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Abstract: This study presents a framework for classifying a wooden mannequin’s poses using
a single-photon avalanche diode (SPAD) array in dynamic and heterogeneous fog conditions.
The target and fog generator are situated within an enclosed fog chamber. Training datasets
are continuously collected by configuring the temporal and spatial resolutions on the sensor’s
firmware, utilizing a low-cost SPAD array sensor priced below $5, consisting of an embedded
SPAD array and diffused VCSEL laser. An extreme learning machine (ELM) is trained for rapid
pose classification, as a benchmark against CNN. We quantitatively justify the selection of nodes
in the hidden layer to balance the computing speed and accuracy. Results demonstrate that ELM
can accurately classify mannequin poses when obscured by dynamic heavy fog to 35 cm away
from the sensor, enabling real-time applications in consumer electronics. The proposed ELM
achieves 90.65% and 89.58% accuracy in training and testing, respectively. Additionally, we
demonstrate the robustness of both ELM and CNN as the fog density increases. Our study also
discusses the sensor’s current optical limitations and lays the groundwork for future advancements
in sensor technology.
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Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Identifying objects obstructed by fog and smoke is crucial for safe driving, rescue and security
in changing weather. Active sensing systems based on single-photon detectors are gaining
rapid attention due to their outstanding single-photon sensitivity despite being used in scattering
environments. In modern time-resolved sensing systems, the time-of-flight (ToF) of detected
photons is recorded by a time-correlated single-photon counting (TCSPC) module to generate
histograms. Single-photon detectors with raster scanning have been employed in challenging
applications, such as photon-efficient imaging [1–3] non-line-of-sight imaging [4–6], long-range
imaging [7,8] and time-resolved biomedical imaging [9,10]. Also, wide-field single-photon
avalanche diode (SPAD) arrays discard scanning mechanisms and are efficient detectors for
fluorescence lifetime reconstruction [11,12] and sensing through scattering for diffuse correlation
spectroscopy [13]. In these applications, deep learning is emerging in processing histograms or
photon-counting data to retrieve critical parameters, such as 3D geometries, fluorescence lifetime,
and blood flow index.

Dehazing obscuration using SPADs is challenging, as dense aerosols severely affect the
temporal properties and amplitudes of emitted laser and returned photons [14,15]. Exiting
systems of active time-resolved sensing through obstacles rely on high-precision SPAD arrays,
powerful lasers, scanners, and complex optical setups [16–19] exhibiting high cost and inadequate
portability. Low-cost SPADs sharing the same essential technologies as high-precision SPADs
have been rolled out to the market in recent years, exhibiting coarse spatial and temporal resolution.
The compact module is promising for mobile devices in extreme environments, such as drones,
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for rescue tasks in fog and smoke. Also, estimating invisible poses is crucial for human-computer
interaction when facial and body images are unavailable.

Although deep learning achieves superior accuracy and speed performances compared with
conventional fitting and statistical methods for SPADs-based computational imaging and sensing,
the generalization is the issue, meaning the accuracy is susceptible to calibration on different
setups and instruments. The deep neural networks are likely to be re-trained. Extreme learning
machine (ELM) [20] is competent at processing 1D signals and saves much time during the
re-training process while maintaining accuracy. Training and inference of ELM and its variance
[21] have been proved hardware-friendly and implemented on system-on-chips [22].

Therefore, we integrated compact ELM and a customer SPAD array (VL53L8CH from
STMicroelectronics,< $5) to explore the sensing capabilities further. In this study, we aim to
classify the poses of a mannequin through dense, dynamic fog.

To our knowledge, this is the first study to utilize a low-cost SPAD array for object classification
in dynamic fog conditions. The contribution of this work is threefold:

1. We employed a low-cost commercial SPAD array to classify object poses accurately
within a dynamic and heterogeneous fog chamber. Our approach includes developing both
fast-training and fast-inference ELM models, as well as a high-accuracy CNN, catering
to various scenarios with different latency and accuracy requirements. ELM and CNN
achieve inference speeds of 0.017 ms and 0.54 ms per classification, respectively, for a
mannequin 35 cm away from the sensor.

