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A cluster of N bubbles (with N odd) arranged
in a channel in a zigzag staircase configuration is
modelled. A limiting case is considered in which the
staircase is set into motion by the application of a high
driving pressure. In this limit, foam films between
bubbles are predicted to become asymptotically flat.
Angles at which these flat films are oriented and also
bubble pressures are then determined. For N bubbles,
the film orientations and bubble pressures differ from
predictions for a staircase in the limit of an infinite
number of bubbles. Differences are significant towards
the downstream end of a staircase, but decay moving
upstream. However, the decay is gradual. Hence, a
very large N is needed for a finite staircase to align
its film orientations towards its upstream end with the
orientations in an infinite staircase.
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1. Introduction
There are several scenarios in daily life, in engineering and also in the environment, in which foam
films flow along narrow channels. These include foam within dishwashing sponges [1], foam
microfluidics [2], foam-based medical treatments [3,4], foam improved/enhanced oil recovery
[5–9], foam-based carbon capture [10,11] and foam-based soil/aquifer remediation [12–26]. One
reason that foam is used in applications like these is that it has surprisingly low mobility as it
moves along channels [27,28]: a multi-phase system containing foam films is more difficult to
drive along a channel than a single-phase fluid would be [29–33]. This then means that low-
mobility foam can displace other more mobile fluids from channels [5,8,20,21]. Ability to predict
the mobility of foam in channels is therefore of interest.

However, the mobility of foam in channels is sensitive to how foam is structured. Indeed,
mobility depends upon the manner in which foam films and the bubbles separating them are
arranged spatially [34]. This, in turn, has generated interest in studying flowing foams with
the bubbles and the films separating them arranged within channels in rather specific ways
[2,35–40]. Often foam flow applications seek to increase flow rate (i.e. to increase throughput)
by increasing an imposed driving pressure. Increasing driving pressure can cause flowing
foam films to change their shape [41,42] (details of resulting film shapes will be reviewed in
§2). Moreover, sufficiently high driving pressures might cause bubbles to rearrange spatially
within channels, losing contact with neighbouring bubbles and/or forming new contacts
[2,35,37,38,41,43–47].

As has been mentioned, studies are often focused on bubbles arranged spatially in certain ways
and the mobility associated with such arrangements [34,39]. If bubbles rearrange, however, the
original arrangement and the mobility determined specifically for it cease to be relevant. In view
of the above, there is interest in studying systems that can resist rearrangements even out to very
high flow rates, corresponding to driving the system at very high imposed pressures, but with
known mobility. Modelling-based studies have predicted that such situations can exist [42,45–47]
provided a bubble size is chosen compatible with channel size (again details of how bubbles and
films might be configured will be discussed in §2).

A widely studied case in this context, owing to the richness of behaviour that it admits, is
a three-bubble structure [45–47]: two of the bubbles are placed towards one side of a channel,
and the third bubble is placed towards the other side of it. In this three-bubble case, if the
given bubble arrangement is to remain viable even out to high imposed driving pressures,
it turns out that there are very specific constraints upon how foam films must be oriented
[45] (a sketch of the three-bubble structure and details of the film orientations are given in
figure 1).

Applications involving foam flow in channels need not however involve as few as three
bubbles being present. Instead, looking along various paths though a porous medium for
instance [28], one could encounter a train of many bubbles [2]. In view of that, the novel
contribution of the present work is to extend the aforementioned modelling-based studies
[45–47] so as to consider the orientations of fast flowing foam films in a channel in a situation
when many bubbles are present. Although film orientations in the limit of an infinite number
of bubbles can be found very straightforwardly [42], a surprising finding to be presented here
is that the case of a large but finite number of bubbles approaches that limit only rather
gradually.

The remainder of this work is laid out as follows. Section 2 describes background material in
order to set the context better, and explains how the novel contribution of the present work fits
within that context. Section 3 describes the general details of the mathematical model. Section 4
then explains how to formulate the model to treat the specific novel questions to be addressed
here. After that §5 analyses the model in the case of many bubbles. Section 6 then presents results
and §7 gives conclusions and an outlook. The appendix provides some electronic supplementary
material, S1–S6.
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Figure 1. Configuration of a three-bubble staircase driven from left to right due to a large imposed pressure. The orientation
angles of various films (all angles being measured relative to the vertical) are shown. There are constraints on angles at which
films meet each other and on angles at which films meet channel walls: as will be explained, these constraints can still be
satisfied even despite appearances to the contrary.

2. Background and novel contribution
This section begins by reviewing background material setting the context of this study (§2a). It
then goes on to describe the novel contribution to be made here (§2b).

(a) Context and background
A detailed discussion of the background to this work can be found in the literature [2,36,41–
48] and (for the benefit of readers unfamiliar with that literature) also in §S1 in the electronic
supplementary material. However, key ideas are highlighted in what follows.

The context for the present work is flow of bubbles in a Hele–Shaw cell [49] (see e.g. figure S1a
in the electronic supplementary material). The cell consists of two closely spaced plates, with a
narrow gap between them. Sidewalls define the width of the cell (which is assumed much greater
than the gap thickness), while the length of the cell is in turn much larger than the width. Bubbles
are assumed to be stacked in a so-called zigzag staircase arrangement [2,36], two bubbles across
the cell width, multiple bubbles along the cell length but just a single bubble across the narrow
gap thickness. Figure S1b in the electronic supplementary material is a view of the staircase from
above the cell, so the bubbles appear to be two-dimensional objects. What are actually sidewalls
of the cell appear in the two-dimensional view to be upper and lower channel walls (and will be
referred to as such).

The staircase structures studied here are comprised [50] of the bubbles themselves, films
between bubbles and also vertices at which three films meet. The foam is considered to be dry,
so films can be treated as one-dimensional lines (or more generally curves) and vertices can be
treated as points. In figure S1b, films meet the upper and lower channel walls at right angles
(assuming a narrow Hele–Shaw gap thickness [42,51]), whereas at vertices they meet at 2π/3
angles according to the so-called Plateau’s Laws [52,53]. Bubbles can be set into motion (from left
to right in the electronic supplementary material, figure S1) by the action of an imposed driving
pressure.
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The structure sketched in the electronic supplementary material, figure S1b (likewise
the electronic supplementary material, figure S2) is assumed to be a section of a so-called infinite
staircase, which extends arbitrarily far along the channel in both directions. It turns out that this
can propagate along the channel without deforming at all [42], at least in the limit considered here
(Hele–Shaw gap thickness much smaller than the channel width [42,51]).

In a moving staircase, there must be a pressure difference from bubble to bubble, with bubbles
upstream having higher pressure than those downstream. However, this pressure difference is
balanced by drag on the moving films between the bubbles. Films that are oriented obliquely
experience less drag than those that are oriented at right angles to channel walls [34]. Indeed,
in the electronic supplementary material, figure S1b, the zigzag films turn out to be oriented so
as to have exactly half the drag (per unit length of film) as the films that connect to the channel
walls. Hence, the pressure drop across each zigzag film is likewise half as large as across the films
connecting to the channel walls.

Even though studying the infinite staircase is instructive, in real systems, we only ever have a
finite number of bubbles flowing along. It is then of interest to know how many bubbles might
be necessary to approach infinite staircase behaviour. This has led in turn to studies on truncated
staircases rather than infinite ones [41,43–48]. Typically, truncated staircases with odd numbers of
bubbles are of interest [41,45,46]. This is because they exhibit topological asymmetry [47], i.e. they
have more bubbles (and consequently more films) on one side of the channel than the other. Since
drag is tied to moving foam films, this means that the side which has more films also potentially
experiences more drag.

