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Abstract
Many methods for seismic risk assessment rely on the selection of a seismic
intensity measure (IM) and the development of models of the seismic demand
conditional on the IM. The individual importance of these two features to accu-
rately assess seismic performance is well known. In contrast, this study aims to
evaluate the impact that the combined selection of IM and the demand model
has on risk estimates. Using a hypothetical seismic source model and a non-
stationary stochastic ground-motion model, we present risk estimates for a
mid-rise steel structure for 15 different IMs and five demand models derived by
cloud analysis (four based on regression and a fifth based on an empirical binning
approach). The impact of these choices is investigated through a novel method
of model performance evaluation using a benchmark solution obtained via the
unconditional approach (i.e., directly estimating demand exceedance frequen-
cies from simulated ground motion time histories). The obtained results are also
compared against traditional IM performance metrics, for example, efficiency
and sufficiency. Finally, we demonstrate how risk estimate inaccuracies are prop-
agated by performing a damage assessment on two example components. The
results show that, for the scenario under investigation, Arias intensity combined
with the binned demandmodel provides the best risk estimates, if sufficient sam-
ples are available, whilst ground displacement and duration-based IMs ranked
worst, irrespective of the demand model. The findings highlight the importance
and interconnectedness of the selection of the IM and the demand model when
using cloud analysis and present a clearmethod of determining themost accurate
combination for risk assessments.
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2 RUDMAN et al.

1 INTRODUCTION

The seismic risk of structures can be assessed via two distinct approaches.1,2 The first, known as the unconditional
method, directly uses observations of a system’s response to ground motions to estimate the rate of exceedance of some
loss threshold.3 This is a conceptually simple, but computationally expensive, approach—and so is rarely used outside
of research. The second approach, known in the literature as the conditional method, was established to overcome this
problem. Cornell,4 among others, describes the basis of the conditional method, where a series of intermediate modelling
steps are made to assess the risk of a system (Figure 1). This method allows the efficient description of seismic risk in a
regionwith far fewer simulations andwith a considerable reduction in computational expense.More detailed descriptions
of the conditional method can be found elsewhere.5,6
One of the most popular conditional approaches for assessing earthquake risk is the PEER’s performance-based earth-

quake engineering (PBEE)7,8 framework. The original intention of the framework was to report risk estimates that
represent the whole structure. However, performing performance assessments at the component level can provide a more
thorough understanding of a building’s performance,9 given the high contribution of non-structural components to over-
all earthquake-induced losses.10 Therefore, more recent implementations of the PBEE approach (e.g., the FEMA P-58
method11) includes component-level analyses within seismic risk assessments.
Conditional approaches rely on defining a set of conditioning parameters that represent each stage of the assessment

process. Decision variables (DVs), damage states (DSs) and engineering demand parameters (EDPs) describe respectively
the system’s losses (e.g., deaths, dollars and downtime), damage (e.g., cracking of concrete, or buckling of beams and
columns) and response to shaking (e.g., exceedance of an inter-storey drift ratio threshold), respectively. These three
parameters are reliant on the initial selection of an intensity measure (IM), which represents the ground shaking at the
site of interest and is used to evaluate the site hazard, as well as describing the structural and non-structural component
response.
The importance of IM selection is well known, with a range of IMs proposed in the literature. These generally consider

one or more of three ground-motion characteristics: amplitude, frequency and duration.12 Historically, the most common
IM used was the peak value of ground-motion amplitude (e.g., largest absolute acceleration); whereas now it is more
common for spectral ordinates to be used (e.g., 5% damped spectral acceleration at the fundamental period of the structure
or a combination of spectral accelerations at different periods). Alternatively, it has been suggested that a vector of IMs
would describe ground motions more accurately.13–15 In an ideal scenario, IM selection should have little impact on risk
estimates, provided that the IM is sufficient (statistically independent from earthquake characteristics, e.g., magnitude
and distance),16 and enough ground-motion records are used to characterise the system’s response. However, satisfying
these criteria is not always possible, and the need to limit the number of numerical simulations has led to a proliferation
of alternative IMs and comparisons in terms of efficiency.

F IGURE 1 Workflow of the conditional approach to risk assessment when ground motion simulations are utilised. The unconditional
approach can be described by the red workflow.
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RUDMAN et al. 3

Due to the large number of IMs in existence, the topic of selecting an optimal IM has become a well-covered, and wide-
ranging debate (see e.g., Katsanos et al.17 for a review of IM development and selection in the context of ground motion
record selection). It has proved difficult to find a comprehensive IM that is optimal for all types of earthquake risk assess-
ment. This in turn has led to many research efforts being devoted to evaluating IM selection for a range of contexts. For
instance, Mackie and Stojadinovic18 evaluated IM selection for probabilistic seismic demand models of highway bridges
in California. Bray and Travasarou19 investigated the impacts of IM selection for estimating seismic slope displacements.
Kohrangi et al.20 compared the impact of selecting eight different structure-specific IMs on repair cost estimates of three
different 3D building models.
Despite this coverage, there is little research on the impact that IM selectionhas on the final output of PBEEassessments.