2. We evaluated how the number of neurons in the hidden layer affects latency and accuracy,
providing a parameterized and flexible solution to meet varying requirements for speed
and accuracy.

3. The performances of ELM and CNN classification were assessed. We presented accuracy
metrics for each pose and investigated the influence of the fog density on the accuracy of
ELM and CNN.

2. Related work

2.1. Obscuration dehazing using high-precision SPAD arrays

SPAD arrays have been utilized for sensing through fog, employing data-driven and statistical
algorithms. Statistical models of pixel-wise dense-fog-corrupted histograms have been introduced
[23], wherein depth information can be reconstructed by subtracting the background distribution
from the noisy histogram for a mannequin positioned 57 cm from the sensor. A high-precision
commercial SPAD array with 32× 32 pixels was employed to acquire histograms. The same SPAD
array was utilized to capture frames of intensity data [24]. With known characterized parameters,
a Monte Carlo forward model was proposed to simulate photon propagation through the diffuser
and generate synthetic data for training a convolutional neural network for classification. A SPAD
array with the same spatial resolution was used for sensing through a 10-meter atmospheric
obscurant, covering a total distance of 35 meters, to reconstruct depth images using a statistical
algorithm [16]. Joyce et al. [17] developed a 3D Flash SPAD array with 32× 32 resolution and
reconstructed depth images of military targets through camouflage nets or fog (23 meters long in
a tunnel). A linear SPAD with 16× 1 pixels and a scanner were employed for underwater depth
reconstruction [25] through a 1.65-meter-long water tank. Sang and Tsai proposed histogram-
based [18] and point cloud-based [19] defogging algorithms using a SPAD array. Tobin et al.
used a single-pixel SPAD and monostatic scanning transceiver to reconstruct intensity and depth
images of objects occluded by different obscurants [26].
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2.2. Sensing using low-cost SPAD arrays

High-resolution depth images were successfully retrieved using transient histograms and deep
learning from a low-cost SPAD array [27]. Transient histograms were also used to recover the
planar geometry and albedo of planar surfaces [28]. A portable scanning module was coupled
with a low-cost SPAD array to generate high-resolution depth images and track the position of
non-line-of-sight objects [29]. The histograms were also used to classify materials with different
diffusion properties. Histograms from a low-cost SPAD array were fused into a deep neural
network with high-resolution RGB and depth images from a conventional ToF to reconstruct
distinct 3D human skeletons [30]. Another low-cost SPAD was integrated into a system-on-chip
on a drone for accurate moving object sensing [31].

3. Data acquisition and pre-processing

The sensing platform, depicted in Fig. 1(a), features a SPAD array mounted on an off-the-shelf
evaluation board. The sensor is positioned 1 cm away from a fog chamber measuring 90× 45× 50
cm3; the setup includes a hole in the chamber allowing laser light to enter and photons to return
from the chamber. The SPAD sensor was configured as histogram output mode. The sensor’s
spatial resolution was configured as 8× 8, capturing data from all pixels. Histograms from pixels
other than the (0, 0) index were subsampled and aggregated to create a bucket pixel. Due to
memory constraints, the number of time bins for the aggregated histogram can be configured
up to 128, although we set it to 50 to cover the length of the chamber. Each bin represents a
time interval of ∼250 ps (equivalent to 37 mm). The integration time was configured to 5 ms.
A P-NUCLEO-53L5A1 evaluation board equipped with a 32-bit microcontroller was used to
execute the compiled code and configure the sensor. The compiled code was transferred to
the board via an I2C interface. Subsequently, the aggregated histogram was transmitted from
the sensor to the computer via UART, where it was received by a Python script and saved as
training and test datasets. The data transfer speed via UART was approximately 40 histograms
per second. The SPAD array’s critical parameters in this experiment are summarized in Table 1.
Upon initiating data acquisition, the ultrasonic fog generator and fan are enabled to generate
dynamic fog. The fog density increases as data acquisition is enabled.