Unlike what happens with the infinite staircase, having drag on the films causes a truncated
staircase to deform. If the number of bubbles is odd, then the bubbles on the side of the channel
with more films and hence typically more drag, tend to lag behind bubbles on the other side. If
the system is driven at sufficiently high pressure, bubbles can potentially lag so far behind that
they separate off from the rest of the structure [41,45–47]. In other words, bubbles rearrange and
exchange neighbours in a process known as a topological transformation or T1 transformation.

After a T1, typically individual bubbles that have lagged behind and separated off from the rest
of the structure remain fixed on a channel wall without propagating any further [41,47]. The rest
of the structure however can continue to propagate along the channel. The part of the structure
that continues propagating along however has a different mobility from the original structure
prior to the T1 (mobility here being defined as the ratio between imposed driving pressure and
propagation velocity) [47]. Given the important role of mobility (as already discussed in the
Introduction) in governing applications involving foam flow along channels, knowing about T1
transformations is likewise important.

One drastically truncated staircase system studied in the literature is the so-called simple lens
[41,43,44,48], consisting of a single bubble plus an additional film (see figure S3 in the electronic
supplementary material). If driven with high enough pressure, the simple lens always breaks
via a T1 [41]. High imposed pressure in this context means high relative to a typical capillary
pressure scale (the ratio between film tension and width of the Hele–Shaw channel). This is still
much smaller than atmospheric pressure, so bubbles remain incompressible. In two dimensions
as studied here, this implies bubbles conserve area even as they deform and undergo T1
transformations.

There is a contrast between an infinite staircase that does not break or even deform when it
is driven along a channel, whereas a simple lens always deforms and, at high enough imposed
pressure, eventually breaks. In an effort to find a bridge between the behaviours of the infinite
staircase and simple lens, a three-bubble system has been studied [45–47]. This consists of two
bubbles attached to the upper channel wall and one bubble attached to the lower channel wall.

The three-bubble system is found often to break up at high imposed pressure, but occasionally
it survives even in a high-pressure limit [45,46]. Whether the three-bubble system breaks up
or survives, depends primarily on the size of the bubbles, measured in two dimensions by
bubble areas that are conserved as has been mentioned (details can be found in the electronic
supplementary material, section S1c).
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What happens for those three-bubble systems that resist breaking is that, as pressures are
imposed, first of all the structure deforms. However, eventually a configuration is reached after
which there is no further deformation even as the pressure increases further. This configuration is
then termed a geometrically invariant state [45]. Further increases in pressure merely change the
velocity at which the structure propagates along (changing also the drag on the films). In spite of
that, the geometry (represented by the shape of each bubble) does not continue to change.

It is possible to compute what the structure of the geometrically invariant state must be. More
precisely, we can identify necessary conditions for such a state to exist, and then determine the
resulting structure provided those necessary conditions are met [45]. A sketch of the structure
thereby obtained is shown in figure 1. In this figure, films are flat and they are also constrained to
be oriented at very particular angles [45]. There are two films connected to the lower channel wall
which is oriented at right angles to the wall. Three films are connected to the upper channel wall,
one at a right angle to the wall, while two of them are oriented obliquely. As already mentioned,
drag on oblique films is less than that on films oriented at right angles to the wall [34]. That then
compensates for having more films on one channel wall than the other.

Figure 1, however, also presents an apparent paradox. It has been mentioned already that
films should meet channel walls at right angles, but in figure 1 that appears to be violated for
two of the films at the upper channel wall. Likewise, films should also meet at 2π/3 angles at
threefold vertices [52,53], but again that appears to be violated for the downstream most vertex,
and (consulting the zoomed view in figure 1) for the upstream most vertex also. We emphasize
though that these are only apparent violations. In fact, there can be very sharply curved regions in
the neighbourhood of walls and/or vertices that restore the correct angles [41,45]. We will discuss
later on more about how this situation can come about. However, because the sharply curved
regions can be shown to be very limited in extent [41,45], we do not need to resolve them in
figure 1, nor even to account for them in order to construct the geometrically invariant state.

Indeed given just the orientation angles already shown in figure 1, we can attempt to construct
a three-bubble staircase with bubbles of a given target area (see section S1d in the electronic
supplementary material). If bubble areas are chosen too small, it turns out that constructing the
state in figure 1 is not possible. For sufficiently large bubbles though (area on the order of the
square of a channel width) a geometrically invariant state can feasibly be constructed [45].

Meeting necessary conditions on bubble areas to permit construction of a geometrically
invariant state is not however a guarantee that the state itself will be realized when the three-
bubble system is evolved dynamically. In fact, for the three-bubble system, it turns out that the
geometrically invariant state is achieved dynamically for just a small set of all the bubble areas
for which it can in principle exist [45,46]. Indeed, for many choices of bubble areas, often the
three-bubble system breaks via a topological transformation even before managing to reach the
geometrically invariant state. Despite this, being able to construct the geometrically invariant
state in the first place remains useful. Once the state itself is identified, small perturbations can be
imposed upon it and stability to those perturbations can be tested [46].

To summarize, the three-bubble system [45–47] deforms and often breaks via a topological
transformation when subject to high imposed pressure. Sometimes however it deforms only up to
a certain point, then ceases deforming any further and avoids breaking. The three-bubble system
is therefore a bridge between the behaviours of the simple lens (which always deforms and breaks
at sufficiently high imposed pressure) [41] and the infinite staircase (which never breaks nor
even deforms). Although a great deal is therefore known about the three-bubble system, open
questions still remain for more general staircase structures as we now discuss.

(b) Open questions and novel contribution
One open question that the present work begins to address is whether by adding more bubbles
(over and above the three bubbles considered in previous work [45–47]), it might somehow be
possible to make a staircase with a finite number N of bubbles starting to behave more like an
infinite staircase structure. Indeed, a related open question for increasing N is whether over a
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comparatively wide set of bubble sizes (measured here by bubble areas), the actual behaviour
might attain a geometrically invariant state at high imposed pressures: by contrast, the three-
bubble structure only admitted a geometrically invariant state in practice over a narrow set
of areas [45,46]. Before we can answer this question though, it is necessary to know how the
geometrically invariant state itself is configured for N bubbles. That in itself is a non-trivial
question, and so is the specific question focused upon here.

Moreover, for N bubbles, just as was the case for three bubbles, there are two separate aspects
to determining the geometrically invariant state. One is determining the set of film orientations
that flat films within the geometrically invariant state must have: this can be determined
independently of any bubble areas. This other is, given those orientations, determining flat films
with the required film lengths, such that bubbles are constructed enclosing the correct areas. The
novel contribution of the present work focuses just on the question of film orientations in an
N-bubble structure, with determination of film lengths deferred to further work.

That said, if the geometry of a system with a large but finite number of bubbles is to
approach anything like the geometry of an infinite staircase, then a necessary condition is that
the orientations must match. For three bubbles of course (see the discussion of figure 1 earlier
on) matching of film orientation angles with the corresponding orientation angles for an infinite
staircase (see the electronic supplementary material, figure S1b) is poor [45]. For N bubbles,
however, it is an open question whether or not a reasonable match could still be obtained overall,
even though orientations fail to match over certain parts of the structure. For instance, matching
might be poor towards one or other end of a large but finite staircase, but still be reasonable over
much of the staircase (away from the ends say). As we will see, matching of film orientation angles
turns out to be poor towards the downstream end of a large but finite staircase, but improves
moving upstream, albeit the improvement tends to be only gradual as the number of bubbles
increases.

