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Abstract. The concept of the path-dependent partial differential equation (PPDE) was first
introduced in the context of path-dependent derivatives in financial markets. Its semilinear form
was later identified as a non-Markovian backward stochastic differential equation (BSDE). Com-
pared to the classical PDE, the solution of a PPDE involves an infinite-dimensional spatial variable,
making it challenging to approximate, if not impossible. In this paper, we propose a neural rough
differential equation (NRDE)-based model to learn PPDEs, which effectively encodes the path infor-
mation through the log-signature feature while capturing the fundamental dynamics. The proposed
continuous-time model for the PPDE solution offers the benefits of efficient memory usage and the
ability to scale with dimensionality. Several numerical experiments, provided to validate the per-
formance of the proposed model in comparison to the strong baseline in the literature, are used to
demonstrate its effectiveness.
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1. Introduction. The concept of path-dependent PDEs (PPDEs) arises from
financial mathematics, when it comes to price path-dependent options such as Asian
options and barrier options. Upon examining its solution via the functional Feynman-
Kac formula developed in [11] (see also Cont and Fournie [5, 6, 7]), the PPDE is
identical to the discounted price of an exotic option. A more general PPDE can be
formulated in the context of the nonlinear-Markovian backward stochastic differential
equation (BSDE) through the same technique [32, 34]. We also refer to [13, 14, 15,
26, 33, 8] for different approaches.

Solving PPDEs is practical but challenging, especially in high-dimensional cases.
The capability of deep neural networks to approximate the function with complex
structures, especially in high dimensional settings, could potentially tackle the ”curse
of dimensionality” faced by traditional numerical methods. Recent years have seen
the development of numerous deep PDE solvers based on probabilistic reformulation
[18] [36]. Mathematical analysis for neural network approximations for PDEs could
be found in [12]. Extending deep PDE solvers to PPDEs is however non-trivial, as the
information of the path needs to be correctly encoded to the network, suggested by the
name of PPDE. Some of the existing literature [41] utilizes long-short term memory
(LSTM) network [19] to capture the long-range dependence of the input data. Other
work [40] relies on the path signature feature offered from rough path theory [27]
for capturing and condensing path characteristics, as it has been proven as a natural
and effective feature in the machine learning context, from pattern recognition tasks
[43, 44] to healthcare applications [42, 28, 30]. But the memory expense of both
networks may not be scalable with dimensionality.

To construct a suitable network structure that is memory-efficient and well-suited
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for the time series input, we exploit the neural rough differential equation (NRDE)
network [22], which is rooted in both rough path theory and neural ordinary dif-
ferential equation (NODE), and propose an effective and hybrid model for solving
high-dimensional PPDEs. Consider a dynamical system that is governed by a con-
trolled differential equation (CDE) with a control signalX [27]. Through a Lie algebra
homomorphism on the truncated log-signature of the driving path X, one can replace
the CDE with an autonomous ordinary differential equation (ODE) whose solution
is a high-order approximation to the original solution of CDE [16]. Such a method
is called the Log-ODE method. Inspired by the NODE network introduced in [4],
Morrill et al. in [29] proposed a NRDE network which incorporates the autonomous
ODE from the Log-ODE method, where part of the vector field is specified by a neural
network. On the one hand, this network inherits most of the nice properties of the
NODE network, such as memory efficiency through the use of the adjoint method
(details can be found in Appendix B) for calculating the gradient and adaptive com-
putation. On the other hand, it extracts log-signatures of the input time series and
has the advantage of tackling long time series.

By interpreting the solution of the PPDE as a process of some evolving system
governed by the path on which the PPDE depends, we build an NRDE-based hybrid
model. This is the first time that NRDE is used to solve PPDEs. The main features
of our proposed model include:

• The model captures the dynamics of the PPDE and preserves intrinsic fea-
tures of the underlying path;

• Unlike existing literature, the log-signature is included as a layer rather than
exacted features;

• It is capable of solving both low-dimensional and high-dimensional PPDEs,
and, compared to the baseline model, the benefit becomes more significant as
dimension increases;

• Its computational efficiency can be further enhanced by introducing an em-
bedding layer;

• It admits flexible time steps in solving the ODE of the NRDE network, which
enables easy adjustment of the model complexity based on task needs;

• It possesses the characteristic of the NRDE, which entails a constant memory
expense.

The problem setup is as follows: given T > 0 and d,m ∈ N, we are interested
in simulating u : [0, T ] × C

(
[0, T ],Rd

)
→ R,1 which is the solution of the following

semilinear PPDE with a terminal condition,[
∂tu+ bDxu+

1

2
tr
[
Dxxuσ

Tσ
]
− ru

]
(t, ω) + f(t, ω) = 0

u(T, ω) = g(ω), t ∈ [0, T ], ω ∈ C
(
[0, T ];Rd

)
,

(1.1)

where b, σ, r and f are functions that map from [0, T ]×C
(
[0, T ],Rd

)
to Rd,Rd×m,R

and R respectively, and Dxu and Dxxu are path derivatives that will be specified
later.

The remaining paper is structured as follows: in the Preliminaries section (Sec-
tion 2), a concise overview of the fundamental notations in functional Itô calculus is
presented, with specific emphasis on the Feynman-Kac formula, which is followed by
an short introduction to (log-)signatures. Section 3 reviews two learning frameworks

1C
(
[0, T ],Rd

)
is the collection of continuous functions mapping from [0, T ] to Rd.
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that we will adopt. The NRDE-based hybrid model architecture for solving high-
dimensional PPDEs is proposed in Section 4 with numerical experiments in Section
5. Across all experiments, our model consistently surpasses the performance of the
baseline model, demonstrating its remarkable capabilities. Discussion, limitation and
future works are included is given in Section 6.

2. Preliminaries. This section is devoted to a brief summary of the basics of the
functional Itô calculus and rough path theory. We begin with definitions of both the
time and spacial derivative of a path-dependent functional and then the functional
Itô formula. This is followed by the probabilistic representation of the solution of
the PPDE (1.1) via the functional Feynman-Kac formula. One may refer to [11] for
further details of the functional Itô calculus. In Section 2.3, we introduce the path
signature and log-signature features, which are the core concepts of rough path theory
and serve as effective feature representations of sequential data.

2.1. Functional Itô formula. We start by defining the path space. Fix T > 0
to be the maturity time. For every t ∈ [0, T ], denote Λt the set of càdlàg2 Rd-valued
functions on [0, t]. For ω ∈ ΛT , the value of ω at time t ∈ [0, T ] is denoted by ω(t).
To distinguish ω(t), we define the path ω restricted to the time interval [0, t] by ω[0,t].
The path space, denoted by Λ, consists of all possible paths ω ∈ Λt for t ∈ [0, T ]; in
formula, Λ =

⋃
t∈[0,T ] Λt. Let ⟨·, ·⟩ and | · | be the inner product and the norm in Rd.

