kawakita and
Ryshkewitch-Duckworth have proven to be the models which predict
the datasets most consistently with the least sensitivity. Due to this
Gurnham and Heckel have not been considered for the next section
which develops an optimised approach for populating mixture rules that
capitalises on the flexibility of the parameter space. Results for the
mixture model evaluation for these models however can be found in the
supplementary document in Figs. S7–S10.

3.2. Mixture Rule Implementation: Global optimisation and identification
of optimal mixture rule

The combinations of arithmetic, geometric and harmonic mixtures
for optimising the model parameter pairs were tested on the loaded
dataset (Fig. 11). It was observed that changing the mixture rule for both
parameters did not have a substantial impact on the total RMSE esti-
mation for the Kawakita model. The Ryshkewitch-Duckworth model was
more sensitive to the changes in applied mixture model, with the esti-
mation method of kb having the most influence on the GoF matching the
observations in Fig. 8.

The optimised method was compared to the traditional method for
populating the mixture models. The rules selected to estimate the pa-
rameters in this comparison were those which achieved the lowest RMSE
from the rule comparison study (as highlighted in Fig. 11): arithme-
tic–geometric for Kawakita: θK = {ε0, B}; and arithmetic-harmonic for
Ryshkewitch-Duckworth: θRD = {σ0, kb}. Both methods of mixture
model population performed well for predicting compressibility, and
slightly less so for the compactability with the paracetamol blends
contributing significantly to the total RMSE (Fig. 12). The individual
contributions of the API to the total RMSE can be interpreted more
practically when we compare the success rates of the individually fitted
datasets and the optimised mixture model (Fig. 13) and the predicted
values against the observed data (Fig. 14). These results demonstrate the
excellent performance of the Kawakita and Ryshkewitch-Duckworth
models, with only a decrease in success rates observed in the lowest
loadings for the Ryshkewitch-Duckworth model. The deviations
observed in the compactability parity plot increase with increasing
tensile strength. The greatest deviations occur above a tensile strength of
2 MPa which is commonly used as the minimum target value in industry
to avoid damage to tablets during further processing and handling
(Polak et al., 2023). Further analysis into the origin of the deviations was
found by considering the relative residual errors for these models
(Fig. 15), and comparing these to the relative residuals achieved when
individually fitting the datasets. Here, it was observed that the relative

Fig. 14. Parity plots comparing the observed versus predicted critical quality attributes for (a) Kawakita, and (b) Ryshkewitch-Duckworth models using (i) the new
optimised approach and (ii) the traditional approach to mixture rule population.
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residuals from the optimisation approach demonstrated a similar trend
to that of the individual fits for both models. Kawakita showed a greater
degree of scattering within a similar magnitude of deviations for the
optimised approach. Ryshkewitch-Duckworth also showed a similar
trend in the relative residuals but for the optimised approach the
underpredictions at the lower pressure range (0–100 MPa) was consid-
erably greater than the individual fitting approach having considerable
contribution to the RMSE as shown in Fig. 12. The optimised mixture
rule underpredicts the strength unlike the traditional method which is
showing a scattering of both under- and over-prediction in the parity
plot. The underprediction of tensile strength is of less significance as
tablets still meet industry specifications of a tensile strength of > 2 MPa
(Polak et al., 2023). Further, these large deviations below and around
the lower boundary of the RoI (Compression Pressure = 75 – 250 MPa)
which shows that these models and accurate for the intended purposes
of tablet manufacturing but may require models of increased complexity
to further improve upon predictability.

3.3. Cross validation

The datasets were split into calibration and validation sets based on
their drug load. This provided an investigation which considered the
ability for this optimisation method to predict tuning parameters for

new blends, whilst determining the significance of drug loading on
reducing the RMSEP (Fig. 16). The use of the lower API concentration
with the placebo blend in the calibration (Fig. 16 (a)) resulted in a large
RMSEP for the remaining validation sets (mid and high drug loading).
When replaced with a higher drug loading (Fig. 16 (b) and (c)), the
RMSEP is reduced, yielding an acceptable fit for each validation set. This
demonstrates that applying this method to a new system, a small amount
of data can still achieve a good estimation of tuning parameters which
would achieve an acceptable GoF, particularly when said data covers the
placebo and high loaded blends.