In summary, a reason given in the literature for studying the three-bubble structure [45–47] is
that its behaviour forms a bridge between the simple lens and infinite staircase. However, another
important justification for studying the three-bubble structure is that it can provide intuition
necessary for understanding structures with large but finite N. This intuition is then what is
exploited here as we take a step towards understanding large but finite N structures. The various
open questions mentioned above will be addressed using a model to be presented next.

3. Model
As already alluded to (see figure S1a in the electronic supplementary material), the system
modelled here is a Hele–Shaw channel between confining plates, but viewed from above as if
it were a two-dimensional structure (see e.g. figure 1 or figure S1b). The model of choice is the
so-called viscous froth model [2,36], which is suitable for describing foams in the dry limit as
considered here. Note that this model contains a viscous drag term: including a drag term like that
is essential in order to predict behaviours at high driving pressures that differ from behaviours
at low driving pressures. It is the high driving pressure limit in particular that interests us here,
and some readers already familiar with the viscous froth model may wish to skip directly to §4 in
which that particular limit is discussed. For the benefit of readers who are less familiar with the
model however, information is provided in §3a–c.

(a) Viscous froth governing equation
As has been mentioned, various components can be included in models for foam structures
(bubbles, films, vertices, Plateau borders and such like [50]). In the viscous froth model, however,
the basic structural unit is an element of foam film [36]. Films are constructed by connecting these
structural units (film elements) together. The viscous drag term represents drag associated with
moving the film element relative to the confining plates of the Hele–Shaw cell.
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The governing equation for each film element is [36,41]

ζv∗| cos φ| = �p∗ − 2σκ∗. (3.1)

Here, ζ is a drag coefficient, v∗ is an apparent steady migration velocity along the plates, cos φ

is the cosine of a film orientation angle (the angle being measured relative to the vertical in
the two-dimensional view in figure 1, which physically means relative to the direction across
the channel width in the electronic supplementary material, figure S1a). Note that v∗| cos φ | is a
velocity normal to a film element, and can be less than the apparent velocity v∗. Meanwhile, �p∗
is a pressure difference across a film, σ is a surface tension, 2σ is a film tension (films have two
surfaces) and κ∗ is a film curvature.

Film curvature (see also figure S4a,b in the electronic supplementary material for some specific
examples of curved films) is measured here solely in the direction along the two-dimensional
film, i.e. across the width of the Hele–Shaw channel. This does not however mean that curvature
is absent in the direction normal to the two-dimensional plane of interest here, i.e. in the direction
across the thickness of the gap of the Hele–Shaw cell (reiterating also that this gap thickness is
assumed much smaller than the width across the Hele–Shaw channel). As is explained in the
literature [51], curvature normal to the plane causes film elements to bulge across the Hele–Shaw
gap thickness (albeit not visible in a two-dimensional view). Nevertheless, the amount that film
elements bulge across the gap thickness determines also the angle through which the films turn
when moving across that thickness [51]. Moreover, as these bulging films meet the plates that
confine the gap, those films swell into Plateau borders. The angle through which the bulging
films have turned across the gap thickness then manifests itself in the amount of drag needed
to move the Plateau borders relative to the confining plates [51]. This then is why equation (3.1)
includes curvature only in the direction along the two-dimensional film element, but also has a
drag term (in lieu of curvature across the gap thickness).

For films set into motion by an imposed pressure, we adopt sign conventions such that v∗ is
positive from left to right, �p∗ is positive from left to right, and κ∗ is positive if a film is convex
when seen from downstream and κ∗ is negative if a film is concave when seen from downstream.
The convention for φ is that it is measured anticlockwise from the vertical in figure 1, which also
shows some angles explicitly. As already mentioned, the vertical in this two-dimensional view is
actually the direction across the width of the Hele–Shaw channel. Values of φ can vary between 0
and π , but note that equation (3.1) involves | cos φ | rather than simply cos φ.

(b) Governing equation in dimensionless form
We now proceed to make the governing equation dimensionless. A Hele–Shaw cell of width
L is assumed. Distances are made dimensionless with respect to L. Curvatures are made
dimensionless with respect to L−1. Pressures are made dimensionless with respect to 2σ/L.
Velocities are made dimensionless with respect to 2σ/(Lζ ).

To give a sense of scale, we suppose that L is around 9 × 10−3 m, σ is around 27 × 10−3 N m−1

and ζ is around 290 kg m−2 s−1. There is some uncertainty in the value of ζ , which in principle
could be sensitive to velocity and also to gap thickness [41], but we use the aforementioned value
in line with estimates in prior work [41,47]. Note that one unit of velocity is now 0.020 m s−1 and
one unit of pressure is now 6 Pa. The unit of pressure in particular is much less than atmospheric
pressure, which implies that gas in bubbles is not compressed. As already mentioned this means
that (in two dimensions) bubble areas are fixed even when bubble shapes deform: the present
work however focuses just on film orientations, rather than upon bubble areas.

Using the above-mentioned scales, a dimensionless equation is now obtained

v| cos φ| = �p − κ , (3.2)

where v is dimensionless migration velocity, �p is dimensionless pressure difference and κ is
dimensionless curvature.
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(c) Approaching the high velocity (i.e. high driving pressure) limit
In the present work, we are interested in limits in which �p and v are large dimensionless values:
�p is uniform along any given film, whereas v is uniform over the entire structure, provided the
structure is propagating steadily along. It is known that [41,42,45,46], in the limit of large driving
pressures (equivalently in the limit of high migration velocities), films become ‘asymptotically
flat’. In other words, films are flat over most of their length, except for a region of sharp curvature
near one or other end. In the three-bubble structure for example, values of pressure drop per film
�p and/or velocity v of the order of around 40 dimensionless units were found to be more than
adequate to reach a flat film state, assuming the structure did not break prior to reaching that state
[45,46].

Intuitively, the fact that films must be asymptotically flat can be deduced from equation (3.2).
According to that equation, curvature κ is the difference between �p and v| cos φ|. In the limit
of interest, �p and v are large dimensionless quantities, but with �p no larger than v. There can
be only one orientation angle at which �p and v| cos φ| match perfectly. Only at that particular
orientation angle can the film curvature vanish. However, if the film is required to turn through a
significant angle along its length [41] (in order to meet boundary conditions say), then there must
be at least some parts of the film upon which there is a large imbalance between �p and v| cos φ|,
i.e. there must be at last some parts of the film upon which the curvature is large. The angle
through which a film turns is (by definition) the integral of curvature along the film length. It then
follows that large curvatures can only be sustained over small distances. Moreover, increasing the
values of �p and v decreases the distance over which large curvatures are sustained. As has been
mentioned, the remainder of the film becomes asymptotically flat [42]. That then prevents the film
turning through too great an angle.

The notion of having sharp curvature towards the end of a film is entirely consistent with
the mathematical structure of equation (3.2). In this equation, the curvature κ involves a second
derivative of the film coordinates with respect to arc length along a film [41]. The term in cos φ

however can be expressed in terms of a film tangent, which is only a first derivative of the film
coordinate. In the limit of large �p and large v, the weakest term in the equation is the one
involving the highest spatial derivative. In a scenario like that [54], we can neglect this term over
much of the film, but we still do need to account for it somewhere within a boundary layer [41].
It turns out that, regardless of whether a film is convex or concave, the region of sharp curvature
is always located towards the upstream end of any individual film [41,42]. The reasons why the
upstream end is selected are explained in section S2 in the electronic supplementary material.

Thus far via equation (3.2), we have analysed just elements upon a single film. However,
our ultimate interest is in a staircase structure of N bubbles (typically with N odd to impose
topological asymmetry). We are therefore interested not merely in upstream and downstream
ends of individual films, but also in films towards the upstream and downstream ends of the
staircase as a whole. When multiple bubbles and hence multiple films are involved, it is necessary
to consider the angles at which films meet each other and also the angles at which films meet
channel walls. In other words, we need to impose boundary conditions on film orientations for
the entire set of films throughout the staircase structure.