Some notable examples of studies that did consider this final output are Kohrangi et al.,20 whomade loss estimates within
their study on 3D buildingmodels, O’Reilly21 who investigated IM selection for seismic risk assessment of bridges, and Du
et al.22 who provided insight on the influence of IM selection in the context of regional seismic risk assessment. However,
most studies that compare IMs only go as far as predicting the statistics of the demand conditional on the IM or the fre-
quency of exceeding an EDP threshold (the demand hazard), instead of also examining the results that would more likely
be useful to end users, for example, damage estimates. There has also been little evaluation of IM impact through compar-
ison with an unconditional benchmark, although Kwong et al.23,24 have previously demonstrated how this comparison
can be used to evaluate ground motion selection procedures at the demand hazard step of risk assessment.
The IM choice plays an important role in characterising the seismic demand, that is, the response of a system due to

groundmotions, represented by the conditional demand assessment stage in Figure 1. Several differentmethods have been
proposed to describe this relationship, including multiple stripe analysis1,25 and incremental dynamic analysis.26 Possibly
the simplest of these methods to implement is cloud analysis25 which fits a regression model with IM as the independent
variable, and EDP as the dependent variable. The most practical, but least sophisticated, regression models are based on
a linear fit between IM and EDP, whereas more complex models use bilinear fits to account for the nonlinearity in the
structural response27–29;machine learning tools have also beenused to improve this characterisation.30 Nevertheless, there
are few studies comparing these different methods of modelling the seismic demand, especially against an unconditional
benchmark and considering different IMs.
This research aims to investigate the impact that both the IM selection and the method of characterising the IM-EDP

relationship have on component-level earthquake risk and damage estimates. Using a numerical model of a bench-
mark building widely employed in PBEE-based studies and a non-stationary stochastic ground-motion model for a
hypothetical seismic source scenario, a total of 15 different IMs and five seismic demand models are considered, with
the subsequent impact of each combination on the risk estimates evaluated. Ground-motion simulations are used to
generate a large amount of data to properly evaluate uncertainties within the risk assessment procedure and also to
allow the estimation of risk via the unconditional approach, which acts as a benchmark to compare against conditional
estimates.
The following sections describe: the seismic scenario and method of ground-motion simulation employed (Section 2),

the structural model (Section 3) considered for the study, and the IMs evaluated (Section 4). Current methods for eval-
uating the optimal IM are also discussed, and a new method to determine the optimal IM is presented (Section 4). The
conditional risk estimates obtained for each IM using all five seismic demandmodels are presented (Section 5), before the
impact of each IM and demand model is evaluated (Section 6). Finally, damage estimates are made for two components
with the comparison between the benchmark (unconditional) and conditional damage estimates also shown, to demon-
strate the impact that IM selection and seismic demand modelling can have on FEMA P-58 component-level analysis
(Section 6).

2 SEISMIC SCENARIO

For this study, a fictive scenario is established with a circular source zone of radius 100 km, and two faults of length 75
and 25 km. Simulated ground-motion ‘recordings’ are made at a single station at the centre of the circular source zone.
The location and details of each of these seismic sources are shown in Figure 2. All earthquakes in the scenario follow the
Gutenberg-Richter relationship with minimum magnitude 5 and b = 1.0; the maximum magnitude and the a-value for
each source are provided in Figure 2.
The non-stationary stochastic model of Sabetta et al.31 is used to generate realistic ground motions. The model sim-

ulates ground motions with just a few easily defined inputs: moment magnitude, source-to-site distance, time-averaged
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4 RUDMAN et al.

F IGURE 2 Seismic source model for the site of interest.

shear-wave velocity in the upper 30 m of the site (Vs30) and style of faulting. These are input to models estimating Arias
intensity, significant duration, central frequency and frequency bandwidth; these in turn are used to simulate ground
motions by filtering, scaling and windowing Fourier amplitudes in the frequency and temporal domains.
The coefficients within the stochastic model are calibrated to a recent dataset of Italian earthquakes.32 Therefore, the

seismic scenario developed in this study could be considered suitable for a high seismicity region such as central/southern
Italy or California, where themost important earthquake scenarios are moderate to large events (M> 5.5) at short to mod-
erate distances (R< 50 km).Normal faulting is consideredwithin the stochasticmodel, and a fixed sitewithVs30= 255m/s
being used to replicate a soft-soil site. By fixing the values of the style of faulting and Vs30, only moment magnitude and
source-to-site distance are required as inputs to the stochastic model. In an additional step, to allow differences in ground
motion characteristics from each source, the code has been altered to allow the stress drop to be changedwithin themodel
(Figure 2).
Generatingmagnitude and distance inputs directly from their probability distributionswould requiremany simulations

to capture sufficient extreme events—high magnitudes and short distances. This would be computationally unaffordable
and would lead to the generation of many events that would not significantly contribute to the hazard and risk at the
site under investigation. To combat this, the importance sampling approach described in Jayaram and Baker33 is used to
simulate magnitudes and distances. This method involves generating a uniformly distributed sample of magnitudes and
distances, then attributing an ‘importance weight’ to these values based on the ratio of their expected (from the original
distributions) and their actual probabilities. The ‘importanceweight’ can then beusedwithin the analysis, so that sampling
bias is not introduced into the risk assessment process.
In total 100 sets of 1000 magnitude-distance pairs are sampled at the site of interest using the importance sampling

procedure, with ground motions simulated from these. This large number of ground motions being simulated allows
uncertainty and variability within the risk assessment process to be modelled. We have used a similar approach in a
recent study focussed on seismic hazard and risk estimates using single-degree-of-freedom systems.34

3 STRUCTURALMODEL

The structural model employed is replicated from the SAC phase 2 steel project.35 This case study was selected as it is a
well-studied structure with many previous uses in the literature, thus allowing the developed model to be validated. It is
a typical three-storey office building designed to the local code for Los Angeles36 using post-Northridge connections. The
front elevation of the structure is made up of three moment-resisting bays and one simply-supported bay, all of 9.15 m in
width, with each storey being 3.96 m in height.
Both plan and front elevations, as well as steel member sizes of the structure are provided in Figure 3. The typical floor

dead load is 4.6 kN/m2, the roof dead load is 4.0 kN/m2 and the typical live load on all floors is 1.0 kN/m2. Column steel
strength is 397 MPa while the steel used for the beams has a strength of 339 MPa, as reported by Barroso.37 Further details
regarding the structural model definition can be found in many articles.38,39
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RUDMAN et al. 5

F IGURE 3 Plan and front elevations of the structural model under investigation [taken from Scozzese et al. (2020)1]. Thick lines
highlight moment-resisting frames.

F IGURE 4 (A) Static pushover curve and (B) cyclic response, of the structure under investigation.