4. Discussion

4.1. Model comparison

From the initial comparison of the GoF and the evaluation of the
success rates of these models to meet the defined acceptance criteria, it
was evident that the Gurnham, Kawakita and Ryshkewitch-Duckworth
models adequately captured the compression or compaction profiles
across the different drug loadings. This evidence is contrasted against
previous studies which questioned the oversimplification of empirical
models in predicting tablet porosity and tensile strength (Sonnergaard,
1999; Sonnergaard, 2001).

Fig. 15. Relative residual errors for the (a) Kawakita and (b) Ryshkewitch-Duckworth models as estimated by the (i) individual fitting of datasets and (ii) the
optimised approach to mixture modelling for the loaded dataset.
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The results between the compression models were less consistent
than that of the compaction models, with drug loading having a larger
influence on Gurnham and Heckel’s GoF (Fig. 3). Further, the trends and
magnitude of deviations observed from the residual error analysis were
most prominent in these models too; in the case where Leuenberger is
neglected due to the magnitude of errors in the estimated tuning pa-
rameters, possibly due to the overfitting of this model as it relates tensile
strength to both compression pressure and tablet porosity (Eq. (16)).

The compression models differ in their assumptions of the relation-
ship that tablet porosity has with increasing compression pressure;
hence the variation in their model structures. Gurnham, Heckel and
Kawakita describe the rate of compression in three different ways, as are
outlined by Eqs. (17)–(19) respectively.

dε
dP

= −
1
KGP

(17)

dε
dP

= − KHε (18)

dε
dP

= − KKε2 (19)

Gurnham’s definition of compression rate does not account for the
correlation between the extent of compression (i.e. porosity is not
considered) and the powders compressibility. Conversely, Heckel and
Kawakita’s perspectives acknowledge that the extent of compression of
a powder will contribute to a powders ability to undergo further
compression, which would be expected in a system which has undergone
plastic deformation. It was also noted that Gurnham’s model assumes
that the initial porosity of the powder bed would be infinite (as the
gradient will increase exponentially towards the porosity axis), which

contradicts the definition of porosity as this cannot be less than zero or
greater than one. Although, with the magnitude of the considered
pressure range in direct compression, this is inconsequential. Despite
Heckel accounting for the extent of compression, this model did not
perform as well as Gurnham. Heckel’s model was found to consistently
underpredict at low compression pressures compared to Kawakita and
Gurnham which were able to capture the initial compression results with
higher accuracy. These observed deviations were expected as Heckel
(1961) stated that their expression was valid between compression
pressures of 35 – 170 MPa depending on the powder being investigated.
It was unexpected, however, that the largest deviations from Heckel’s
model were observed at the upper limit of the pressure range studied as a
majority of previous discussions have focussed on investigating the
presence of particle rearrangement and fracturing to explain the
different gradients of their plots.

It was clear that drug loading negatively impacts the GoF for each of
the models, more prominent for Heckel, which showed a large drop in R2

at loadings of 40 % and above. The residual error trends show that, in
each of the models, the points converge at the RoI pressure range with
the largest deviations observed being an under prediction of the blends
with high drug loading. This suggests that as the loading was increased,
the models’ definition for the rate of change in porosity with compres-
sion pressure became increasingly inadequate at capturing the curvature
of the compression data, this idea was visualised in Fig. 10 (b). The
varying influence that drug loading had on the predictability of the
models may be attributed to the assumption of compressibility, which
might not be applicable to non-compactable APIs compared to the ma-
terials on which the models were developed, such as soaked fibrous
materials, metals, and ceramics. This has already been studied by Kuentz
and Leuenberger (2000b) and Queiroz et al. (2019) who showed that a
threshold of non-compactable material exists, at which the blend will

Fig. 16. The Root-Mean-Squared Error of Prediction (RMSEP) of validation datasets from the cross validation analysis which used the placebo and (a) low loading,
(b) mid loading, and (c) high loading datasets for calibration. Results shown reflect the (i) Kawakita and (ii) Ryshkewitch-Duckworth models with the colours
showing the contributions of the different API datasets.
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likely fail as a compact. This threshold has been cited as a percolation
threshold or dilution capacity (Kuentz & Leuenberger, 2000b; Queiroz
et al., 2019). It is crucial to determine whether there is a limit, poten-
tially dependent on the material, at which non-compactability becomes
a dominating behaviour for a blend.