The norm on the path space Λ inherits the supermum norm of the continuous space,
i.e., ∥∥ω[0,t]

∥∥ := sup
r∈[0,t]

|ω(r)|.

For 0 ≤ t ≤ t̂ ≤ T and ω[0,t], ω̂[0,t̂] ∈ Λ, we can also characterise their distance in Λ by

d∞

(
ω[0,t], ω̂[0,t̂]

)
:= max

(
sup

r∈[0,t)

|ω(r)− ω̂(r)|, sup
r∈[t,t̂]

|ω(t)− ω̂(r)|

)
+ |t− t̂|.

Let u : Λ → R denote a functional mapping any càdlàg path over [0, t] to a real
number, where t ∈ [0, T ]. The functional u : Λ 7→ R is said to be Λ-continuous
at ω[0,t] ∈ Λ if for any ε > 0, there exists δ > 0 such that ∀ω̂[0,t̂] ∈ Λ satisfying

d∞
(
ω[0,t], ω̂[0,t̂]

)
< δ, we have |u(ω[0,t])−u(ω̂[0,t̂])| < ϵ. We say that u is Λ-continuous

if it is continuous at all ω[0,t] ∈ Λ.
We now define the space and time derivatives of functional u : Λ → R. For a path

ω[0,t] ∈ Λ and x ∈ Rd, we denote the jump extension

wx
[0,t](s) =

{ w(s), 0 ≤ s < t;
w(t) + x s = t.

The right subplot of Fig 1 gives an example of a jump extension for a one-dimensional
path ω[0,t]. Now let u : Λ 7→ R and ω[0,t] ∈ Λ, the space derivative Dxu

(
ω[0,t]

)
at ω[0,t]

is p ∈ Rd such that

(2.1) u
(
ωx
[0,t]

)
= u

(
ω[0,t]

)
+ ⟨p, x⟩+ o(|x|), x ∈ Rd.

We say that u is vertically differentiable in Λ if Dxu
(
ω[0,t]

)
exists for every ω[0,t] ∈ Λ.

The second order derivative Dxxu
(
ω[0,t]

)
is a d×d symmetric matrix defined similarly.

2It means the function is right continuous with left limits.
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Fig. 1. Illustration of the flat extension ω[0,t],s (left) and jump extension ωx
[0,t]

(right) of ω[0,t].

Let ω[0,t],s with 0 ≤ t < s ≤ T represent an extension of ω[0,t] such that the
value at ω(t) is frozen over [t, s]. The left subplot of Fig 1 gives an example of such
an extension for a one-dimensional path ω[0,t]. For a given ω[0.t] ∈ Λ, we say that

u(ω[0,t]) is horizontally differentiable in t at ω[0,t] if there exists Dtu
(
ω[0,t]

)
= a such

that u
(
ω[0,t],s

)
= u

(
ω[0,t]

)
+ a(s − t) + o(|s − t|). The functional u is said to be

horizontally differentiable in Λ if Dtu
(
ω[0,t]

)
is well defined for all ω[0,t] ∈ Λ.

Define by Cj,k(Λ) the set of functionals u on Λ, which are j-times horizontally and
k-times vertically differentiable in Ω such that all these derivatives are Λ-continuous.
Further, define by Ci,j,k(Λ) the set of u : [0, T ] × Λ → R, where u is also i-times
differentiable in time. For s > t, we denote by b := ∂tu

(
t, ω[0,t]

)
the first derivative of

u with respect to time such that

u
(
s, ω[0,t],s

)
= u

(
t, ω[0,t]

)
+ b(s− t) + o(|s− t|).

Note that here b has included the horizontal derivative defined before.
We summarize the functional Itô formula [11, 5] as follows.

Theorem 2.1. (Functional Itô formula). Let (Ω,F ,P) be a probability space and
(Ft)t∈[0,T ] be the filtration defined on this probability space. If X is a continuous
semi-martingale and u is in C1,1,2(Λ), then for any t ∈ [0, T ), the following Eqn.
(2.2) holds almost surely,

u
(
t,X[0,t]

)
− u(0, X0) =

∫ t

0

∂su
(
s,X[0,s]

)
ds+

∫ t

0

Dxu
(
s,X[0,s]

)
dX(s)

+
1

2

∫ t

0

Dxxu
(
s,X[0,s]

)
d⟨X⟩(s),

(2.2)

where ⟨X⟩(t) is the quadratic variation process of X, defined as

⟨X⟩(t) = lim
|Πn|→0

n∑
k=1

(X(tk)−X(tk−1))(X(tk)−X(tk−1))
T ,

where the limit is taken in the L2(Ω) sense and taken over all possible time partitions3

of [0, t].

3We say that Πn is a partition of [0, t] if Πn = {(ti)ni=1|0 = t0 ≤ · · · ≤ tn = t}. |Πn| represents
the largest mesh size of the partition Πn
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2.2. Feynman-Kac formula for functionals. Given a complete probability
space (Ω,F ,P) and a standard Wiener process W : [0, T ]×Ω → Rm on (Ω,F ,P). For
a random path X : [0, T ] × Ω → Rd, denote by X[0,t] the stopped process of X at
time t. Let σ and b be the functionals of the pair (t,X[0,t]) such that the following
stochastic functional differential equation (SFDE) is well defined:

(2.3) dX(t) = b(t,X[0,t]) dt+ σ(t,X[0,t]) dW (t).

Then the solution of equation (1.1) has a probabilistic representation via the solution
of an SFDE [11, 1].

Theorem 2.2 (Feynman-Kac formula). If u is a non-anticipative functional,
i.e., for any given t ∈ [0, T ] it holds that u(t, ω1

[0,T ]) = u(t, ω2
[0,T ]) if ω

1
[0,t] = ω2

[0,t]; then

given any solution u(t, ω) ∈ C1,1,2 that satisfies[
∂tu+ bDxu+

1

2
tr
[
Dxxuσ

Tσ
]
− ru

]
(t, ω) + f(t, ω) = 0

u(T, ω) = g(ω), t ∈ [0, T ], ω ∈ C
(
[0, T ];Rd

)
,

(2.4)

it has the representation

u(t, ω) =E
[
g(X[0,T ])e

−
∫ T
t

r(s,X[0,s]) ds

+

∫ T

t

f
(
s,X[0,s]

)
e−

∫ s
t
r(h,X[0,h]) dh ds

∣∣X[0,t] = ω[0,t]

]
,(2.5)

where X satisfies the SFDE (2.3).

2.3. Path signature and log-signature for time series data. This section
presents the introduction of path signature and log-signature features, providing a
summary of their key properties and a comparison between them.

Let us first introduce the tensor algebra space, where the signature of a path
takes value. Denote E the Banach space in which the paths take their values, we
could assume it has a finite-dimensional structure. In our case, E = Rd or Rm with
the canonical Euclidean norm. The corresponding tensor algebra space is defined to
be T ((E)) := ⊕∞

n=0E
⊗n. For details please refer to Appendix A.