Table 1. Specifications of the sensor and
configured parameters in this work

Parameter’s name Value

Non-configurable field

Laser wavelength 940 nm

Laser FWHM 1.6 nm

FoV 45°× 45°

Configurable field

# time bins 50

# merged pixels 63

# merged time bins 0

Time-bin width ∼250 ps

Index of the bucket pixel (0, 0)

Ranging frequency 15 Hz

Integration time 5 ms

Spatial resolution 8× 8

# sensed targets/pixel 1
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Fig. 1. (a) Platform overview of active sensing through fog: The diffused laser from the
embedded VCSEL illuminates the fog chamber through a small window that preserves
a sufficient angle for both emitted laser and returned photons. Decoded histograms are
transferred back to a PC, which runs an ELM model for pose classification. (b). Ten classes
of mannequin pose, where the number in each image is the index of each class.

The fog density increases as the number of aggregated histograms increases. We acquired
110,000 aggregated histograms (10,000 histograms for each class) to train our neural networks.
The corresponding actual classes are enumerated in Fig. 1(b). As we aim to evaluate the
accuracy performance of our algorithm for the sensor under different fog densities, we split
11,000 histograms, ranging from sparse to dense fog, for testing, while the remaining 99,000
histograms were used for training. All the histograms were normalized between [0, 1]. For CNN,
110,000 histograms were divided into 80,000 for training, 20,000 for validation, and 10,000 for
testing. Figure 2(a) and (b) show aggregated histograms and corresponding intensity images.
Intensity images were up sampled to 25× 25 using OpenCV for better visualization. In Fig. 2(a),
the left image depicts histograms in the fog-free condition, where the peak indicates the end of
the chamber. The right image shows the histogram from the object-free, dense fog condition.
Figure 2(c) shows an example (Class-2) describing how the histogram and intensity images
change as the frame number increases. The peak of the histogram shifts to smaller time-bin
indices as the frame (fog density) increases, indicating that more photons are reflected from the
fog. Figure 2(d) depicts the corresponding real-time intensity images. When the frame number
is 9,500, fog reflected most photons and target information was rarely distinguishable from the
histogram and intensity image. Furthermore, compared with the no-object condition with dense
fog (the right image in Fig. 2(a)), more photons are reflected due to the object’s presence despite
dense fog. Visualization 1 visualizes the intensity video of the mannequin (Class-2) in fog as the
fog density increases.

https://doi.org/10.6084/m9.figshare.25599555
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Fig. 2. (a) Aggregated histograms and (b) corresponding normalized up-sampled intensity
images of the 100th frame and the 9000th frame. (a) No object scenarios without fog (left)
and with (right) dense fog. (c) and (d), histograms and intensity images of the 1000th, 3000th,
5000th, 7000th, 9000th, and 10000th frame. Red arrows indicate the mannequin and the
chamber’s end.

4. Neural networks for classification

4.1. ELM training details

ELM is a back-propagation-free single-layer feedforward network that uses matrices’ pseudo
inversion for training. Compared with neural networks using partial differentiation for training,
ELM does not suffer from over-fitting issues, and trains much faster. ELM excels in processing
one-dimensional time-series-like data, like EEG [32] and ECG [33]. Our previous work
shows ELM is an accurate and robust architecture for fluorescence lifetime reconstruction from
histograms using a time-resolved sensor [34]. Inspired by our earlier work, the number of input
nodes equals the number of time bins in the histogram, which is 50 in this ELM. We set the
number of nodes in the hidden layer (L) to 2,500 to balance the trade-off between latency and
accuracy for training and inference. Sigmoid () is the activation function as it yields better training
accuracy than other activation functions (relu(), sin(), hardlim()). As shown in Fig. 3(a), there
are 11 nodes at the output layer, generating predicted results. A max() function was applied to
the output vector to generate the maximum value, indicating the predicted class.