4.2. Parameter variability analyses

There has been a concerted effort to identify the tuning parameters
which best represent the compressibility and compactability of indi-
vidual materials to be used in mixture rules (Busignies et al., 2006;
Frenning et al., 2009; Jolliffe et al., 2022; Kloefer et al., 2010; Kuentz &
Leuenberger, 2000b; Mazel et al., 2011; Michrafy et al., 2007; Reynolds
et al., 2017; Wu et al., 2006). Before this, the discussions in the literature
centred around the physical meaning of these parameters, or questioned
the simplicity of the model structures, to address the variability of the
reported values between studies. It was expected from the iterative study
of the tuning parameters that the contour plots would show a minimum
RRMSE at the fitted (‘best-fit’) parameters, which would then increase as
the parameters strayed from this centre point. Instead, the contour plots
in Fig. 9 show the first qualitative proof that there are, in fact, multiple
parameter pairs which exist across a large space that achieve acceptable
predictability for compression and compaction behaviour as demon-
strated in Fig. 10. The correlations observed between the parameters
and their RRMSE (linear for Heckel and Kawakita, and non-linear for
Gurnham and Ryshkewitch-Duckworth) confirms that there are behav-
iours which are not being captured by the tuning parameters, as ex-
pected from the trends observed in the residual plots (Fig. 5). The
investigation into the weighted regression (Fig. 7) showed that in-
consistencies in data collection may influence GoF and also the tuning
parameter estimations. Therefore, the variability in accuracy of the
collected data may have contributed somewhat to the variations
observed in reported tuning parameters in the literature, particularly
with the evidence that a significant deviation in the tuning parameters
could only have minimal impact to the GoF.

Overall, it was found that Kawakita and Ryshkewitch-Duckworth
were the superior models in their respective applications based on the
consistent, high quality of their metrics and success rates over the whole
compression range and the RoI. The success of Kawakita was unexpected
based on the frequency of Gurnham’s use – and Kawakita’s absence – in
recent years. For this reason, Kawakita and Ryshkewitch-Duckworth
were the focus of the mixture model work, however results for Gurn-
ham and Heckel can be found in the Supporting Information in
Figs. S7–S10 in Supporting Information. Whether these models can be
further manipulated, be that in their structure or parameters, to include
these unidentified behaviours to create a model which would generate
the contour plots as expected has not been addressed. This finding,
however, demonstrates that although these models are simple, and their
parameters variable, they are not as fragile as previously suggested.
Focus now should move away from perfecting the estimations of these
tuning parameters based on physical attributes, and instead capitalise on
this flexibility to work towards understanding how these models can be
used with mixture rules to predict compressibility and compactability of
new formulations, e.g. varying API, drugs loadings, particle size distri-
butions, and physical attributes.

4.3. Discussion of multiple parameter pairs and mixture model
optimisation

Without consistent estimations for material specific parameters
across industry and academia, it has been challenging to develop a
foundation for the application of mixture rules. Traditionally, a line of
best fit was used to estimate the mixture rule for a models tuning pa-
rameters with respect to a components contribution (mass or volume
fraction, for example) to the blend. This required the collection and
analysis of compaction data for numerous individual blends, with an