As already mentioned, according to Plateau’s Laws [52,53], films should meet each other at
threefold vertices at angles of 2π

3 . Likewise, films should meet channel walls at right angles, at
least in the limit to be assumed here whereby the gap thickness between Hele–Shaw plates is
much less than the channel width of the Hele–Shaw cell. It is possible to generalize this away
from right angles at walls in the case when gap thickness starts to become significant relative to
channel width [42,51,55,56], but we will not consider such complications here.

Note however the flat film states to be considered here are exceptions to the above-mentioned
rules on meeting angles. The rules are always satisfied at the downstream end of any given film.
However, because films can curve sharply at their upstream ends [41,42], they can appear to violate
the above-mentioned rules at their upstream ends (see e.g. figure 1). The rules are in fact satisfied
even at the upstream ends owing to sharp curvature, but if we seek to determine only the flat



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230722

..........................................................

sections of films (as will be the case here), there is an apparent violation. In effect then, curvature
is only relevant within boundary layers [54] near the upstream ends of films [41]. However, all
that we need to find in the present work, are just outer solutions for each film away from those
boundary layers.

To summarize, in the limit of arbitrarily high driving pressures (as will be considered here), any
curvature is arbitrarily sharp, and is confined to an arbitrarily small region at the film’s upstream
end. The remainder of the film once it has flattened out, cannot change geometrically any further,
so the state is now termed ‘geometrically invariant’ as alluded to earlier. In this limit, changing
the driving pressure changes only the migration velocity (with pressure and velocity now being
proportional), while the geometry remains unaffected.

Computing the resulting flat film geometry involves as a first step, computing film orientations
subject to constraints at the ends of films, where either threefold vertices leading to other films or
else channel walls are encountered. As has been mentioned, those constraints are strictly enforced
at the downstream ends of films, but can appear to be violated at upstream ends. Determining the
resulting film orientations for N bubbles is the novel contribution here, and is what we proceed
to do next.

4. N-bubble staircase subject to high driving pressures
In this section, we first consider equations governing a geometrically invariant or flat film state
that arises for high driving pressures (§4a). We then explain how to enumerate topology for an
N-bubble staircase (§4b). After that §4c–g indicate how to formulate (and solve) equations for
film orientations assuming an N-bubble staircase in a flat film state: this is done by analysing the
staircase in various pieces.

(a) Flat film state
Here, we derive equations governing film orientations (specifically film orientation angles) and
also bubble pressures assuming throughout flat films. As we will see, film orientations and bubble
pressures are inseparable, so must be obtained together.

Our starting point is the dimensionless viscous froth equation for a flat film state

�p = v| cos φ|, (4.1)

where (as already mentioned) �p is a driving pressure difference, v is a migration velocity
along the channel and φ is an orientation angle (of the film tangent relative to the vertical).
Mathematically, this model is equivalent to a model in the literature called pressure-driven
growth [57], with the exception that pressure-driven growth typically incorporates an additional
hydrostatic pressure term, which is not relevant here.

According to equation (4.1), if the film tangent deviates from vertical, then a given migration
velocity can be sustained with less driving pressure than for a vertical film. For a specified
orientation angle though, pressure and velocity are clearly proportional. Note also that the
migration velocity v along the channel is uniform over the entire structure [41], but the pressure
p varies from bubble to bubble. It is then convenient to define normalized pressures as

P = p
v

, (4.2)

in which case we have a normalized pressure difference across any given film

�P = | cos φ|. (4.3)

In what follows, we will work primarily in terms of normalized pressures P, not the original
pressures p. For brevity therefore, we will refer simply to ‘pressure’.
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1

4
2 3

N

N – 5
N – 4

N – 3 N – 2 N – 1

Figure 2. View of the topology and also (schematically) the expected film orientations for an N-bubble staircase (with N
odd) moving from left to right. The numbers indicated here label both bubbles and vertices. Film orientations shown here are
schematic, as determining what the orientations actually are is the purpose of the present work.

(b) Enumerating the staircase topology
We now apply equation (4.3) to the staircase topology. This consists of N bubbles in total, where
N is odd. Figure 2 shows a sketch of what we expect the topology to be (generalizing figure 1
in an intuitive fashion) and also schematically what we expect the film orientations to be (to
be discussed shortly). Bubbles are numbered from left to right, and are assigned an index J.
Odd-numbered bubbles are attached to the upper channel wall, and even-numbered bubbles are
attached to the lower channel wall. The pressure of bubble J is denoted PJ .

In addition to there being N bubbles, there are also N vertices. Vertices are again numbered
from left to right, and are assigned an index J. Note that odd-numbered vertices are lower down
within figure 2 than even-numbered vertices are.

Bubbles J − 1, J and J + 1 meet at vertex J. This is also true for vertex N at the far downstream
end of the staircase, and for vertex 1 at the far upstream end of the staircase, provided we define,
respectively, bubble N + 1 to be the outside of the structure at the downstream end, and bubble 0
to be the outside of the structure at the upstream end.

Three films also meet at each vertex. Films are most conveniently labelled by the pair of
bubbles which they separate. Indeed, film J − 1, J, film J − 1, J + 1 and film J, J + 1 all meet at
vertex J. These have orientation angles φJ−1,J, φJ−1,J+1 and φJ,J+1, these angles being measured
relative to the vertical. These film orientations, which are merely shown in a schematic format
within figure 2, are what we aim to determine here. Note also that film J − 1, J, as well as
separating bubbles J − 1 and J, also joins vertex J − 1 with vertex J. An analogous statement
applies to film J, J + 1, which joins vertex J with vertex J + 1. As well as the films zigzagging from
vertex to vertex (N − 1 such films in total), there are also films connected to the lower channel
wall (one such film per odd-numbered vertex, (N + 1)/2 in total). In addition, there are (N + 3)/2
films connected to the upper channel wall (one per even-numbered vertex, plus an extra film at
the first vertex and at the last vertex).

Note an important feature of figure 2 as drawn (also evident in figure 1 [45]). Films connecting
to the lower channel wall are drawn oriented at right angles to the wall (implying that they are
configured analogously to figure S4a in the electronic supplementary material). Films connecting
to the upper channel wall (with the exception of the downstream most of them) are drawn
oriented obliquely (implying that are configured analogously to figure S4b in the electronic
supplementary material). The alternative (oblique films connected to the lower channel wall, right
angle films connected to the upper channel wall) is not allowed. This follows from equation (4.3).
If we sum the �P values in equation (4.3) crossing all the (N + 1)/2 films connected to the lower
channel wall, we must have the same result as if we sum the �P values crossing all the (N + 3)/2
films connected to the upper channel wall. Since there is one extra film included in the sum in the
case of the upper channel wall, the individual cos φ terms must be smaller for the films connected
to the upper channel wall.

Of course, films in figure 2 (as in figure 1) are drawn as being flat. As already mentioned
(see §3c), these are outer solutions that neglect sharply curved regions at upstream ends of films.
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PN+1 = 0

(outside structure)
PN

PN–1

�N–1, N

Figure 3. Configuration at the downstream end of the staircase. Motion is from left to right.

For films connecting to the lower channel wall (and also for the downstream most film connecting
to the upper channel wall), these sharply curved regions occur at vertices away from channel
walls. By contrast, for films connecting to the upper channel wall sharp curvature occurs at the
channel wall itself. We do not however need to resolve these sharply curved regions in what
follows.