In training datasets, we define H pairs of vectors that are xi = [xi1, xi2, . . . , xim]
T ∈ Rm and

yi = [yi1, yi2, . . . , yin] ∈ R
n, incicating the ith input vector (histograms) and the ith target vector

(ground truth classes), respectively. The output matrix of the hidden layer can be defined as:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
φ(w1 · x1 + b1) · · · φ(wL · x1 + bL)

...
. . .

...

φ(w1 · xH + b1) · · · φ(wL · xH + bL)

⎤⎥⎥⎥⎥⎥⎥⎥⎦H×L

, (1)

where wl = [wl1, wl2, . . . , wlm]
T , bl = [b1, b2, . . . , bL]

T , and l= 1, . . . , L are random values
between the input nodes and the hidden layer. β is the weight matrix to train, connecting the
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Fig. 3. Performing one-batch histogram inference using (a) ELM and (b) CNN architecture
for pose inference: (a). Histograms from grey-coloured pixels are sub-sampled and merged
with the yellow-coloured pixels. The aggregated histogram is then fed into the trained ELM
for pose classification. (b). Numbers in 1D Conv blocks indicate kernel size and stride, the
size of the feature map is presented after each RELU block.

hidden layer and the output layer, defined as:

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
βT

1
...

βT
L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
β11 · · · β1n
...

. . .
...

βL1 · · · βLn

⎤⎥⎥⎥⎥⎥⎥⎥⎦L×n

. (2)

We need to minimize the error in the ridge loss function to learn β with a dimension of L× n:

arg min
β∈RL×n

| |Aβ − Y | |2, (3)

where the A is the matrix composed of the activation functions with dimensions H×L; Y is a
matrix with dimensions H× n containing true class labels:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
yT

1
...

yT
H

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
y11 · · · y1n
...

. . .
...

yH1 · · · yHn

⎤⎥⎥⎥⎥⎥⎥⎥⎦H×n

. (4)

Through solving the loss function, we can obtain the matrix β by β = A†Y. The pseudo matrix
inversion A† can be resolved by singular value decomposition [20]. Once β is retrieved, we can
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Fig. 4. CNN’s (a) loss curves and (b) accuracy curves of training and validation

use it to execute forward inference and compare with true labels to obtain training accuracy. We
trained and tested ELM on an Intel i7-13700 CPU, taking 14.08 s and 0.13 s without parallelism
optimization. The training and test accuracy are 90.65% and 89.58%.

4.2. CNN training details

A CNN was trained to serve as a benchmark for the proposed ELM. It was implemented using
PyTorch and trained on an NVIDIA RTX A1000 GPU with a batch size of 256, taking 803.72
seconds. The total number of epochs was pre-defined as 300. The training ceased at the 186th

epoch. The learning rate was set to 0.0001, with cross-entropy as the loss function and SGD as
the optimizer. The architecture of the CNN, depicted in Fig. 3(b), consists of five convolutional
modules, each followed by batch normalization modules and RELU activation functions. Instead
of fully connected layers, channel-wise convolution was employed after the Reshape module to
reduce computational complexity. To prevent overfitting, early stopping with 20 patient epochs
was applied. Figure 4 illustrates the accuracy curves and training and validation loss.

5. Performance evaluation

This section explains the reason for setting L= 2,500. Figure 5(a) and (b) present how L
determines the accuracy and the latency. L ∈ [100, 3,000] with an interval of 25. As L increases,
the accuracy improves fast between 100 and 300 and improves slowly after 300. The training

Fig. 5. Relations between L and (a) classification accuracy, and (b) time consumption in
training and test datasets
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and test accuracy is more than 90% when L exceeds 2,500. Figure 5(b) shows that L does not
significantly affect the test speed, yet the training latency grows relatively noticeable. L can be
flexibly selected according to latency or accuracy requirements. As overfitting of ELM only
occurs when L exceeds the required amount [35], we confirm that there is no overfitting in the
tested L because there is no accuracy degradation in Fig. 5(a).