The structure is modelled in OpenSees,40,41 via the open-source Frame-Modeller 2D software,42 which facilitates mod-
elling and analysis in OpenSees. However, for this study, Frame-Modeller 2D was only used for model development, with
the outputted structural model used directly in OpenSees and MATLAB43 for structural analysis.
The first, second and third structural periods of themodel are 1.00, 0.30 and0.14 s, respectively. The static pushover curve

of the structure is presented in Figure 4A, where roof drift (roof displacement normalised by the total height) is plotted
against normalised base shear (the base shear divided by the structure’s self-weight). The pushover curves derived by
Barroso37 and Gupta and Krawinkler38 are also plotted in Figure 4A for comparison. The cyclic response of the structure is
presented in Figure 4B, which demonstrates the strength degradation of the structure under loading. As vibration periods
and static analysis results are in good agreement with the literature,37–39 it can be assumed that the structural model is
sufficiently accurate.
Several modelling assumptions were introduced for this structure, which would likely explain any differences between

the studied model and those from the literature: these assumptions also explain the more significant stiffness reduction
and softening observed in the pushover curve of the developed model in Figure 4. Columns within the structure are
modelled using the Ibarra–Medina–Krawinkler deterioration model44 and a lumped plasticity approach. Deformation of
the structural panel zones is accounted for using the parallelogram model discussed in Gupta and Krawinkler,38 which
allows the model to better account for degradation within the system—an important aspect to consider when evaluating
ground motion duration as an IM. This is achieved by modelling the corner of the idealised panel zone with a nonlin-
ear rotational spring formed with a degrading hysteretic material model. Finally, a fictitious bay that represents all the
pinned/simple/gravity connections in the structure is introduced, as per Gupta and Krawinkler38 in order to account for
P-Delta effects.
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6 RUDMAN et al.

TABLE 1 IMs under investigation within this study.

Name Description Units
PGA, PGV & PGD Peak ground acceleration/velocity/displacement g, cm/s & cm
Sa 5% damped spectral acceleration at fundamental period (T = 1.00 s) g
Sa(avg) Geometric mean of 5% damped spectral accelerations between periods of 0.2 and 3.0 s15 g
ABDur Absolute bracketed duration using an acceleration threshold of 50 cm/s2 s
AUDur Absolute uniform duration using an acceleration threshold of 50 cm/s2 s
AI Arias intensity12 m/s
CAV Cumulative absolute velocity: integral of absolute velocities12 cm/s
ARMS, VRMS &
DRMS

Root-mean-square acceleration/velocity/displacement46 g, cm/s & cm

ASI Acceleration spectrum intensity: integral of Sa between periods of 0.1 and 2.5 s46 g/s
CI Characteristic intensity47 –
HI Housner intensity: integral of the 5% damped pseudo-velocity spectrum between 0.1 and 2.5 s46 cm

4 INTENSITYMEASURE SELECTION

In total 15 different IMs were considered within this study, with their names, descriptions and units provided in Table 1.
Most of these IMs are well known (e.g., PGA, PGV and PGD) but some require clarification as to how they were defined.
Further description of absolute durations (ABDur and AUDur) are available in Bommer et al.45

4.1 Current practice to determine an optimal intensity measure

Todetermine an optimal IM, several indicators have been proposed. The twomost used indicatorswere introduced by Luco
and Cornell,16 who described the concept of efficiency (variability in the EDP conditional on the IM) and sufficiency (statis-
tical independence from earthquake characteristics, e.g., magnitude and distance). Moreover, Giovenale et al.48 added the
concept of hazard computability (ease of computing a hazard curve for the given IM), and Padgett et al.,49 among others,
included practicality (correlation between IM and EDP). Padgett et al.49 also introduced the term proficiency (efficiency
divided by practicality), and Tothong and Luco50 introduced scaling robustness (lack of bias in response estimation from
scaled records). For this study, efficiency,magnitude-sufficiency, distance-sufficiency, practicality and hazard computability
are used to evaluate the impact that IM selection has on risk estimates.
The efficiency of an IM can be described by the standard deviation of a linear regression model fit between IM and EDP,

with a smaller value indicating a more efficient IM. Practicality can be described by the slope of the same linear regression
model—the higher the slope the greater the practicality. Sufficiency can be represented by fitting linear regression models
between the residuals of the IM versus EDPmodel and both magnitude and distance, with the p-values of the regression
line slopes being considered to demonstrate the IMs sufficiency. Although any IM with a sufficiency value above the con-
fidence threshold (in this case 0.05) can be determined as sufficient, it could be considered that the higher the p-value,
the lower the evidence of an insufficient IM.49 Finally, hazard computability is assessed here by only investigating IMs
for which a recent ground-motion model exists. These were identified by cross-referencing IMs within the literature, for
example, using the Douglas51 GMPE compendium.

4.2 Proposed method to identify optimal intensity measure

As traditional IM performance metrics are only reliant on knowing the IM-EDP relationship, the impact of the IM choice
for damage and loss assessments is not directly considered. This could potentially lead to the use of suboptimal IMs and
demand models when performing a risk or loss assessment.
The proposed method of identifying an optimal IM involves comparing the conditional risk assessment procedure

against the unconditional benchmark. To this end, the Kolmogorov–Smirnov (KS) test52 is considered as an alternative to
the traditional IM performance metrics. This test finds the maximum absolute difference (Dmax) between two cumulative
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RUDMAN et al. 7

probability distributions (CDFs), as per Equation 1:

𝐷𝑚𝑎𝑥 = max
𝑥

(|𝐹1 (𝑥) − 𝐹2 (𝑥)|) (1)

where, 𝐹1(𝑥) and 𝐹2(𝑥) are both CDFs as a function of, 𝑥. As a non-parametric test, the KS test does not rely on the
assumption and description of a probability distribution. The KS test compares two CDFs and evaluates if they are from
the same population; however, the demand hazard is in the form of mean annual frequency (MAF) of exceedance. To
overcome this, a MAF of exceedance is converted to an annual probability of exceedance using Equation 2, assuming that
the exceedance events follow a Poisson process:

𝑃 = 1 − 𝑒−𝜆𝑡 (2)

where 𝑃 is the annual probability of exceeding some threshold, 𝑡 is the time frame in years and 𝜆 is the MAF of exceeding
the same threshold. The complement of 𝑃 provides the CDF of the demand hazard. The null hypothesis of the KS test is
that the two CDFs are drawn from the same population. This is evaluated by comparing the returned p-value of the test
against an assumed significance level (in this case 0.05, i.e., 5%).
The investigation found that comparing the returned p-value for the KS test did not provide enough information to be

able to properly evaluate and compare the performance of each IM. Instead, we propose to simply use𝐷max as amethod of
quantifying the difference between an IM-based demand hazard assessment and the unconditional assessment. As this is
a measure of closeness, a smaller value of 𝐷max would indicate a CDF that is more similar to the benchmark assessment,
thus implying a better IM. These results are investigated/evaluated in Section 6.2.
An alternative approach would have been to use the relative entropy method53,54 which employs a cumulative measure

of the difference between two probability distributions. This study opts for the maximum difference between the two as it
is less sensitive to the shape of the underlying distribution of the data andwill highlight any large local deviations between
the two distributions—which may not be fully represented by a cumulative change. The technique for calculating Dmax
is also computationally simpler, making the technique more attractive for future use.
As all of the outputs from the conditional risk assessment workflow are in the form of MAF of exceedance (as demon-

strated by Figure 1), the outlined procedure can be performed at any stage of a risk assessment. This allows for a more
direct comparison between the suitability of IMs for the specific use under question.

5 RISK ASSESSMENT PROCEDURE

First, the evaluation of the demand hazard via the unconditional approach is described in this section. Second, each of
the seismic demand models used to estimate structural response, and demand hazard, via the conditional approach are
discussed. Finally, the demand hazard estimates from each of the IMs and each of the demand models are compared
against the benchmark estimates.

5.1 Benchmark unconditional procedure

The benchmark demand hazard (referred to fromnow on as the unconditional estimate) can be obtained using Equation 3:

𝑣(EDP) =
sources∑
𝑗=1

𝜆sourc𝑒𝑗

𝑁𝑗∑
𝑖=1

𝐼𝑖,𝑗(edp)
𝑁𝑗

×
IS𝑊𝑗∑
ISW

(3)

where 𝑣(EDP) is the mean annual frequency of EDP exceedance, 𝜆𝑠𝑜𝑢𝑟𝑐𝑒𝑗 describes the activity-rate of each source, 𝑁𝑗 is
the number of magnitude-distance pairs simulated for a given j-th source, 𝐼𝑖,𝑗(𝑒𝑑𝑝) is an indicator function equal to one
if for the 𝑖th record the EDP threshold edp is exceeded and zero otherwise, and 𝐼𝑆𝑊 is the importance sampling weight
for each event. Performing this sum over a range of EDP thresholds, and over all sets of ground-motion samples, allows
the formation of a demand hazard curve, which describes the MAF of exceeding a demand hazard level.
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8 RUDMAN et al.

5.2 Conditional risk assessment procedure

Demand hazard is estimated through convolution of the hazard curve, describing theMAF of exceeding an IM, λ(IM), and
the complementary cumulative distribution function (CCDF) of an EDP conditional on the IM, P(EDP|IM). Hazard curves
are created for each IM through Monte Carlo hazard assessment with importance sampling, with the hazard evaluated at
50 IM thresholds logarithmically spaced between theminimum andmaximum value of each IM, across all sets of samples.
After performing dynamic analyses in OpenSees, top-storey IDR (IDR between the roof and third floor) was selected as

the EDP. This was chosen as it highlights the impact of IM and demand model selection; however, the following results
are not strongly dependent on the choice of EDP. The structural response is then analysed using cloud analysis.25 Within
this study, four different regression models have been considered. They are a linear fit between IM and EDP; a more
complex bilinear relationship between the predictor and response that follows the functional form of Tubaldi et al.27; and
two simple machine learning-based regression models: a random forest (RF) and an artificial neural network (ANN). The
functional form of the linear and bilinear fits are provided in Equations 2 and 3, respectively:

ln (EDP) = 𝑎1 + 𝑏1 ln (IM) + 𝜎 (4)

ln (EDP) = (𝑎1 + 𝑏1 ln (IM))𝐻1 + [𝑎1 + (𝑏1 − 𝑏2) ln 𝐼𝑀∗ + 𝑏2 ln IM] (1 − 𝐻1) + 𝜎 (5)

where, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝐻1 and 𝐼𝑀∗ are coefficients fit by the regression model, and 𝜎 is the model error. 𝑎1, 𝑏1, 𝑎2 and
𝑏2 control the intercept (𝑎) and slope (𝑏) of the first and second segments, respectively, whilst 𝐻1 is a step function to
determine which segment IM lies in, finally 𝐼𝑀∗ identifies the breakpoint between the two segments. For the bilinear
model 𝜎 can take two values depending on which segment the IM lies in.
Two machine learning models have been used in this study so that the risk estimates from one can be cross-verified by

the estimates of the other. The ANN consists of a single hidden layer of three neurons, using the natural logarithm of IM as
input to predict the natural logarithm of EDP. The ANNuses the Levenberg–Marquardt optimisation technique, as well as
a sigmoid activation function, as both are known to be effective at solving nonlinearmodels. The RFmodel is an ensemble
of decision trees that are developed using Bayesian optimisation to control their hyperparameters, this technique helps
to avoid overfitting. The RF model uses the same input and output as the ANN. Relaxing the assumption of homoscedas-
ticity was considered for the machine learning models, by estimating the model dispersion values as a function of IM.
However, this change proved to have little impact on the accuracy of the demand models, and so heteroscedasticity was
not included within either machine learning model. Instead, single (homoscedastic) dispersion σ values were calculated
for both machine learning models, which equal the standard deviations of model residuals in the two cases.
ANNs and RFs have been used in various studies to create seismic demand models.55,56 In this study, both techniques