To obtain the geometrically invariant (i.e. flat film) state for an N-bubble staircase, we need to
work from the downstream end of the structure to the upstream end, computing the various PJ ,
φJ−1,J , φJ−1,J+1 and φJ,J+1 values as we go. This then is what is achieved in the sections to follow.

(c) Analysing downstream end and implications for bubble pressures
We start by showing a detailed view of the downstream end of the structure (figure 3). We set the
pressure to be zero outside the staircase structure at its downstream end. Hence PN+1 = 0. The film
at the far downstream end is designated film N, N + 1. It needs to meet the upper channel wall
at right angles. Hence, the tangent to that film is vertical, and thus φN,N+1 = 0. This immediately
tells us via equation (4.3) that the pressure PN is unity. Film N − 1, N + 1 meanwhile needs to
meet the lower channel wall at right angles. Hence, the pressure PN−1 is also unity.

It follows that there is no pressure difference between bubbles N − 1 and N. The film
orientation angle φN−1,N therefore satisfies φN−1,N = π/2. Note that this indicates (figure 3) that
film N − 1, N is parallel to the channel walls, and hence that film can never reach either of the
channel walls (assuming it is flat, which must be the case for arbitrarily high driving pressure;
specifically, what is taken to be arbitrarily high here is the pressure prior to the normalization
described in §4a). This incidentally is sufficient to demonstrate that a simple lens (see figure S3 in
the electronic supplementary material) cannot survive out to arbitrarily high pressures [45]: for a
simple lens (N = 1), film N − 1, N becomes the same as film 0, 1 and this needs to reach the upper
channel wall. To do that, the film must curve (as figure S3 shows) and this is incompatible with
a high-pressure limit that would require it to become asymptotically flat. For odd N, we need
therefore to have N ≥ 3 (see e.g. figure 1) in order to obtain the sort of flat film structures to be
analysed here.

Turning to some of the other films shown in figure 3, there is formally a requirement for film
N, N + 1 (separating bubble N from the outside of the structure) and film N − 1, N + 1 (separating
bubble N − 1 from the outside of the structure) to meet at an angle of 2π/3. In figure 3 it
appears as though this is not happening. However, films N, N + 1 and N − 1, N + 1 are allowed
to curve sharply within an arbitrarily small region at their upstream ends. Of course because the
asymptotically flat sections of the two films are oriented vertically rather than obliquely, it is not
immediately apparent in figure 3 which is the ‘upstream’ end of each film in question. However
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arguments presented in the literature [41,45] (see also the sketch in figure S4a in the electronic
supplementary material) show that the upstream ends for both of these two films are the ends
away from the channel wall, where the films meet at vertex N. That then is how the correct
meeting angle can be attained, even though the angle itself is not resolved in figure 3.

Note moreover that film N − 1, N + 1 in particular is an example of a film that connects the
lower channel wall (which it meets at right angles) to an odd-numbered vertex N (at which the
film at its upstream end curves sharply). In fact, it turns out that all films which connect the lower
channel wall to odd-numbered vertices obey the same condition: i.e. provided J is odd, they all
have φJ−1,J+1 = 0 on their flat sections, and so the flat sections all meet the channel wall at right
angles. In other words, as figure 2 indicates, all films connecting to the lower channel are vertical,
as §4b already described.

According to equation (4.3) this means that moving upstream from each even-numbered
bubble to the next, the pressure increments by unity. Hence

PJ = (N + 1 − J)
2

for even J. (4.4)

Note in particular that the pressure outside the structure at the far upstream end satisfies P0 =
(N + 1)/2.

It follows that P−1
0 = 2/(N + 1). This quantity P−1

0 is important: because of the way pressures
have been normalized (see equation (4.2)), P−1

0 is a dimensionless measure of the mobility
(mobility having been already identified within the Introduction as being an important quantity).
Provided the staircase topology is preserved, we infer that mobility depends only on topology,
but is otherwise independent of geometry (i.e. it is independent of bubble sizes). Moreover, the
greater the number of bubbles that are present in the staircase, the lower the mobility becomes.
We reiterate that mobility can be computed here even without knowing other geometrical details
(e.g. bubble sizes or film lengths). This is a feature of the high-imposed pressure limit with
flat films. Away from the high-pressure limit those other geometrical details can still affect
mobility [41].

In view of equation (4.4), what remains to be calculated are the pressures PJ in the odd-
numbered bubbles, the orientation angles φJ−1,J+1 in films connecting to the upper channel
wall (for odd J), and the orientation angles φJ−1,J and φJ,J+1 in films that zigzag across the
structure from vertex to vertex. These quantities are calculated by alternating between even- and
odd-numbered vertices as follows.

(d) Analysing even-numbered vertices
Consider an even-numbered vertex J: one film arrives at the vertex from the right, two films leave
to the left (figure 4). It is supposed that the orientation angle φJ,J+1 of the film arriving from the
right is known. This particular orientation angle is measured from the vertical, albeit not at vertex
J but rather at the next vertex to the right (vertex J + 1). Nonetheless, this orientation angle φJ,J+1
tells us nothing a priori about how vertex J itself is oriented. This is because film J, J + 1 can in
principle curve sharply near its upstream end as it arrives at vertex J. Whether or not it does
curve sharply in this fashion is a point to be considered later.

More usefully for determining the configuration of vertex J, it is supposed that the pressure
PJ+1 of odd-numbered bubble J + 1 is already known. The pressure PJ of even-numbered bubble
J is also known (see equation (4.4)). Unknowns at vertex J, therefore are the pressure PJ−1 and the
orientation angles φJ−1,J+1 and φJ−1,J of the films leaving the vertex to the left. These orientation
angles are measured from the vertical (at vertex J).

Three equations are needed to solve for these three unknowns. These equations are

PJ−1 − PJ+1 = cos(φJ−1,J+1), (4.5)

which follows from equation (4.3),

PJ−1 − PJ = − cos(φJ−1,J), (4.6)
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J

φJ–1, J+1 φJ, J+1

2�/3

PJ

φJ–1, J

PJ–1 PJ+1

Figure 4. Configuration at an even-numbered vertex. Note the 2π/3 angle between film J − 1, J + 1 and film J − 1, J.

which also follows from equation (4.3), and

φJ−1,J = φJ−1,J+1 + 2π

3
. (4.7)

This follows from the requirement that films J − 1, J and J − 1, J + 1 meet an angle 2π/3 at their
downstream ends. Note the negative sign included on the right-hand side of equation (4.6): this
is required because cos(φJ−1,J) is a negative quantity.

Upon eliminating variables, the above equations lead to

cos(φJ−1,J+1) + PJ+1 + cos
(

φJ−1,J+1 + 2π

3

)
− PJ = 0. (4.8)

This is a nonlinear equation to solve for the single unknown φJ−1,J+1. As we will see, it turns
out that we are interested in solutions for φJ−1,J+1 between 0 and π/6. Over this domain,
cos(φJ−1,J+1) + cos(φJ−1,J+1 + 2π/3) is found to be a monotonic function of φJ−1,J+1. This means
that if we find a solution for φJ−1,J+1 it will be unique (a point we return to in §4f). The above
equation does not contradict the notion that film J − 1, J + 1 formally needs to meet the upper
channel wall at right angles: the film does this by curving sharply at its upstream end where it
meets the wall. However, equation (4.8) is only concerned with determining the value of φJ−1,J+1
on the asymptotically flat section of the film away from the upstream end. Film J − 1, J also curves
sharply at its upstream end. This occurs at an odd-numbered vertex, as will be analysed next.