Definition 2.3 (Signature of a path). Let J denote a compact time interval and
X : J → E be a continuous path. The signature of X is an element of T ((E)) defined
as

SJ(X) =
(
1, X1

J , X
2
J , . . .

)
,

where, for each n ≥ 1,

(2.6) Xn
J :=

∫
u1<...<un
u1,...,un∈J

dXu1
⊗ . . .⊗ dXun

∈ E⊗n.

The truncated signature of X of depth N is defined as

SN
J (X) := (1, X1

J , . . . , X
N
J ).

The rough path theory shows that the solution of a controlled system driven by
path X is uniquely determined by its signature and the initial condition [27]. The
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signature of a path with finite length is a fundamental representation that captures
its impact on any nonlinear system. It enables the local approximation of path or
stream effects through linear combinations of signature elements. Consequently, the
coordinate iterated integrals, or the signature as a whole, form a natural feature set
for capturing the data aspects that predict the impact of the path on a controlled
system.

On the other hand, two distinct paths can have exactly the same signature. For
example, they are the same under time reparameterization. However, Hambly and
Lyons [17] show that the signature completely determines the path’s geometry up to a
tree-like equivalence. In addition, a time-augmented path can be uniquely determined
by and recovered from its signature [24].

The log-signature is a parsimonious description of the signature, while the (trun-
cated) log-signature and signature are bijective. To define the log-signature, we
need to introduce the logarithm of an element in the tensor algebra space. For any
x = (1, x1, · · · , xn, · · · ) ∈ T ((E)) , the logarithm of x is defined as

(2.7) log(x) =

∞∑
n=1

(−1)n−1

n
(x− 1)

⊗n
,

where the multiplication involved is the tensor multiplication.

Definition 2.4 (Log-signature of a path). Let X : [0, T ] → Rd be a continuous
path and the signature of X is well defined. Then the log-signature of path X, denoted
as Logsig(X), is the logarithm of the signature of the path X.

Denote by LogsigN (X) the truncated log-signature of depth N . The dimension
of this truncated log signature, denoted by β(d,N) depends on the dimensionality
of the path d and the truncation depth N (see appendix A for its formula). In
contrast to the signature, the log-signature offers the benefit of dimension reduction
thus reduces feature redundancy, but it should be combined with non-linear models
for approximating any functional on the unparameterized path space [25]. One can
refer to [31, 27] or the appendix A for further details of the log-signature [24].

Several Python packages (i.e., ESig [9], iisignature [38], Signatory [21]) are avail-
able for calculating signature and log-signature features from discrete time series
data.

3. Learning PPDE solution via a supervised learning approach. This
section reviews the existing learning frameworks [22] that we will adopt to learn the
solution of the target PPDE. The first framework directly builds the loss function on
the Feynman-Kac representation of the solution, whereas the subsequent framework
leverages an additional property of the spatial derivative in addition to the primary
one, but is subject to certain conditions imposed on f and r.

3.1. Method 1: learning the solution as a conditional expectation. we
define the entire term within the conditional expectation (2.5) as F :

(3.1) F (t,X) := g(X[0,T ])e
−

∫ T
t

r(s,X[0,s])ds +

∫ T

t

f
(
s,X[0,s]

)
e−

∫ s
t
r(h,X[0,h])dhds.

Suppose (Ft) , t ≥ 0 is a filtration generated by (Xt)t≥0, and denote L2(Ft) the
space of square integrable and Ft measurable random variable. Then the conditional
expectation (2.5) is the function h ∈ L2(Ft) that gives the best approximate of F (t,X)
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in the mean quadratic sense, that is

u(t, ω) = E
[
F (t,X)

∣∣∣X[0,t] = ω[0,t]

]
= inf

h∈L2(Ft)
E
[∣∣∣F (t,X)− h

∣∣∣2].(3.2)

By Doob-Dynkin lemma [10], one can always express the function h as ĥ(t,X[0,t]) for

some Ft-measurable function ĥ. We will approximate such ĥ by a neural network ûθ.
Eqn. (3.2) thus provides a learning task for trainable parameters θ of neural network.

Now fix the terminal time T and we are interested in the value of u(t,X) on
some time grid 0 = t0 ≤ t1 < t2 < · · · < tN1 = T with N1 ∈ N. We first generate
N2 with N2 ∈ N many trajectories of underlying X from (2.3) via some numerical
scheme, evaluate F upon these realizations, then find the optimal ûθ by minimizing
the difference between ûθ and F . The objective function for the trainable parameter
θ is therefore

(3.3) θ∗ = argmin
θ

1

N2

N2∑
i=1

N1∑
j=0

(
F
(
tj , X

(i)
)
− ûθ

(
tj , X

(i)
[0,tj ]

))2
,

where X(i) represents the ith sampled path trajectory of X.

3.2. Method 2: learning both the PPDE solution and path-dependent
derivative. Now consider the special case of Eqn. (1.1) when f = 0 and r is a con-
stant. This can be related to a simple scenario in the context of financial mathematics,
where the underlying assets X admit the following SDE:

(3.4) dX(t) = rX(t)dt+ σ(t,X[0,t])dW (t).

Note that the discounted price process X̄(t) := e−rtX(t) now gives a martingale. Let
g(X[0,T ]) be the final payoff of some derivative that depends on X, and define the
square-integrable process

M(t) := E
[
e−rT g(X[0,T ]) | Ft

]
.

The fair price of the derivative at time t is u(t,X[0,t]) := ertM(t). By the martingale
representation theorem [39] and the functional Itô formula (2.2), there exists a unique
adapted process Z such that

M(T ) = E [M(T ) | F0] +

∫ T

0

Z(t)dW (t) = E [M(T ) | F0] +

∫ T

0

Dxu(t,X[0,t])dX̄(t).

This leads to the following relation: for 1 ≤ j ≤ N1,

(3.5) M(tj) = M(tj−1) +

∫ tj

tj−1

Dxu(v,X[0,v]) dX̄(v),

and allows us to add another network [Dxû]ϕ to approximate the path derivative
separately.

If ûθ and [Dxû]ϕ both provide good approximations, then at each tj , the terms

e−rtj ûθ

(
tj , X[0,tj ]

)
− e−rtj−1 ûθ

(
tj−1, X[0,tj−1]

)
−
∫ tj

tj−1

[Dxû]ϕ (v,X[0,v]) dX̄(v)
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should be close to zero. Under such a consecutive relation, only the terminal con-
dition need to taken into account in (3.3). The goal now is to minimize two terms
simultaneously

(θ∗, ϕ∗)

= argmin
θ,ϕ

1

N2

N2∑
i=1

N1∑
j=0

{[
e−rtj ûθ

(
tj , X

(i)
[0,tj ]

)
− e−rtj−1 ûθ

(
tj−1, X

(i)
[0,tj−1]

)
(3.6)

− [Dxû]ϕ ∆X̄
(i)
j

]
+
(
g(T,X

(i)
[0,T ])− û

(
T,X

(i)
[0,T ]

))2 }
,

where ∆X̄j = X̄j − X̄j−1.