For ELM, in Fig. 6(a), Class-1 and Class-5 show relatively lower accuracy than other classes.
For CNN shown in Fig. 6(b), only Class-5 presents low accuracy. CNN exhibits a generally
higher accuracy over 11 classes. Both ELM and CNN sometimes misclassify Class-5 to Class-6
and -8. Figure 5(a) indicates that ELM can approach CNN’s accuracy (92.60%) when L further
increases but sacrifice speed. Figure 6(c) and (d) illustrate how increasing frames (increasing fog
density) influence accuracy. The x-axis indicates the acquired number of frames (representing
increasing fog density), grouped by each set of 100 frames to calculate averaged accuracy within

Fig. 6. Confusion matrix of classification of (a) ELM and (b) CNN. Accuracy of (c) ELM
and (d) CNN while the frame increases (denser fog). t-SNE of (e) ELM and (f) CNN.
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these 100 frames. Apart from Class-1 and Class-5, most classifications achieve more than 80%
accuracy despite increasing the fog density. Similarly, in Fig. 6(b), most classifications are robust
to the increased fog density apart from Class-5. We used t-distributed Stochastic Neighbour
Embedding (t-SNE) to visualize the output clusters of ELM’s and CNN’s classification in test
datasets, shown in Fig. 6(e) and (f). Both ELM and CNN correctly separate the 11 classes.

6. Discussion and conclusion

This work compares simple ELM and widely used CNN for classifying mannequin poses through
dynamic heterogonous fog in a chamber. Eleven classes are accurately classified. We introduced
an end-to-end data processing pipeline, ranging from front-end continuous data collection to
neural networks’ post-processing. Evaluation results reveal that ELM presents a slightly lower
accuracy (89.58%) than CNN (92.60%), yet ELM’s training and inference are 57.08× and
317.64× faster than CNN, providing two solutions for accuracy and speed requirements. ELM
and CNN maintain high accuracy while fog density increases. ELM’s fast training speed allows
easy reconfiguration for other applications, such as human facial or pose recognition.

The limitation of the low-cost SPAD array is the severe signal attenuation to the range that
is longer than 40 cm. The diffused flash laser cannot propagate to long distances due to its low
power. Another limitation is the low spatial resolution and the limited number of time bins. The
low spatial resolution hinders high-resolution depth or reflectance imaging without scanning
modules. Jungerman et al. used another cheap SPAD array with 20× 15 and deep learning to
generate 640× 458 depth images [27]. In comparison, our 8× 8 SPAD array contains less spatial
information, making the ill-posed super-resolution problem harder to solve. Besides, single-pixel
SPAD with thousands of time bins have been proven feasible to generate high-resolution depth
images using deep learning [36], [37]. However, the low-cost SPAD sensor we used only
generates 128- and 18-time bins for an aggregated pixel or each pixel due to the memory
constraint. Next-generation low-cost SPAD arrays might make this possible if on-chip memory is
bigger to accommodate more time bins.

Besides pixel-wise histogram processing, ELM exhibits limitations when handling multi-
channel 1D time-series data and higher-dimensional data such as images and tensors. In the case
of multi-channel 1D data, dimensionality reduction techniques like principal or independent
component analysis are typically required, introducing additional computational overhead.
Reshaping and feeding 2D or 3D data into ELM may lead to the loss of spatial features and
accuracy degradation. Therefore, for next-generation consumer SPAD arrays with higher spatial
and temporal resolution, a hybrid deep neural network integrating 2D/3D CNN and ELM not
only obtains fast training but also yields high accuracy without pre-processing [38].
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