(e) Analysing odd-numbered vertices
Consider now an odd-numbered vertex J (figure 5). Two films (denoted here J, J + 1 and J − 1,
J + 1) now arrive from the right, and only one leaves towards the left. The orientation angle of
film J, J + 1 is φJ,J+1 (measured from the vertical albeit now at vertex J + 1 not at vertex J). Film
J − 1, J + 1 meanwhile as drawn is oriented vertically (and hence formally φJ−1,J+1 = 0). Both of
these films are however liable to reorient by curving sharply at their upstream ends: they reorient
in order to meet film J − 1, J at angles of 2π/3. Indeed it is owing to this reorientation that film
J − 1, J + 1, which is otherwise vertical as has been mentioned, does in fact arrive from the right.
Unfortunately all this means that knowing the values of φJ,J+1 and φJ−1,J+1 on the flat sections of
these films furnishes no information about the orientation angle φJ−1,J.

More usefully though it can be assumed that the pressure PJ in odd-numbered bubble J is
already known. Also, the pressures in all even-numbered bubbles are known (see equation (4.4))
and hence pressure PJ−1 in particular is known. Equation (4.3) now implies

PJ−1 − PJ = cos(φJ−1,J) for odd J, (4.9)
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Figure 5. Configuration at an odd-numbered vertex.

which is rearranged to give a film orientation angle

φJ−1,J = arccos(PJ−1 − PJ). (4.10)

Taken together equations (4.5)–(4.8) and (4.10) can be used to work from downstream to
upstream, alternating between even- and odd-numbered vertices. However, solving the system
remains awkward because equation (4.8) as written involves solving a nonlinear system, rather
than having a closed-form expression for φJ−1,J+1 for even J. Surprisingly however such an
expression exists, as is described next.

(f) Solving at even-numbered vertices
Now that we have information about both even-numbered and odd-numbered vertices, it is
possible to use all this information to analyse even-numbered vertices in more detail. Indeed,
for even J, it is possible to find a solution assuming that film orientation angles are related via

φJ−1,J+1 = φJ,J+1 − π

3
, (4.11)

and hence via equation (4.7)

φJ−1,J = φJ,J+1 + π

3
. (4.12)

A proof that this then provides a solution is given in section S3. Mathematically working with
equations (4.11)–(4.12) is far simpler than trying to solve the nonlinear equation (4.8) that is
presented in §4d. Recall also from §4d that, once we find a φJ−1,J+1 value that is able to satisfy
equation (4.8), we know it is unique, at least over the solution domain of interest here.

What all of this now means geometrically (see the electronic supplementary material, section
S3) is that (for even J) film J, J + 1 (which zigzags from vertex J + 1 to vertex J) manages to meet
vertex J without requiring any sharp curvature at its upstream end. Another way of interpreting
this geometrically is that, at even-numbered vertices, the straight sections of all three films at the
vertex meet at 2π/3 angles in line with Plateau’s laws. However, the configuration of the three
films is rotated (by an amount φJ−1,J+1) relative to an infinite staircase. Moreover, this rotation
amount φJ−1,J+1 varies from one even-numbered vertex to nearby even-numbered vertices (see
figure S5 in the electronic supplementary material). As a result of the changing rotation amount,
it is necessary to introduce a sharp curvature at the upstream end of certain films to ensure
that elsewhere in the structure films meet at the correct angles. Indeed (again see the electronic
supplementary material, figure S5), zigzag films leaving even-numbered vertices in the upstream
direction need sharp curvature at their upstream ends (where they meet odd-numbered vertices).
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(outside structure)
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Figure 6. Configuration at the upstream end of the staircase.

We can now work upstream to compute the structure by iterating straightforwardly between
equations (4.11)–(4.12) and equation (4.10) to obtain orientation angles for the entire staircase
merely performing function evaluations, without the need to solve any nonlinear equations.
As we work upstream, equations (4.4)–(4.6) also allow us to obtain bubble pressures. When J
is even, equation (4.4) gives the value of PJ, whereas formulae for pressure PJ−1 follow from
either of equations (4.5)–(4.6) (these formulae are equivalent, provided equations (4.11)–(4.12) are
satisfied).

Note, in particular, the situation at the furthest downstream even-numbered vertex (namely
vertex N − 1). Since we already know φN−1,N = π/2, it follows that (for the film connecting vertex
N − 1 to the upper channel wall) the orientation angle is φN−2,N = π/6 and (for the film zigzagging
to the next vertex) the orientation angle is φN−2,N−1 = 5π/6. Note also that PN−2 = 1 + (

√
3/2),

which follows from equation (4.5). These are results that are already known [45] from the three-
bubble structure (figure 1), in which case there is only a single even-numbered vertex. However,
they carry over to the analysis of the furthest downstream even-numbered vertex for any N.

The question now arises as to what happens far upstream as the number of bubbles N
increases: the expectation for an even-numbered vertex J is that film J − 1, J + 1 (which connects
to the upper channel wall) is that φJ−1,J+1 would decay below π/6 and eventually this film
will approach vertical as in an infinite staircase. Working through the structure though from
downstream to upstream alternating between even- and odd-numbered vertices, eventually we
reach vertex 1 (the leftmost vertex), which is considered next.

(g) Analysing upstream end
Mathematically, the formula for determining the film orientation angle at vertex 1 is no different
from equation (4.10) for any arbitrary odd-numbered vertex. The geometry is however slightly
different in that film 0, 1 now extends all the way up to the upper channel wall (figure 6).

To start with it is instructive to consider the three-bubble structure, such that bubble 1 is
the same as bubble N − 2 (and the pressure PN−2 is given in §4f already). The pressure PN−3
meanwhile can be obtained from equation (4.4): for the three-bubble structure of course, this is
simply the pressure outside the structure at the upstream end. It follows that the orientation angle
of the backmost film denoted φ0,1 has, for the three-bubble structure, a value arccos(1 − (

√
3/2))

(around 0.4572 π , a result already known from the literature [45]; see also figure 1).
This same film orientation however applies to film N − 3, N − 2 for a general N. Observe that

the orientation angle φN−3,N−2 is smaller than φN−1,N (the value of φN−1,N is π/2, as per §4c).
However, φN−3,N−2 still exceeds π/3, which is the analogous orientation angle in an infinite
staircase. As N increases though, it is expected that the orientation angle of the backmost film
φ0,1 should become closer to π/3. How systems behave in the limit of very large N is considered
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next (noting however that N is assumed odd here; even values of N are however discussed in
the electronic supplementary material, section S5).

5. Behaviour for an arbitrarily long bubble staircase
In this section, we present limiting behaviour for an arbitrarily long staircase (§5a) and also the
asymptotic approach to that limiting behaviour (§5b).

(a) Limiting behaviour for a long staircase
Arbitrarily far back from the downstream end of an arbitrarily long staircase, equations (4.5)–
(4.12) exhibit a limiting solution, as can easily be seen by inspection. For an even-numbered
vertex J (with J much smaller than N), we find φJ−1,J+1 → 0, φJ−1,J → 2π/3. It also follows that
φJ,J+1 → π/3 (albeit this orientation angle would be measured at vertex J + 1 not at vertex J). The
orientation of all the films in this region is now the same as in an infinite staircase. In other words,
films connected to the upper channel wall are vertical, and the remaining films zigzag from vertex
to vertex satisfying Plateau’s Laws. Note that all films connected to the lower channel wall are
vertical (regardless of where they are in the structure). Films connected to the upper channel wall
only become vertical far upstream.