have been implemented to demonstrate the capabilities of machine learning for this application. These models could
be trained with a wide range of training data, such as other ground-motion characteristics and structural information.
However, in this study, the only input to the machine learning models is IM, allowing direct comparisons with the linear
and bilinear demand models.
When investigating both duration-based IMs (ABDur andAUDur), it was found that a log-linear regressionmodel better

described the relationship between IM andEDP. The cloud analysismodels for these IMs are generated by simply replacing
the ln(𝐼𝑀) terms in Equations 4 and 5 with 𝐼𝑀, for example, Equation 5 becomes:

ln (EDP) = (𝑎1 + 𝑏1IM)𝐻1 + [𝑎1 + (𝑏1 − 𝑏2) 𝐼𝑀
∗ + 𝑏2IM] (1 − 𝐻1) + 𝜎 (6)

Each cloud analysis model is shown in Figure 5 for one set of simulations with PGA (Figure 5A) and PGD (Figure 5B)
as the IM, and top-storey IDR as the EDP. In Figure 5A, the linear cloud analysis model appears to fit the data well until
0.2 g PGA at which the system begins to respond nonlinearly. This will likely lead to over-prediction of seismic demand at
larger ground motions. The bilinear fit improves upon this and fits the data much better within this nonlinear segment.
Both machine learning models also fit the data well, with the RF and ANN providing median predictions somewhere
between the linear and bilinear models, before tending toward the bilinear model in the nonlinear range. The RF appears
to be simply following the median of the dataset. However, demand model estimates outside of the data range for both
machine learning models are poor, as they have not been trained at these values, making extrapolation inaccurate.
The fit for all models appears to be very similar in Figure 5B. As there is no significant non-linearity, the linear model

appears to match the trend in the data as successfully as the other models. However, there is a much larger variation
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RUDMAN et al. 9

F IGURE 5 Demand models for (A) PGA (B) PGD, the EDP is top-storey IDR.

in response than is visible in Figure 5A. This implies that PGD is a less efficient IM, and that the models fitted are not
as suitable as those for PGA. Once again, demand model estimates outside of the data range for both machine learning
models are poor.
An alternative to performing cloud analysis is generating the CCDFs for the EDP using an empirical binning proce-

dure. For this purpose, the IM is separated into 50 equally sized bins (each containing 2% of the population) between its
minimum and maximum value, and the probability of exceeding a given EDP threshold, within each bin, calculated via
Equation 7:

𝑃
(
𝐸𝐷𝑃 > 𝑒𝑑𝑝|𝐼𝑀𝑗

)
=

𝑁𝑗∑
𝑖=1

𝐼𝑖,𝑗

𝑁𝑗
(7)

where 𝑃(𝐸𝐷𝑃 > 𝑒𝑑𝑝|𝐼𝑀𝑗) is the CCDF of 𝐸𝐷𝑃, given that the ground motion falls into bin 𝐼𝑀𝑗 , 𝑁𝑗 is the number of
ground motions that fall into bin 𝐼𝑀𝑗 , and 𝐼𝑖,𝑗 is an indicator function that equals one if the 𝑖th record in bin 𝑗 is greater
than the EDP threshold and zero otherwise.
Interpolation can then be used to estimate the CCDF for the relevant thresholds. Any CCDF value conditioned on an

IM outside of the range of data is assigned the next nearest value for which data are available. The median of each of these
bins is also plotted in Figure 5 for comparisonwith the cloud analysis models. The empirical model fluctuates significantly
as it is tracking the local trends (i.e., following themedian of each bin). This feature is expected to yield accurate estimates
of the demand as the model is most responsive to the data that it is built on.
The CCDF for each regression model is found using the median model prediction at the IM threshold of interest, and

the accompanying model σ—assuming that P(EDP|IM) follows a lognormal distribution. In total 50 CCDFs are created
for each model, conditioning EDP on the same IM thresholds as for the hazard curves, thus making the convolution for
demand hazard straightforward. Figure 6 plots fragility curves for the same set of samples, with PGA (Figure 6A) and
PGD (Figure 6B) as the IM, and top-storey IDR as the EDP. The CCDFs are plotted for IDR thresholds of 0.2%, 0.7% and
1.0%. Example empirical fragility curves for the same IDR thresholds are also provided in Figure 6. Most demand models
produce similar CCDFs, except the linear model which underpredicts the drift demand at 0.2% and 0.7%, and overpredicts
the drift demand at 1.0% (in agreement with Figure 5). The variation in CCDF values between the other models is mostly
due to their associated model σ. Both the RF and empirical models produce less smooth CCDFs than the other demand
models; this is because their median model estimations are not always increasing (as is clear from Figure 5), and so the
CCDF value will not always increase.

5.3 Comparing mean risk estimates

Demand hazard is estimated through this procedure for all IMs, all seismic demand models, and all 100 sets of samples,
allowing the MAF of top-storey IDR exceedance to be calculated. Figure 7 presents the mean of this demand hazard for
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10 RUDMAN et al.