4. Network architecture for the PPDE solution. In this section, we pro-
pose a network architecture to handle high dimensional PPDEs with a dimension-
reduction feature. To be more precise, the approximation network ûθ(t,X) is assumed
to follow a controlled differential equation (CDE) driven by X but with an unknown
vector field, which can be solved through a neural rough differential equation (NRDE)
network [29] with truncated log-signature features of X. When the driving path X is
of high dimension, an embedding layer is introduced for dimension reduction.

4.1. The NRDE network. Given t0, T ∈ R with t0 < T and d, h ∈ N. Let
ξ ∈ Rh, X : [t0, T ] → Rd be a continuous function of bounded variation and G : R →
Rh×d be a continuous function.Consider Z : [t0, t1] → Rh which is the unique solution
to the following CDE

(4.1) Z(t0) = ξ, Z(t) = Z(t0) +

∫ t

t0

G(Z(s)) dX(s) for t ∈ (t0, T ],

where G(Z(s)) dX(s) is understood as a matrix-vector product.
Now given a time series data X = ((t0, x0), (t1, x1), . . . , (tn, xn)) and we are in-

terested the output of the model at specific points t0 = r0 < r1 < · · · < rm = tn ≤ T .
To achieve this, inspired by the Log-ODE method [16], the NRDE network gives the
approximation iteratively by replacing the vector field f(Z(s)) dX(s) in (4.1) through
the following piecewise function

(4.2) ĝθ,X(Z, s) = Ĝθ(Z)
LogSigNri,ri+1

(X)

ri+1 − ri
for s ∈ [ri, ri+1) ,

where Ĝθ : Rh → Rh×β(d,N) is an arbitrary neural network with trainable parameters
θ, LogSigNri,ri+1

(X) ∈ Rβ(d,N) is the depth-N truncated log-signature of X over the
interval [ri, ri+1], and the right-hand side of (4.2) is a matrix-vector product. In
addition, a layer ξθ : Rd → Rh is added to calculate the initial hidden state Zt0 . The
Eqn. (4.1) thus boils down to an ordinary differential equation (ODE)

(4.3) Z(t0) = ξθ(X(t0)), Z(t) = Zt0 +

∫ t

t0

ĝθ,X(Z(s), s) ds,

where the universality is gaurenteed in [22] and [29].
The implementation of (4.3) can be done via existing ODE solver package such

as torchdiffeq [4, 3]. The training of parameters θ is done using stochastic gradient
descent in the usual way, while we can carry out the forward pass and backpropagation
via adjoint methods, which have the memory efficient advantage.



A NRDE-BASED MODEL FOR PATH-DEPENDENT PDES 9

Fig. 2. The Structure of EL-NRDE model.

4.2. Using embedding for dimension reduction. In our model, the sig-
nature method is used to capture the dynamics of path X : [0, T ] → Rd between
consecutive time steps, but the scalability of the model becomes a challenge when
the dimension increases. In particular, for a fixed depth N , the size of SigN (X) and
LogsigN (X) increase exponentially with dimension4, leading to a heavy computational
cost for the model. For instance, fix N = 3, the sizes of the truncated signatures of
depth 3 are 14, 39, 84 and 155 respectively for paths of dimension 2 to 5, and the cor-
responding sizes of truncated log-signature of depth 3 are 5, 14, 30 and 55. To address
this issue, we introduce an additional embedding layer to reduce the dimension of X
and transform X → X when necessary. The resulting X : [0, T ] → Rd1 has a smaller
dimension d1 < d, and the truncated log-signature of X is calculated and fed into the
subsequent trainable layers, as illustrated in Figure 2. The proposed model is referred
to as EL-NRDE. Note that the dimension reduction feature is also effective for the
LSTM model in [22], as will be shown in the experiment section.

5. Experimental results. This section demonstrates the capability of the pro-
posed NRDE model through diverse experiments of PPDEs. To showcase the scala-
bility of the model, each experiment except the last one starts with a low-dimensional
example and progresses to high-dimensional cases. We compare the performance of
our model with respect to the LSTM model with signature features proposed in [22],
referred to as SigLSTM. We have selected this model as our baseline for two main
reasons. Firstly, this model has demonstrated state-of-the-art performance, indicating
its effectiveness in solving PPDEs. Secondly, both our model and the baseline model
make use of signature methods. This commonality allows for a fair and meaning-
ful comparison between the two approaches. By leveraging signature methods, both
models may share similarities in their underlying principles or techniques, which can
help to compare their strengths, weaknesses, and overall effectiveness. By consider-
ing these two factors, we can establish a solid foundation for evaluating our model’s
performance and drawing meaningful insights and conclusions in comparison to the
baseline model.

As aforementioned, for high-dimension PPDEs, it is necessary to incorporate

4One may refer to [37, Table 2] for the collection of size numbers of truncated (log-)signature of
depth upto 12 for paths of dimension between 1 to 5.
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an embedding layer prior to the model. We, therefore, prefix the model with the
dimension reduction layer with the name ’EL’. For example, EL-SigLSTM refers to
the model that combines the SigLSTM network and the dimension reduction feature.

5.1. Experimental setup.

5.1.1. Training procedure. We set the training step to 2000 epochs. During
each epoch, some suitable numerical method such as Euler-Maruyama method is used
to simulate a batch of trajectories of the underlying SDE, then adopt either (3.3) or
(3.6) as the objective function to update the network parameters. Adagrad is applied
as the optimizer during training, and the adjoint method developed in [4] is chosen

to calculate the gradient with memory efficiency. If the vector field f̂ requires O(H1)
memory, and the length of time series is H2, then backpropagating through the solver
requires O(H1H2) memory while the adjoint method requires O(H1+H2). We include
some details about the adjoint method in appendix B and this has also been discussed
in [4, 20].

5.1.2. Hyperparameters. As discussed in [29], there are two important hy-
perparameters that will heavily affect the performance and computational costs: the
depth N of the truncated log-signature and the number of steps (denoted by n in
(4.2)) for numerically solving the underlying ODE in (4.3). To solve high-dimensional
PPDEs, we intend to choose the optimal embedding to reduce the dimensionality of
X while preserving as much information about the original path as possible. Thus
the reduced dimension d1 of path X will also play a role and be treated as another
important hyperparameter we need to tune. About the network architecture of f̂
that characterises the vector field of ODE in (4.3), we use grid search to find the
optimal combination of network parameters that gives the best metric on test sets, as
we discussed in next section.

5.1.3. Packages. The package we use to calculate the log signature is the sig-
natory [21] We use the package provided by [29] in their paper to call and specify
the hyperparameters of the NRDE network, and the numerical solver is provided by
torchdiffeq [2] wrapped in the NRDE module.