increased number of blends maximising information for the line fitting,
and would result in a placebo blends parameters to vary between APIs
even though the blend itself remains the same (Fig. S11 in Supporting
Information). Knowing that a large degree of scattering could be
observed in the estimated tuning parameters (Fig. 8) and that there are
alternative tuning parameters which can also adequately fit the linear
correlation to this as based on the contour plots (Fig. 9), the inconsis-
tency in parameter estimations from literature has been addressed. With
this, an alternative method to populating mixture models has been
developed to capitalise on the new-found flexibility of these tuning
parameters. By designating arbitrary values for the ‘pure’ material pa-
rameters – for now, in a binary space of API and brittle filler – and
varying them between expected bounds, a global optimisation proced-
ure was developed. The benefit of applying global optimisation for the
estimation of the tuning parameters circumvents the challenge of not
being able to collect data for pure, non-compactable APIs. A restriction
was set for the optimisation that the tuning parameters for the placebo
blend were to remain constant between blends as the formulation of this
was not changing (Fig. S12 in Supporting Information). This made it
possible to conduct this analysis for the entire dataset simultaneously,
providing maximum information to estimate placebo parameters which
were more universally applicable.

A cross validation (Fig. 16) showed that this optimisation method is
capable of predicting tuning parameters which can achieve an accept-
able GoF for new blends, particularly when calibrated using placebo and
blends of high drug loading. This provides a theory that once the esti-
mation of the placebo tuning parameters are confident (i.e. tested
against multiple loaded blends of differing physical properties), then the
introduction of a new API with no prior knowledge could require only
one loaded blend to construct a mixture rule, reducing API usage
considerably.

The total error for this new method was lower than that of the
traditional method of populating mixture rules, and comparable to the
accuracy of individually fitting the datasets as observed by the GoF
(Fig. 12) and success rates for the acceptance criteria (Fig. 13). This
method performs particularly well when applied to industrially relevant
conditions, however further testing of the mixture rules (particularly for
Ryshkewitch-Duckworth) is required to better capture compaction data
at compression pressure of less than 100 MPa (Fig. 15). This may
involve: alternative weighting factors, as the increase in tensile strength
is due to surface interactions which may be incorrectly weighted when
considering the volume fraction rather than the surface area fraction;
adding in interaction terms to the mixture model, to better capture the
behaviours through a response surface rather than a linear relationship;
or by considering the percolation threshold, to evaluate how a change in
the materials which dominate the compression or compaction behaviour
may influence how the behaviours are captured by the implemented
mixture rule.

5. Conclusions

A systematic statistical analysis of common compression and
compaction models was completed. This work used a large and consis-
tent dataset which made it possible to draw comparative conclusions
between models and unique formulations. These formulations consid-
ered four APIs which were blended at different concentrations with a
common excipient blend to address the impact that drug loading may
have on the prediction of tablet porosity and tensile strength. By delving
deeper into the comparison of these models, this work was able to
provide evidence for the reported discrepancies between previous in-
vestigations. The Kawakita and Ryshkewitch-Duckworth models were
found to be those (of their respective applications) which performed the
most consistently well across formulations in both GoF metrics and their
parameter variability analyses. This is not to say that the alternative
models performed poorly, particularly when considering the application
to the RoI for the pharmaceutical industry – bar that of Leuenberger
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which was inadequately fitted for the materials used in this investiga-
tion. It was found that drug loading did negatively impact the predict-
ability of these models; however, the extent of this for the Kawakita and
Ryshkewitch-Duckworth models was not significant.

A parameter variability analysis was conducted to address the re-
ported variations in model tuning parameters across the literature. This
considered how the accuracy of data collection can impact the weighted
linear regression when fitting these models, and also investigated the
existence of multiple parameter pairs. It was discovered that there are a
large number of parameter combinations which can achieve acceptable
GoF for each of the considered models. This knowledge provided the
basis for the development of a new global optimisation approach to the
population of arithmetic, geometric, and harmonic mixture rules which
performed better than the traditional line of best fit approach and more
comparably with the individual fitting of datasets when operating and
industrially relevant conditions. The optimisation’s predictability per-
formance for new blends was validated using a cross validation study. It
was found that the mixture rule applied did not impact the compress-
ibility models but care should be taken when selecting a model for
Ryshkewitch-Duckworth’s kb. With the found flexibility of the tuning
parameters, the barrier of finding consistent pure-material parameters
to populate mixture rules can be ignored. The greatest benefit of this
new approach is that the placebo parameters can be maintained constant
for each considered API. This may minimise the experimental re-
quirements for the population of mixture models of new APIs consid-
erably as only one formulation may be required.
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