F IGURE 6 P(EDP|IM) curves for (A) PGA and (B) PGD, and each of the seismic demand models, at IDR thresholds of 0.2% (solid lines),
0.7% (dashed lines) and 1.0% (dot-dash lines).

each of the IMs and demand models under investigation, comparing each against the unconditional estimates. Most IMs,
and all demand models, appear to fit relatively well until an IDR between 1% and 1.5%. This is approximately the range
at which the IM|IDR relationship in the log-log plane becomes nonlinear due to the structural component’s yielding (see
pushover curve in Figure 4) and so the IM choice and demand model becomes more important here.
The linear model overestimates the demand hazard for all IMs, with no visually discernible best-fitting IM. The bilinear

fit significantly improves upon the linear fit as the nonlinear system response is now much better accounted for, with
demand hazard estimates for Sa(avg), AI and CAV in particular appearing to match the unconditional estimates most
closely when compared to the other IMs. Both machine learning models (the RF and ANN) produce almost identical
demand hazard estimates for all IMs across all EDP thresholds, with these estimates appearing to be superior to that of
the bilinear model. These models even appear to improve estimates for both ABDur and AUDur, both of which could not
be well described by the linear and bilinear models. However, care must be taken in the design and implementation of
machine learningmodels, especially at the edges of themodel range, where overfitting can lead to poor response estimates.
Finally, the empirical model seems to estimate the unconditional demand hazard very closely, with all IMs appearing to
be good choices using this technique. Nonetheless, this result warrants further exploration to see how well the empiri-
cal model performs when estimating the benchmark demand hazard. Moreover, Figure 7 shows it would be difficult to
draw a conclusion as to the optimal IM for any of the demand models from visual inspection alone, so quantitative IM
performance metrics need to be used to help decide this.

6 INVESTIGATING IMPACT OF INTENSITYMEASURE SELECTION

In this section, traditional IM performance metrics are evaluated and analysed for each of the seismic demand models.
After this, a novel technique to measure IM performance is proposed. A comparison between the different techniques is
then provided and discussed.

6.1 Traditional IM performance metrics

The efficiency, magnitude-sufficiency, distance-sufficiency and practicality of all IMs using the linear demand model are
presented in Figure 8. These measures were assessed through the procedures described in Section 4 and repeated for
all 100 sets of ground-motion samples — thus allowing the assessment of their distributions (as shown by the boxplots
presented, where the boxes represent the median, 25th and 75th percentiles, and the whiskers represent the maximum
and minimum values).
Overall, there appears to be no one optimal IM for the estimation of demand hazard that outperforms the others in

terms of all the above performance metrics, although it is evident that PGD, ABDur, AUDur and DRMS rank worst of all
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RUDMAN et al. 11

F IGURE 7 Mean demand hazard estimates for all IMs and seismic demand models under investigation.

IMs considered. A visual comparison of these measurements suggests that Sa performs the best out of all considered IMs.
This is unsurprising as the structure’s response is dominated by its first mode. Figure 8 shows that Sa is the most efficient
IM, the third most practical IM, the most magnitude-sufficient IM, and fifth most distance-sufficient IM. In this article,
‘most sufficient’ means the one with the highest p-value, that is, the one that is furthest from failing the significance test
based on a p-value threshold.
Figure 8D showsCAV to clearly be themost practical. Results appear to suggest that efficiency and practicality are highly

correlated. Figure 8B shows that most IMs satisfy the magnitude-sufficiency threshold of 0.05, however, no IM is clearly
the mostmagnitude-sufficient. On the other hand, Figure 8C indicates that distance-sufficiency is a harder requirement to
achieve with 7 of the 15 IMs being deemed insufficient according to their mean values, and a much larger spread of results
clearly visible. VRMS appears to be the most distance-sufficient IM.
As the assumption of homoscedasticity is relaxed for the bilinear cloud analysis model, two error terms are produced

(one for each segment of the model), this makes it harder to compare IMs in terms of efficiencywhen the bilinear model is
employed. To resolve this, an overall efficiency term is calculated for the bilinear model by finding the standard deviation
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12 RUDMAN et al.

F IGURE 8 Boxplot showing the (A) efficiency (B)magnitude-sufficiency (C) distance-sufficiency (where sufficiency is the p-value of the
slope of the residuals from the P(EDP|IM)model against magnitude and distance respectively) and (D) practicality of each IM when
considering a linear demand model for the top-storey IDR. Note the reversed x-axis in (A) as a lower value of efficiency is best (smallest
standard deviation).

of all residuals. Moreover, the linear model is the only demandmodel where the issue of practicality can be easily resolved
as each of the other models producemultiple slopes, making it harder to compare IMs for this metric. As such, practicality
is only evaluated for the linear model and ignored for all others.
Figure 9 shows how the efficiency,magnitude-sufficiency and distance-sufficiency of each IM changes for every demand

model. Efficiency is improved for all IMs (except ABDur and AUDur) when using either the bilinear or machine learning
demand models, reducing by 10%−25% from the linear to the bilinear model. The ANN and RF models vary just 5% from
the bilinear model so return very similar efficiency values. Sa improves the most with the efficiency value reducing 36%
from the linear model.Magnitude and distance-sufficiency are improved across all IMs for the bilinear model, with all IMs
deemed sufficient—again except ABDur and AUDur. However, there is no consistent improvement of sufficiency results
between the machine learning models and the linear demand model.

6.2 Proposed performance metric

Figure 10 presents the boxplot of the Dmax values (i.e., the difference to the unconditional results) calculated according
to Equation 1 for each IM and each seismic demand model, for all 100 sets of simulations. From these boxplots it is clear
that in general, the linear cloud analysis model produces the most different demand hazard estimates to the uncondi-
tional estimates (i.e., the least accurate). The bilinear, RF and ANN models both provide similarly close demand hazard
estimates, with the ANN appearing to produce slightly superior estimates. However, the ranking of these three models for
each IM vary, which would not have been obvious from visual inspection of the demand hazard curves alone. For all IMs
the empirical demand model produces the most similar estimates to the unconditional approach.
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RUDMAN et al. 13

F IGURE 9 Plot showing how the mean of (A) efficiency (B)magnitude-sufficiency and (C) distance-sufficiency changes for each IM and
seismic demand model combination. Note the reversed x-axis in (A) as a lower value of efficiency is best (smallest standard deviation).