5.1.4. Metrics on test sets. We use two metrics to measure the model perfor-
mance on test sets that contain simulated paths. The notation utruth(t,X) denotes
the true solution of PPDE or the Monte-Carlo approximation (with 2000 many sim-
ulations) based on the Feymann-Kac formula in (2.5) if the analytical form is not
available. In accordance with the preceding sections, ûθ(t,X) denotes the model’s
approximate solution to the PPDE and Π = (tj)

N1
j=0 the time discretisation of interval

[0, T ]. For simplicity, we set a fixed time stepsize ∆t = tj+1 − tj . The absolute error
on test sets with sampling size N test is defined as

(5.1) Abs.err :=
∆t

N test

Ntest∑
i=1

N1∑
j=0

∣∣∣u(tj , X(i)
[0,tj ]

)− ûθ(tj , X
(i)
[0,tj ]

)
∣∣∣ ,

and the relative error is

(5.2) Rel.err :=
Abs.err

∆t

Ntest

∑Ntest

i=1

∑N1

j=0 |u(tj , Xi
[0,tj ]

)|
.

Note that

(5.3) Abs.err ≈ E
[ ∫ T

0

∣∣u(t,X[0,t])− ûθ(t,X[0,t])
∣∣dt]
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and

(5.4) Rel.err ≈
E
[ ∫ T

0

∣∣u(t,X[0,t])− ûθ(t,X[0,t])
∣∣dt]

E
[ ∫ T

0

∣∣u(t,X[0,t])
∣∣ dt] .

The absolute error quantifies the total difference between the model output and the
solution of PPDE on the whole path trajectory, and the relative error measures the
scale of the solution hence we can compare the error across different dimensions. We
choose N test = 50 and generate 10 batches of such test sets so that we can calculate
and compare the mean and variance of the two metrics across the different test sets.

5.2. Heat Equation. The first experiment considered is a path-dependent heat
equation with the following form

(5.5)

{
∂tu
(
t,X[0,t]

)
+ 1

2 tr
[
Dxxu(t,X[0,t])

]
= 0

u
(
T,X[0,T ]

)
= g
(
X[0,T ]

) ,

Following Theorem 2.2, the solution of the PPDE above is the expectation of the
path-dependent final condition where X is a d-dimensional Brownian motion. Given
the following strong path-dependent terminal condition used in [41],

(5.6) g
(
X[0,T ]

)
=

(∫ T

0

d∑
i=1

Xi(u) du

)2

,

where Xi represent the ith coordinate of X, then PPDE (5.5) has the analytical
solution

u
(
t,X[0,t]

)
=

(∫ t

0

d∑
i=1

Xi(u) du

)2

+ 2(T − t)
( d∑

i=1

Xi(t)
)∫ t

0

d∑
i=1

Xi(u) du

+ (T − t)2
( d∑

i=1

Xi(t)
)2

+
d

3
(T − t)3.

Now fix the time interval [0, 1] and define Π as a partition on the interval with step
size ∆ = 0.1 on which we will approximate the PPDE solution. We use a finer grid
with time stepsize ∆finer = 0.01 to simulate the underlying X.

We compare the performance of EL-SigLSTM and EL-NRDE models at d =
32 under the learning task Method 2. The network parameters are documented in
Appendix C.

To visualize the performance, we first explore the solution of PPDE at t = 0,
where we vary the first two dimensions of X(0) and set the remaining dimensions to
zero. Fig. 3 illustrates the evolution of the EL-NRDE’s output at t = 0 during the
training process. The EL-NRDE network converges close to the true solution after
600 epochs, and the average relative approximation error on the whole spacial domain
after training is 0.031. This result is much better than the EL-SigLSTM model, as
shown in Fig. 4.

We then compare the performance of two models across different dimensions.
Table 1 compares the two test metrics introduced in Section 5.1.4 and the memory
consumption during training. It is worth noting that the memory consumption for
d = 8 is comparable to that of d = 16 for both models. This is due to the different
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Fig. 3. The evolution of model output F̂ (t,X(t)) to Eqn. (5.5) at t = 0, with the first two
dimensions of X(0) ∈ [0, 0.2]2 and other dimensions=0.

optimal depths of the (log-)signature obtained for each d. In terms of the accuracy
of the approximation, the EL-NRDE model outperforms the EL-SigLSTM model,
achieving smaller absolute error and relative error across all dimensionality considered.
In particular, the performance is much enhanced in the higher-dimensional setting.
For instance, at d = 64, the errors from the EL-NRDE model is about one over fifty
of the ones from the EL-SigLSTM model. The left figure in Fig. 5, which shows the
mean and standard deviation of the relative error achieved among different dimensions
by the EL-NRDE model, also suggests that our proposed model scales linearly with
dimension.

We also demonstrate that the EL-NRDE model is capable of approximating
u(t,X) on the entire time interval by tracking the relative approximation error and
its standard deviation on time partition Π, shown in the left figure in Fig. 5. In Fig.
6, we randomly simulate five trajectories of underlying path X for d = 32 and d = 64
respectively and compare the model output to the exact solution. It can be observed
that the approximations from the EL-NRDE model resemble the ground truth.

EL-SigLSTM EL-NRDE

Dim Abs.err Rel.err Memory Abs.err Rel.err Memory

8 0.2466 0.0078 7.76 0.2096 0.0069 5.21
16 1.523 0.0272 6.23 0.3170 0.0053 5.27
32 2.45 0.0191 7.89 0.8427 0.0071 6.02
64 15.66 0.0670 7.76 1.9610 0.0080 7.21

Table 1
Performance of the EL-SigLSTM and EL-NRDE models on solving the heat PPDE (5.5).

5.3. Black-Scholes Equation with Lookback option. Following [40], we
consider the classical Black-Scholes model with a path-dependent payoff. Given a d-
dimensional Brownian motion W , a risk-free rate r and a symmetric positive-definite
covariance matrix Σ = LU , where LU are the lower-upper (LU) decomposition of Σ.
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Fig. 4. Error plots of EL-NRDE (left) and EL-LSTM (right) models for solving Eqn. (5.5) on
the whole spacial domain when t = 0 and d = 32.

Fig. 5. Mean ± standard deviation of relative error from the EL-NRDE model for solving Eqn.
(5.5) among different dimensions (left) and at different times when d = 32 (right).

Fig. 6. True solutions of heat PPDE (5.5) and their approximations generated by the EL-
NRDE model on five different paths at d = 32 (left) and d = 64 (right).

The price process of risky assets X ∈ Rd in the market under the risk-neutral measure
is the geometric Brownian motion with the following SDE

(5.7) dXi(t) = rXi(t) dt+ σiXi(t)
∑
j

Lij dW j(t),
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Abs.err (×10−2) Rel.err (×10−3) Memory (GIB)

SigLSTM (3.65± 0.18) (8.84± 0.45) 4.75
NRDE (2.58± 0.15) (5.95± 0.31) 3.63

Table 2
Performance of SigLSTM model and NRDE model on Black-Scholes model driven by a four-

dimensional Eqn. (5.8).

where σi is the volatility of asset i. For the final payoff u(T,X[0,T ]) = g(X[0,T ]),
consider the lookback path-dependent payoff

g(X[0,T ]) = max
t∈[0,T ]

[∑
i

Xi(t)−
∑
i

Xi(T )

]
≥ 0.