In addition to limiting behaviour for film orientation angles, it is also possible to obtain the
limiting behaviour for pressures. Considering an even-numbered vertex J far upstream, there
is a unit change in pressure from odd-numbered bubble J + 1 to odd-numbered bubble J − 1
(as equation (4.5) now implies). However (as equation (4.6) with φJ−1,J → 2π/3 shows), there is
only a change of half a unit in pressure from even-numbered bubble J to odd-numbered bubble
J ± 1. This means that equation (4.4), which applies for even-numbered bubbles throughout the
entire structure, is also valid for odd-numbered bubbles sufficiently far upstream. In other words,
bubble pressure satisfies

PJ → (N + 1 − J)
2

for odd J far upstream. (5.1)

Coupled with equation (4.4), this does indeed give a difference of half a unit of pressure between
adjacent odd-numbered and even-numbered bubbles far upstream. Note that at the downstream
end of the structure (see §4c), odd-numbered bubble N has the same pressure as even-numbered
bubble N − 1, and equation (5.1) does not apply. As we move upstream though, the pressure
in odd-numbered bubble J ceases to be the same as that in even-numbered bubble J − 1, and
eventually falls half a unit below.

(b) Asymptotic behaviour for a long staircase
The analysis in §5a gives limiting behaviour of the staircase structure far upstream, but not how
quickly that limiting behaviour is approached. This can however be determined.

Suppose we consider an even-numbered vertex J (as per figure 4), and bubbles J − 1, J and
J + 1 around it. Suppose moreover that ΠJ±1 represents a deviation of bubble pressure from the
prediction of equation (5.1). In other words, PJ±1 is given by the prediction of equation (5.1) plus
a correction ΠJ±1 remembering here that J is even, so that J ± 1 is odd. Assuming that ΠJ±1 and
φJ−1,J+1 are small parameters, equation (4.6) coupled with equations (4.11)–(4.12) Taylor expands
to

ΠJ−1 ≈ sin
(

2π

3

)
φJ−1,J+1 =

√
3φJ−1,J+1/2. (5.2)

Specifically what we have done is to use equation (4.4), equation (5.1) and the definition of ΠJ−1,
which are all substituted into the left-hand side of equation (4.6). Meanwhile a difference between
equation (4.11) and (4.12) is taken to express φJ−1,J in terms of φJ−1,J+1. This is substituted into
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the right-hand side of equation (4.6), which is then Taylor expanded to first order in φJ−1,J+1.
Meanwhile equation (4.5) Taylor expands to

ΠJ−1 − ΠJ+1 ≈ −φ2
J−1,J+1/2. (5.3)

On the left-hand side of equation (4.5), we have used equation (5.1) and the definition of ΠJ±1. On
the right-hand side, we have Taylor expanded to second order in φJ−1,J+1, as the first-order term
vanishes here.

Equation (5.2) indicates that the pressure deviation is proportional to the angle by which the
film joining to the upper channel wall deviates from the vertical. Equation (5.3) indicates the
amount by which the pressure deviation decays from one bubble to the next is small being only
second order in angle, i.e. the resulting decay is rather slow.

Analysis of equations (5.2)–(5.3) is given in the electronic supplementary material, section S4.
It is found that

φJ−1,J+1 ∼ 2
√

3
(N + 1 − J)

, (5.4)

for even J. We also deduce

ΠJ ∼ 3
(N + 1 − J)

, (5.5)

albeit applicable now for odd J. In what follows, these asymptotic predictions will be compared
with computed values.

6. Results
In this results section, we first consider bubble pressures (§6a) and then we consider film
orientations (§6b). Throughout, data have been obtained via the procedure already described
in §4f, i.e. working from downstream to upstream iterating between equations (4.11)–(4.12) and
equation (4.10), with pressures given by equations (4.4)–(4.6).

(a) Results: bubble pressures
Figure 7a presents the bubble pressures PJ as a function of N + 1 − J. Observe that the quantity
N + 1 − J here is the bubble number but counting from downstream to upstream (not upstream
to downstream as we conventionally do). Values of PJ depend only on N + 1 − J, not on N and J
individually.

Note that PJ values for even J all fall on a straight line (see equation (4.4)). For odd-numbered J,
values of PJ start off close to PJ−1, at least when N + 1 − J is relatively small. However as N + 1 − J
increases, values of PJ with odd-numbered J gradually move midway between PJ−1 and PJ+1,
i.e. they migrate towards the prediction of equation (5.1), which gives the same straight line as
mentioned previously.

Figure 7b shows how ΠJ (i.e. the deviation of pressure PJ from equation (5.1)) decays as a
function of N + 1 − J albeit plotting only for odd values of J (as the deviation vanishes in the
case of even J). The asymptotic formula given by equation (5.5) is also plotted here. Visually,
this agrees reasonably well with the computed ΠJ for N + 1 − J values greater than roughly
50, and the agreement is easy to check on a log-log plot (see figure S7a in the electronic
supplementary material). Note also the slow decay of ΠJ . For instance, when J = N, the value
of ΠJ is 1/2. However, for ΠJ to fall by an order of magnitude relative to this, equation (5.5)
suggests N + 1 − J needs to be greater than around 60. To achieve this anywhere at all in the
staircase, we would need N values of around 60 or greater (remembering also that N is assumed
odd here).
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Figure 7. (a) Pressure PJ in bubble J versusN + 1 − J in anN-bubble staircase. Here, J represents the bubble number counting
fromupstreamtodownstream,whereasN + 1 − J represents thebubblenumber counting fromdownstreamtoupstream. The
dashed line shows a formula that is applicable for even-numbered bubbles (anywhere in the staircase) and for odd-numbered
bubbles (in the limit far upstream only). (b) Pressure deviationΠJ (relative to the far upstream limiting formula, shown here
for odd-numbered bubbles only) versus N + 1 − J. The dashed line shows an asymptotic approximation toΠJ .

(b) Results: film orientations
Figure 8 plots the orientation angle φJ−1,J+1 as a function of N + 1 − J. Only even values of J
are considered (since φJ−1,J+1 vanishes when J is odd). Clearly, in figure 8, the value of φJ−1,J+1
decays with increasing N + 1 − J. Values of φJ−1,J and φJ,J+1 can now also be deduced easily from
equations (4.7) and (4.11) but values are not plotted here, since equations (4.7) and (4.11) are
already very straightforward.

The asymptotic formula given by equation (5.4) is also shown in figure 8 and visually it agrees
with the computed orientation angle φJ−1,J+1 for N + J − 1 values greater than about 50 (see also
the log-log plot in figure S7b in the electronic supplementary material). Again, a slow decay is
seen here. For instance, when J = N − 1, the value of φJ−1,J+1 is π/6. However, to fall to an order
of magnitude below this, equation (5.4) implies N + 1 − J would need to exceed around 66. To
achieve this anywhere at all in the staircase, N would likewise need to exceed around 66. This
is comparable with the findings of §6a, which suggested N values of around 60 or more for
discrepancies relative to an infinite staircase to decay by an order of magnitude (remembering
also here that the infinite staircase has φJ−1,J+1 vanishing). Hence film orientations (and bubble
pressures likewise) retain a long ‘memory’ even quite some way from the downstream end of the
staircase that they are part of a finite staircase rather than an infinite one. This at least is the case
in the limit considered here with high imposed driving pressures. Overall conclusions and the
outlook for comparing finite staircases with infinite staircases are discussed next.
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Figure 8. Film orientation angle φJ−1,J+1 (for films connecting to the upper channel wall, for even-numbered J only) versus
N + 1 − J. The dashed line shows an asymptotic approximation to φJ−1,J+1. The horizontal dotted line shows the constant
valueφN−2,N ≡ π/6 (i.e. the orientation angle obtained towards the downstream end).