As with the traditional performance metrics, it is hard to identify one optimal IM from these results. According to the
proposed performance metric, the combination of AI as IM and the empirical demand model is the optimal one, in the
sense that it yields the lowest mean Dmax value. As has been seen throughout, both duration and displacement-based IMs
perform considerably worse than all other IMs. Velocity-based measures (e.g., PGV, CAV and VRMS) always outperform
their acceleration-based counterparts (e.g., PGA and ARMS). This is likely because the velocity-based measures capture
the longer period effects of ground-motion better, leading to a better description of the demand hazard. Spectral ordinate-
based IMs, Sa and Sa(avg), are generally the most used IMs. Both Sa and Sa(avg) perform similarly well as measured by
Dmax, providing the fourth and fifth overall most accurate demand hazard estimates, respectively. Sa provides the most
accurate demand hazard estimates when using either the bilinear or ANNmodels, and Sa(avg) provides the second most
accurate demandhazard estimateswhenusing the linearmodel—afterCAV. This supports their continued use throughout
earthquake engineering.

6.3 Correlation between the new and existing performance metrics

As Dmax is a direct evaluation of the similarity of risk estimates with a benchmark truth, comparing Dmax values for
each IM with the traditional IM performance metrics can provide information on the suitability of these commonly used
indicators. Linear regression analyseswere carried out between themeanDmax value for each IM (using the linear demand
model), and the corresponding mean values of each of the four previously examined performance metrics. R2 values were
then calculated to evaluate the correlation between Dmax and each of the four metrics. A strong correlation was found
between Dmax and both efficiency and practicality, with R2 values of 0.787 and 0.729, respectively. In contrast, there is
little to no correlation between Dmax and both sufficiency metrics, with R2 values of 0.359 and 0.113 between Dmax and
magnitude-sufficiency, and distance-sufficiency, respectively.
Interestingly, if the inaccurate IMs (i.e.,ABDur,AUDur, PGD andDRMS) are removed from this correlation calculation,

the R2 values change considerably. R2 values for Efficiency and practicality fall to 0.260 and 0.003, respectively, whilst the
R2 values formagnitude-sufficiency and distance-sufficiency rise to 0.602 and 0.492, respectively. This indicates that when
considering only accurate IMs, efficiency and practicality are poor predictors of IM-optimality and both sufficiency values
are acceptable predictors. This suggests that IMs that perform well in terms of traditional IM performance metrics do not
necessarily yield accurate demand hazard estimates. It is noteworthy that in the demand hazard assessment using the
conditional demand approach, a very high number of records (i.e., 1000) has been considered for building the demand
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14 RUDMAN et al.

F IGURE 10 Boxplot showing Dmax for each IM and each seismic demand model.

models, which ismuch higher than the number of records typically used in cloud analysis. Thus, it is necessary to evaluate
how the obtained results are affected by the number of records, which is investigated in the next section.

7 SENSITIVITY ANALYSIS

To further investigate the optimal IM and demand model combination, a sensitivity analysis was performed, evaluating
how changing the number of ground motion samples affects the reported Dmax value, for every IM and demand model.
For this purpose, the mean Dmax was calculated using the risk estimation procedures previously described, for samples
between 50 and 1000 records. Figure 11 shows the sensitivity analysis results for (A) Sa and (B) AI for all five demand
models. The sensitivity of estimates for these IMs is considered representative of all other IMs, except the displacement
(PGD and DRMS) and duration (ABDur and AUDur) based IMs — where risk estimates remain inaccurate irrespective of
the number of samples.
As already demonstrated, the empirical model is the superior demand model when all 1000 samples are used, yielding

ameanDmax value 8% lower than the next best model for Sa and 21% forAI. However, for Sa the empirical model becomes
less accurate than the bilinear model when less than 900 samples are used, and this is also true for AIwhen less than 700
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RUDMAN et al. 15

F IGURE 11 Sensitivity of Dmax to the number of samples used in the risk assessment procedure. The IMs used are (A) Sa and (B) AI,
which are considered representative of all accurate IMs.

samples are used. When just 50 samples are used the empirical model is the second least accurate model for Sa, with the
RF model being the least accurate. Whilst, for AI when 50 samples are used the empirical model is considerably the least
accurate demandmodel, with aDmax value 20% higher than the next worst. This result is expected as a smaller sample size
would mean fewer records in each bin, thus limiting the methods ability to account for variability in conditional demand
and reducing its accuracy.
The linear model is by far the worst model when all 1000 samples are used; however, this demand model is very insen-

sitive to the record number, and it is the second best one for both Sa and AIwhen just 50 samples are used. Both machine
learning models and the bilinear models perform similarly with large amounts of samples—in agreement with Figure 10.
However, the machine learning models are far more sensitive and have a large drop in accuracy when using less than 200
samples for Sa, and 300 samples forAI—making these methods unsuitable for small sample sizes. Restructuring, or using
more complex architectures for themachine learningmodels, may improve the demand estimates at smaller sample sizes.
From this sensitivity analysis it can be concluded that the empirical demand model should only be used when enough
samples are available, otherwise users are recommended to consider a bilinear demand model when assessing risk.

8 COMPONENT DAMAGE ANALYSIS

To fully demonstrate the impact that both IM and demand model selection have on risk assessment, the demand haz-
ard estimates are extended to damage estimates on typical components within the structure under investigation. The
FEMA P-58 Normative Quantity Estimation Tool11 is used to populate the structural model with typical structural and
non-structural components, based on the structure’s size and occupancy. Of these components, damage estimates from
two are presentedwithin this article: C2011.001b, a prefabricated steel staircase, andC1011.001a, a wall partition, both com-
ponents are affected by IDR. These components are located on the top storey of the structure. The FEMA P-58 fragility
database provides fragility information for both components—with the fragility curves for each plotted in Figure 12. Each
DS is sequential, meaning that each DS can only occur if the preceding one has already occurred.
Fragility curves are convolved with the demand hazard estimates from Section 5.3 to produce estimates of the MAF of

exceedance of each DS for each component. This is repeated for all combinations of IM and demand model, and all 100
sets of simulated ground motions, allowing the mean result to be plotted along with the corresponding uncertainties. The
unconditional damage estimate is also produced through a convolution with the fragility curves.
Figure 13 presents estimates for the MAF of exceedance of each component’s DSs using the empirical demand model,

as this has been found to be themost accurate when using all 1000 samples. All except the displacement (PGD andDRMS)
and duration (ABDur and AUDur) based IMs have been plotted in Figure 13, with these four IMs excluded due to their
poor accuracy in terms of demand hazard. Themean damage estimate for each DS is plotted by the black circle, with error
bars denoting the 16th and 84th percentiles of the mean. The unconditional damage hazard for each DS is plotted by the
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16 RUDMAN et al.