Define Σ∗ ∈ Rd×d where Σij
∗ = σiXiLij , then corresponding PPDE should be,

(5.8)

{
∂tu (t,X) + r(∂xu− u) + 1

2 tr(Dxxu(t,X)ΣT
∗ Σ∗) = 0

u
(
T,X[0,T ]

)
= g

(
X[0,T ]

) .

In the experiment, we take r = 5%,Σii = 1, T = 1,Σij = 0, for i ̸= j. Following [40],
the initial values X(0) are sampled from a lognormal distribution

X(0) ∼ exp
((
µ− 0.5σ2

)
τ + σ

√
τξ
)
,

where ξ ∼ N (0, 1), µ = 0.08, τ = 0.1.
The setting for time discretization is the same as Section 5.2. The network param-

eters are documented in Appendix C. We report performances from our model as well
as the baselines for the low-dimensional case and high-dimensional case separately.

5.3.1. Low dimensional case. We demonstrates the performance in the case
of low-dimensionality of X at d = 4. The learning task adopted in this example is
Method 1 in Section 3.1 because we are using the default model without embedding,
and we try to keep the whole network structure as simple as possible. We compare the
prediction accuracy and memory efficiency between the baseline, say, the SigLSTM
model, and our NRDE model. As shown in table 2, the NRDE model outperforms the
SigLSTM model in terms of accuracy, standard deviation and memory efficiency. In
particular, the NRDE model reduces 30% of the error from SigLSTM. Fig. 7 visualizes
the model predictions of two models, where the reference solution is obtained by the
Monte Carlo simulation.

5.3.2. High dimensional case. We now illustrate the scalability of our model
with an embedding layer, say, the EL-NRDEmodel, under an increased dimensionality
of the underlying process X. As shown in Table 3, the dimension reduction feature
is crucial when dealing with high dimensional PPDE: without the embedding, it is
impossible to incorporate the signature feature via the SigLSTM model proposed in
[40]. The EL-NRDE model reduces the approximation error by 10% − 15% and it
only consumes 63% of memory used by EL-SigLSTM model during the training of
d = 64 experiment. Fig. 8 compares the relative error obtained by the two models
among different dimensions. Fig. 9 visualizes the ground truths given by Monte-Carlo
simulations and the corresponding outputs of the EL-NRDE model.
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Fig. 7. Comparison between outputs of SigLSTM and NRDE models on two different paths
driven by (5.5), the ”ground truth” here is given by the Monte-Carlo simulation.

SigLSTM EL-SigLSTM EL-NRDE

Dim Abs.err Rel.err Memory Abs.err Rel.err Memory

8 NA 0.0344 0.0063 3.45 0.0296 0.0052 2.90
16 NA 0.0457 0.0068 6.94 0.0431 0.0063 3.51
32 NA 0.0596 0.0077 7.88 0.0487 0.0062 6.18
64 NA 0.0823 0.0086 9.32 0.0688 0.0076 5.91

Table 3
Performance of LSTM and hybrid NRDE model on BS model (5.8).

5.4. Heston Model with an autocallable option. The last experiment, bor-
rowed from [40], is the Heston model with stochastic volatility, following the SDE

dS(t) = µS(t) dt+
√
V (t)S(t) dW s(t)

dV (t) = κ(m− V (t)) dt+ η
√

V (t) dW v(t),
(5.9)

where S is the stock price, V is the volatility and W s and W v are independent
Brownian motions. We take µ = 0.05, κ = 0.8, m = 0.3 and η = 0.05 and consider an
autocallable payoff. Given the price information S[0,T ],observation times t1 ≤ · · · ≤
tN1

, a pre-defined barrier value B, premature payoff Q1, . . . , QtN1
and a redemption

payoff q(·), the discounted payoff of the univariate autocallable option is given by:

g
(
S[0,T ]

)
=

{
Qj if S(ti) < B ≤ S(tj) ∀i < j

q
(
S(ttN1

)
)

if S(tj) < B ∀j
.

Now denote X = (S, V )T ,W = (W s,W v)T , the Heston model (5.9) can be rewritten
in terms of X(t):

dX(t) =

(
µS(t)

κ(m− V (t))

)
︸ ︷︷ ︸

b

dt+

[ √
V (t)S(t), 0

0, η
√

V (t)

]
︸ ︷︷ ︸

σ

dW (t),

with the corresponding PPDE

(5.10) ∂tu(t,X) + b∂xu(t,X) +
1

2
tr
[
Dxxu(t,X)σTσ

]
− µu(t,X) = 0
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Fig. 8. Mean and standard variation of relative errors obtained by the EL-NDRE model and
the EL-SigLSTM model among different dimensions for solving Eqn. (5.8).

Fig. 9. Predictions of Black-Scholes PPDE solutions of (5.8) on five different underlying paths
given by EL-NRDE model and the Monte-Carlo simulation for d = 32(left) and d = 64 (right).

Following [40], we consider a one-dimensional case only, where S is the stock price of
one asset, with a learning task as Method 1. The parameters of the autocallable option
is presented in Appendix C. The table 4 shows that the NRDE model consistently
outperforms the LSTM model, obtaining a relatively smaller approximation error and
training loss, at the cost of about 25% of memory. As Heston model is a more-
involving model, both NRDE and SigLSTM may require more computational time to
train compared with the linear SDE case in Section 5.3 as expected. Fig. 10 illustrates
the approximation result of the NRDE solver over the entire time interval driven by
a simulated (S, V ).



A NRDE-BASED MODEL FOR PATH-DEPENDENT PDES 17

Abs.err (×10−2) Training loss (×10−3) Memory (GIB)

NRDE 1.45± 0.32 8.27 0.524
SigLSTM 1.78± 0.43 12.38 2.25

Table 4
Performance of LSTM model and NRDE model on the Heston model (5.10).

Fig. 10. The illustration of the approximation of the NRDE model on one-dimensional Heston
model (5.10), where the reference solution is obtained via the Monte-Carlo (MC) simulation.

6. Conclusion. In this paper, we propose an efficient neural-network-based
model for solving high-dimensional PPDEs by encoding though a NRDE network
the information of underlying random paths of PPDE and introducing an embed-
ding layer for dimension reduction. Through various numerical examples, we present
the significant performance of our model in accurately approximating the solution
of the PPDE while demonstrating superior memory efficiency. In each experiment,
our model consistently outperforms the baseline model, showcasing its remarkable
capabilities.

In future research, it would be valuable to explore the theoretical properties of
the NRDE solver in more depth. This could involve analyzing its consistency, speed of
convergence, and stability. Furthermore, there is potential to enhance our approach
by integrating advanced numerical schemes for simulating SDEs into our framework.
Currently, we have relied on the Euler-Maruyama method for simulating underlying
SDEs in the numerical section. However, for SDEs with irregular coefficients, this
method may induce divergence issue.
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Appendix A. The (log-)signature of a path. In this section, we expand
the content in Section 2.3 by defining the path signature in terms of the formal power
series and providing the mathematical formula for a truncated log-signature. To help
readers to understand the concept well, we will also give an example of the signature
and log-signature of a path.