7. Conclusion and outlook
The configuration of N bubbles arranged in a Hele–Shaw channel in a staircase geometry has
been considered. The gap thickness of the Hele–Shaw channel is assumed much smaller than
the channel width, so the staircase can be treated as two-dimensional. To impose topological
asymmetry, it is assumed that N is odd, so that (N + 1)/2 bubbles attach to the upper channel
wall, whereas (N − 1)/2 bubbles attach to the lower channel wall. Equivalently, (N + 3)/2 films
connect to the upper channel wall, and (N + 1)/2 films connect to the lower channel wall. The
focus here has been on trying to understand systems with large but finite N, building on prior
work with much smaller N values (e.g. N = 1 as considered in one prior study [41] or N = 3 as
considered by other studies [45–47]).

Constraints on film meeting angles are imposed: Plateau’s Laws apply wherever three films
meet and (subject to Hele–Shaw gap thickness being much smaller than channel width) films
meet channel walls at right angles. In the limit considered here (a large imposed driving pressure
or equivalently rapid motion of bubbles along the channel), foam films become asymptotically
flat. Thus, if films curve at all, they curve only at their upstream ends, and curvature is sharp
there. As a consequence, even though the aforementioned constraints on film meeting angles are
still satisfied, by looking solely at the asymptotically flat sections of the films, those rules might
appear to be violated.

The configurations of the asymptotically flat sections of the films can nonetheless be
determined independently of the curved sections. Film configurations in a finite staircase of
N bubbles differ from those in an infinite staircase. In particular, films that connect to the
upper channel wall, and which separate even-numbered bubbles, are rotated with respect to
the analogous films in an infinite staircase. Moving upstream, these films gradually align with the
orientation in an infinite staircase. However, the process is gradual. We would need as many as
60 or so bubbles in a finite staircase for the discrepancy in orientation angle towards the upstream
end to fall by an order of magnitude compared with what it is at the downstream end. In other
words, up to 60 or so bubbles back from the downstream end retain a ‘memory’ of being in a finite
staircase, at least when the staircase is driven at high imposed pressure. That said, if the number
of bubbles is far in excess of 60, then film orientations over most of the staircase (away from the
downstream end) would be close to the film orientations for the infinite staircase.

The above-mentioned memory effects could be useful in practice in microfluidic applications.
For instance, in figure 2, the zigzag films that separate odd-numbered bubbles J (e.g. J = N − 2
or J = N − 4) from even-numbered neighbours J ± 1 are not oriented symmetrically. It is likely
that these asymmetric orientations are reflected also in asymmetric film lengths (although we
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have not actually computed any film lengths in the present work). In figure 2, for instance, the
film separating odd-numbered bubble J from even-numbered bubble J + 1 is sketched as possibly
being shorter than the film separating that same bubble J from even-numbered bubble J − 1. If
mass transfer is taking place from odd-numbered bubble J to its even-numbered neighbours, then
as drawn in figure 2 at least, less mass will be transferred to bubble J + 1 than to bubble J − 1.
Clearly, however, we can only make definite predictions about this once we have computations
of film lengths, a point we return to mention shortly.

As well as computing film orientation angles, it is also possible to compute bubble pressures.
The pressures in odd-numbered bubbles lie somewhere between pressures in immediately
adjacent even-numbered bubbles downstream and upstream of them. However, they tend to
be closer to the pressures on the immediately upstream side rather than the downstream side.
Very far towards the upstream end of a staircase with a large number of bubbles, pressures in
odd-numbered bubbles approach halfway between those in adjacent even-numbered bubbles.
However, as also happened with film orientations, the approach here is gradual.

One notable feature of the high driving pressure limit considered here is that film orientations
and bubble pressures can be determined independently of the bubble sizes. All staircases that
have been analysed here, regardless of the bubble sizes within them, then have the same set of
film orientations and the same set of bubble pressures. This means that (in line with findings
in the literature [47]) the mobility of the structure depends only on the number of bubbles
present, and how they are arranged topologically provided the topology remains fixed. Mobility
does not depend on other geometrical aspects such as bubble sizes or film lengths, at least
mobility does not depend on those aspects in the limit considered here assuming high imposed
driving pressures. Having a simple way to determine mobility of various bubble structures might
be useful in practice. For instance, the literature has found [47] that the three-bubble system
tends to transform topologically so as to select bubble arrangements with lower mobility than
other competing topological arrangements, although whether that also happens for N bubbles is
unknown.

Of course, in order to compute the N-bubble staircase structure definitively, it is still necessary
to fix bubble sizes and determine the associated film lengths: this aspect is left for further work.
The outlook here is that not all choices of bubble size will admit a structure with the desired
topology for the set of film orientations determined here. As happened in the three-bubble case,
there is likely to be a set of minimum bubble areas below which the target structure will not
even exist [45,46]. However, that set of minimum areas might depend on the number of bubbles
present. There is no minimum area for an infinite staircase for instance.

Ultimately, it is desired to know to what extent a finite staircase (or at least parts of a staircase)
might start to approach a configuration geometrically similar to an equivalent infinite staircase. In
the high driving pressure limit, a necessary condition for this to happen is for the film orientations
in the finite staircase to match those in the infinite case. Clearly, even to approach a condition like
that, we need large values of N, around 60 or so as suggested above.

Although a necessary condition for the finite and infinite staircases to become close, this
is not however sufficient. Instead, at the far upstream end of the structure, geometrically the
system still differs from the infinite staircase. As figure 2 and figure 6 both show, in any finite
staircase, the obliquely oriented backmost film (denoted film 0, 1) upon leaving the backmost
vertex (denoted vertex 1) needs to be long enough to extend all the way up to the upper
channel wall. In the infinite staircase however, obliquely oriented zigzag films tend to be shorter,
since they never reach channel walls. Instead, they always terminate in vertical films, and it
is then those vertical films that connect to the upper and lower channel walls. Hence at the
upstream end of a staircase with a large but finite number of bubbles, there must be a geometrical
difference from an infinite staircase in terms of film lengths, even if film orientations themselves
differ little. This then makes it yet more important as part of the outlook for further work,
as has been mentioned, to compute structures geometrically in terms of bubble sizes and film
lengths.
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The only situation in which the configuration at the backmost film in figure 6 represents a
small perturbation geometrically from an infinite staircase is the scenario in which zigzag films
in the infinite staircase are long and vertical films are short. This gives an infinite staircase with
bubbles of comparatively large area (see also figure S2b in the electronic supplementary material).
Starting from the far upstream end of a large but finite bubble staircase itself comprised of bubbles
of large area, and then moving just a few bubbles downstream, the hope is that a structure akin
to an infinite staircase might be reached, not just in terms of film orientations but in terms of film
lengths also.

A final comment we make is that all we have achieved here is to determine information about
how a geometrically invariant state for an N-bubble structure must be configured, assuming the
limit of high imposed driving pressures is attained. It is possible that even though a geometrically
invariant state can exist in principle, it might not necessarily be realized in practice: instead, as
very often happened with the three-bubble structure [45,46], the staircase might break in various
ways even before the high-pressure limit is reached. On the other hand, the infinite staircase is
expected to be stable, migrating as it does without deforming. Intuitively, therefore, the larger the
value of N that is selected for a finite staircase, the more likely it should be that a geometrically
invariant state is indeed attained when increasing pressures are imposed, which can be done
either gradually [45] or suddenly [46]. However, we have still not demonstrated whether such
intuition is correct. That said, having information about how a geometrically invariant state
needs to be configured (the contribution of the present work), is an essential step towards testing
whether such a configuration is actually attained in practice. The first step is determining film
orientations, as has been done here. The next step (as already alluded to above) is constructing a
configuration with bubbles of required target areas respecting those film orientations. After that is
done, we can test the dynamic stability of the configuration to perturbations, to ascertain whether
it might be realizable.
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