F IGURE 1 2 Fragility curves for both components under investigation.

F IGURE 13 MAF of exceedance of each DS for both components using the empirical demand model, with 16th and 84th percentiles
plotted as error bars. The unconditional estimate is marked by the solid (mean) and dashed (16th and 84th percentile) lines.

solid line (mean) and dashed lines (16th and 84th percentiles) for comparison against the estimates from the conditional
demand models.
These results showhow an improper choice of IM can lead to poor estimates of risk, with the inaccuracies of the demand

hazard stage propagated through to the damage estimates. For instance, acceleration-based IMs (PGA, ASI and ARMS)
overpredict all DSs for C2011.001b, and DS1 and DS2 of C1011.001a, a result that would not have been clearly indicated
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RUDMAN et al. 17

from the demand hazard results and traditional IM performance metrics. For both components, Sa, AI and VRMS appear
to give the overall most accurate estimates of damage hazard for each DS—although CAV, CI, and HI give considerably
better damage hazard estimates for DS3 than for DS1 or DS2. This demonstrates how it is difficult to determine a sin-
gle comprehensive IM with which to perform a risk assessment and reaffirms that it is not necessarily best practice to
determine IM optimality at the demand hazard level.

9 CONCLUSIONS

The impact of the combined selection of intensity measure and seismic demand model on demand hazard estimates
has been evaluated for a mid-rise steel structure. Using a fictive scenario and stochastic ground motion simulations,
we first estimated a benchmark demand hazard for the system via the unconditional approach, before making condi-
tional demand hazard estimates based on 15 different intensity measures, and five conditional seismic demand models
using cloud analysis—four developed through regression and a fifth through an empirical binning technique. Visual com-
parisons were made for all 75 demand hazard estimates against the unconditional approach, with further investigation
performed by evaluating traditional performance metrics: efficiency, sufficiency and practicality.
After this, we presented a novel performancemetric to assess the accuracy of intensitymeasures, and demandmodelling

choices, based on the maximum distance between the demand hazard estimates obtained using the conditional approach
and the unconditional benchmark. This metric can be applied to any level of a conditional risk assessment framework,
providing the estimates are in the form of frequencies of exceedance, and could also be used to evaluate a wider range
of risk assessment modelling choices. A sensitivity analysis was performed, using the new metric, to evaluate how the
number of records used within the demand model impacted the quality of demand hazard estimates. Finally, damage
estimates were made for two typical components to evaluate how the choice of intensity measure and demand model can
impact the latter stages of a loss assessment.
From this study, the following main conclusions can be drawn for the scenario under investigation:

∙ Intensity measures based on ground displacements and duration performed consistently poorly at estimating risk.
∙ Our proposed metric demonstrated that a combination of Arias intensity with an empirical demand model provided
the most accurate demand hazard estimates, but a more traditional intensity measure such as the spectral acceleration
at the fundamental vibration period of the structure also performed quite well.

∙ Comparing our new measure against the traditional performance metrics indicated that optimal intensity measures in
terms of the traditional performance metrics did not necessarily guarantee accurate demand hazard estimates when
using a large set of records for developing the demand model.

∙ The sensitivity analysis revealed that when using more than 700 samples, Arias intensity with the empirical demand
model still provided the most accurate combination of intensity measure and demandmodel. Yet, when fewer than 700
records were used the most accurate combination was the spectral acceleration at the fundamental vibration period of
the structure alongside a bilinear seismic demand model.

∙ For all intensity measures, the empirical demand model was superior when sample sizes were large. However, if very
few records were used to develop the demand model, the bilinear model provided the best demand hazardestimates.
The bilinear model is a rational choice for representing the variation of the seismic demand with the intensity measure
when considering structures like the one analysed whose response is dominated by the first mode of vibration and
exhibits a clear transition between a linear and nonlinear phase.

∙ Ground acceleration-based intensity measures were found to be poor estimators of the damage state, whilst spectral
acceleration and Arias intensity continued to perform well.

It is important to caveat the findings of this study due to its relatively narrow scope. Only two components are consid-
ered that are both affected by the same single demand parameter, in one structure, and results from other types of demand
models are not evaluated, that is, through incremental dynamic analysis or multiple stripe analysis. A different demand
model and intensity measure combination may be optimal when considering a different risk assessment context; like-
wise, the intensity measures shown to be inaccurate within this scenario may perform better in another. Further research
would be needed to makemore generalised conclusions on the ability of different combinations of intensity measures and
demand models to estimate seismic risk. This article has, however, demonstrated the importance of selecting both the
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18 RUDMAN et al.

intensity measure and the demandmodel in a joint fashion, and has presented a clear method of doing this that can easily
be applied to different contexts.
Future studies could expand on this work by using the same methodology on a variety of different structures and con-

sider a range of different demand parameters. Further work could also extend damage estimates to evaluate the impact
that intensity measure and seismic demand model selection has on seismic loss estimates. It would also be useful for
future research to explore whether using different ground-motion models affects the conclusions of this study.
In conclusion, it is essential that the optimal combination of conditioning intensitymeasure and seismic demandmodel

are selected to ensure earthquake losses are accurately described. The approach presented in this article provides an objec-
tive way of choosing the most appropriate combination of intensity measure and seismic demand model for any seismic
risk and loss assessment.
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