The signature in formal power series. Let I = {1, . . . , d} be an index set
of size d, (i1, . . . , ik) with i1, . . . , ik ∈ I be some multi-indexes, and e1, . . . , ed be d
formal indeterminates. Then the algebra of non-commuting formal power series in d
indeterminates is the vector space of all series of the form

(A.1)

∞∑
k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ikei1 . . . eik , λi1,...,ik ∈ R.

Note that ”non-commuting” means that e1e2 and e2e1 are distinct. The tensor algebra
of Rd is the space of formal power series. The addition and scalar multiplication in
the vector space are naturally defined as ∞∑

k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ikei1 . . . eik

+

 ∞∑
k=0

∑
i1,...,ik∈{1,...d}

µi1,...,ikei1 . . . eik


=

∞∑
k=0

∑
i1,...,ik∈{1,...d}

(λi1,...,ik + µi1,...,ik) ei1 . . . eik

and

a

 ∞∑
k=0

∑
i1,...,ik∈{1,...d}

λi1,...,ikei1 . . . eik

 =

∞∑
k=0

∑
i1,...,ik∈{1,...d}

aλi1,...,ikei1 . . . eik

We can also define product between monomials (ei1 . . . , eik) and (ej1 , . . . , ejM ) as

(A.2) ei1 . . . eik ⊗ ej1 . . . ejm = ei1 . . . eikej1 . . . ejm .

One can immediately see how the formal power series fits in with how we define the
signature of the path X : [0, T ] := J → Rd. Again we have an index set with d
elements, and the monomials correspond to the order of our iterated integral

(A.3) S(X)i1,...,ikJ :=

∫
0<tk<T

· · ·
∫
0<t1<t2

dXi1
t1 . . . dX

ik
tk
,

It is easy to verify the recursive relation

(A.4) S(X)i1,...,ikJ =

∫
a<tk<T

S(X)
i1,...,ik−1

[0,tk]
dXik

tk

and S(X)i1,...,ikJ is an element of Xk
J defined in (2.6). Then we have the formal power

series representation of the signature as follows

(A.5) SJ(X) =

∞∑
k=0

∑
i1,...,ik∈{1,...d}

S(X)i1,...,ikJ ei1 . . . eik .
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Example A.1. To demonstrate how to compute terms in SJ(X), let us consider a
two-dimensional path Xt defined on interval J := [0, 1] which can be parameterized
by

X(t) =
{
X1(t), X2(t)

}
=
{
t, t2

}
dX(t) =

{
dX1(t),dX2(t)

}
= {dt, 2tdt}.

In this case the index set is I = {1, 2} and the multi-index set is

W = {(i1, . . . , ik) | k ≥ 1, i1, . . . , ik ∈ {1, 2}} .

Then we can compute the terms in SJ(X) simply as:

S(X)1J =

∫
0<t<1

dX1(t) =

∫ 1

0

dt = 1,

S(X)2J =

∫
0<t<1

dX2(t) =

∫ 1

0

2t dt = 1,

S(X)1,1J =

∫ ∫
0<t1<t2<1

dX1(t1) dX
1(t2) =

∫ 1

0

(∫ t2

0

dt1

)
dt2 =

1

2
,

S(X)1,2J =

∫ ∫
0<t1<t2<1

dX1(t1) dX
2(t2) =

∫ 1

0

2t2

(∫ t2

0

dt1

)
dt2 =

2

3
,

S(X)2,1J =

∫ ∫
0<t1<t2<1

dX2(t1) dX
1(t2) =

∫ 1

0

(∫ t2

0

2t1dt1

)
dt2 =

1

3
,

S(X)2,2J =

∫ ∫
0<t1<t2<1

dX2(t1) dX
2(t2) =

∫ 1

0

2t2

(∫ t2

0

2t1dt1

)
dt2 =

1

2
,

S(X)1,1,1J =

∫ ∫ ∫
0<t1<t2<t3<1

dX1(t1) dX
1(t2) dX

1(t3) =
1

6
,

. . .

Based on the calculation above, we have that S2
J(X) = (1, 1, 1, 1/2, 2/3, 1/3, 1/2).

Now if we plug in S2
J(X) into equation (2.7) and truncated to degree of 2, we get

log(S2
J(X))

= 0 + e1 + e2 +
1

2
e1 ⊗ e1 +

2

3
e1 ⊗ e2 +

1

3
e2 ⊗ e1 +

1

2
e2 ⊗ e2

− 0− 1

2
(e1 + e2)

⊗2

= 0 + e1 + e2 + 0e1 ⊗ e1 +
1

6
e1 ⊗ e2 −

1

6
e2 ⊗ e1 + 0e2 ⊗ e2

= e1 + e2 +
1

6
[e1, e2],

where [e1, e2] := e1 ⊗ e2 − e2 ⊗ e1 and in the last line we change the basis of T ((E))
to the basis of the subspace of T ((E)) where log-signature lives5, ie,

{e1, e2, [e1, e2], [e1, [e1, e2]], [e2, [e1, e2]], . . .}.

5Indeed a log-signature takes value in the space of Lie series generated by E [27].
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In summary, Logsig2(X) = (0, 1, 1, 1/6). Note that by elementary calculus, one can
verify that

S(X)i,iJ =
1

2
(S(X)iJ)

2 for i ∈ {1, 2}

and

S(X)i,jJ − 1

2
S(X)iJS(X)jJ =

1

2
(S(X)i,jJ − S(X)j,iJ ) for i, j ∈ {1, 2} and i ̸= j.

Thus for the 2−dimensional path X we have that

Logsig2(X) =
(
0, S(X)1, S(X)2,

1

2
(S(X)1,2 − S(X)2,1)

)
.

The dimension of truncated log-signature. The length β(d,N) of truncated
log-signature LogsigN (X) is given by

β(d,N) =

N∑
k=1

1

k

∑
i|k

µ

(
k

i

)
di,

where µ is the Mobius function. Here i|k means i divides k and the Mobius function
is defined as

µ(n) =


1, if n = 1;

(−1)k, if n is product of k primes;

0; if n has a sqaure factor greater than 1.

For example, if d = 2 and N = 2, then β(2, 2) = 3, which is consistent with Example
A.1.

Appendix B. Adjoint state method for efficient gradient calculation.
In this Section, we present the derivation of the adjoint state method that is used
in the training of the NODE-type network via the Lagrangian multiplier approach
[35, 23].

The question is that, given our model û(t; θ) and the loss functional L(û; θ), how
to calculate the gradient dL

dθ efficiently. For the NODE network we have the following
setup,

(B.1)
dû

dt
= f̂(û, t; θ), û(t = 0) = u0,

where û(t; θ) ∈ RN is the output of the model, f̂ ∈ RN is the derivative characterized
by some neural network and θ ∈ RP is the trainable parameter. Calculating û(t; θ) is
straightforward through a suitable numerical scheme like the Runge-Kutta or Euler

method. If define the loss function as L(û, θ) =
∫ T

0
g(u; θ) dt where g ∈ R, then one

can rewrite the gradient of the loss with respect to θ as

(B.2)
dL

dθ
=

∫ T

0

d

dθ
g(û; θ) dt =

∫ T

0

(∂g
∂θ

+
∂g

∂û

dû

dθ

)
dt,

and our goal is to calculate dû
dθ in (B.2) in a memory-efficient way. We first frame an

optimization problem as follows

min
θ

L(û; θ) subject to f̂(û, t; θ)− dû

dt
= 0.
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This is an equality-constrained optimization where we can use Lagrangian. Let λ(t) ∈
RN be a continuous lagrangian multiplier, then we have

L := L(û; θ) +

∫ T

0

λ(t)T (f̂ − dû

dt
)dt =

∫ T

0

(
g(û; θ) + λ(t)T (f̂ − dû

dt
)
)
dt.

Since for any θ ∈ RP , f̂ − dû
dt = 0, it holds that dL

dθ = dL
dθ . The objective now is to

calculate

dL
dθ

=

∫ T

0

(
∂g

∂θ
+

∂g

∂û

dû

dθ
+ λ(t)T

(
∂f̂

∂θ
+

∂f̂

∂û

dû

dθ
− d

dt

dû

dθ

))
dt

=

∫ T

0

(
∂g

∂θ
+ λ(t)T

∂f̂

∂θ
+

(
∂g

∂û
+ λ(t)T

∂f̂

∂û
− λ(t)T

d

dt

)
dû

dθ

)
dt.

As we have incorporated the constraint into the object, the value of λ(t) can vary so
the formula above can be further simplified. For example, one can choose appropriate
λ(t) such that the coefficient in front of term dû

dθ becomes zero. Note that by using
integration by part,∫ T

0

−λ(t)T
d

dt

dû

dθ
dt =

[
−λ(t)T

dû

dθ

]T
0

+

∫ T

0

(
dλ(t)

dt

)⊤
dû

dθ
dt.

Thus dL
dθ can be simplied to

dL
dθ

=

∫ T

0

(
∂g

∂θ
+ λ(t)T

∂f̂

∂θ
+

(
∂g

∂û
+ λ(t)T

∂f̂

∂û
+

(
dλ(t)

dt

)T
)

dû

dθ

)
dt

+ λ(0)T
dû

dθ
(0)− λ(T )T

dû

dθ
(T ).

To set the coefficient before dû
dθ to zero we have the following backward linear system

of ODEs of λ(t):

(B.3)
dλ

dt
= −

(
∂f̂

∂û

)T

λ−
(
∂g

∂û

)T

, with λ(T ) = 0.

In summary, to calculate dL
dθ , one shall use an appropriate ODE solver to first solve

the forward ODE (B.1) then the backward one (B.3). By doing so we are left with
the gradient

dL
dθ

=
∂g

∂θ
+ λ(t)T

∂f̂

∂θ
+ λ(0)T

du0

θ
,

where û(0) = u0 as the initial condition. The gradient equation can be solved using

numerical methods such as quadrature. For values like ∂f̂
∂u ,

∂g
∂u ,

∂g
∂θ ,

∂f̂
θ , we can find

it analytically or using automatic differentiation. Note that when we increase the
number of trainable parameters θ, the dimensionality of the two ODEs that need to
be solved is unchanged, meaning that the computational cost scales constantly with
P .
For our NRDE model, the only variation is that for hidden state Z on some time
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interval [t0, t], if we have time partition t0 = r0 < r1 < · · · < rm = t , then

Z(t) = Z(t0) +

∫ t

t0

ĥ(θ,X,Z(s), s) ds(B.4)

ĥ(θ,X,Z(s), s) = f̂(θ, Z)
LogSigdepthri,ri+1

(X)

ri+1 − ri
,(B.5)

for s ∈ [ri, ri+1]. This model can be solved via the NODE. To get the desired output
dimension for the NRDE model, one just need to add a final linear layer to Z. Thus
it still enjoys the memory-efficient advantage described above.

Appendix C. Numerical experiments. We include the full breakdown of our
experiment results here. For the hyperparameter of an NRDE network, ”h1” denotes
the dimension of the hidden state Z described in equation (B.4), ”# layers” and
”h2” the number of layers and size of hidden neurons in each layer of the feedforward
network that characterize f̂(θ, Z) in equation (B.5), ”depth” the depth of log-signature
and ”ODE solver” the type of ODE solver we use for solving ODE (B.4). If an
embedding layer is added to the NRDE network, ie, if we train an EL-NRDE model,
d2 denotes the reduced dimension. In Table 7, we collect the parameters of the
autocallable option we considered.

d d2 h1 # layers h2 depth ODE solver Rel.err # parameters

8 2 15 6 30 4 Midpoint 0.0069 33548
16 2 15 6 30 2 Midpoint 0.0053 9382
32 4 15 6 30 2 Midpoint 0.0071 19066
64 4 15 6 30 2 Midpoint 0.0081 20730

Table 5
Network parameters used for EL-NRDE model in heat PPDE (5.5).

d d2 h1 # layers h2 depth ODE solver Rel.err # parameters

8 4 25 6 30 2 Midpoint 0.0054 27616
16 4 25 6 45 4 Midpoint 0.0063 479734
32 6 25 6 45 4 Midpoint 0.0062 1685174
64 2 35 6 45 2 Midpoint 0.0076 117932

Table 6
Network parameters used for EL-NRDE model in Black-Scholes PPDE (5.8).
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Parameter Value

Terminal time T = 0.5
Barrier B=1.02
Observation dates t1 = 1

6 , t2 = 1
3

Premature payoffs Q1 = 1.1, Q2 = 1.2
Redemption payoff q(S(T )) = 0.9S(T )

Table 7
Parameters of the autocallable option.


	Introduction
	Preliminaries
	Functional Itô formula
	Feynman-Kac formula for functionals
	Path signature and log-signature for time series data

	Learning PPDE solution via a supervised learning approach
	Method 1: learning the solution as a conditional expectation
	Method 2: learning both the PPDE solution and path-dependent derivative

	Network architecture for the PPDE solution
	The NRDE network
	Using embedding for dimension reduction

	Experimental results
	Experimental setup
	Training procedure
	Hyperparameters
	Packages
	Metrics on test sets

	Heat Equation
	Black-Scholes Equation with Lookback option
	Low dimensional case
	High dimensional case

	Heston Model with an autocallable option

	Conclusion
	References
	Appendix A. The (log-)signature of a path
	Appendix B. Adjoint state method for efficient gradient calculation
	Appendix C. Numerical experiments

